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Abstract: Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions
and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic
three-fingered folding topology with three long loops projecting from a disulfide-rich globular core.
The majority of the members of this protein domain family contain only a single LU domain, which
can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I
membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the
urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary
aspects of this protein domain family with special emphasis on variations in their consensus disulfide
bond patterns. Furthermore, we will present selected cases where missense mutations in LU
domain−containing proteins leads to dysfunctional proteins that are causally linked to genesis of
human disease.

Keywords: uPAR; snake venom α-neurotoxins; GPIHBP1; plesiotypic disulfide bonds; protein
evolution; Ly6/uPAR domains; protein module; protein domain

1. Introduction

Protein domains are autonomous folding units that may function alone or as building blocks in
the context of multidomain proteins. When such protein domains are encoded by exons flanked by
introns of identical phases, they may become genetically mobile and prone to exon shuffling, resulting
in the insertion of a domain into a non-homologous protein environment. This process is facilitated by
intronic recombination [1]. Highly mobile protein domains are termed protein modules. Examples
of protein modules that occur in multidomain proteins include kringle domains, growth-factor-like
domains (GFD), fibronectin type I–III (FN1, FN2, and FN3) domains, immunoglobulin domains
(Ig), and complement control protein (CCP) domains [1,2]. Along with single-gene or large-genome
duplication events, exon shuffling provides a rich source for the evolutionary diversification and
neo-functionalization of a given protein domain. The current review focuses on one such domain—the
Ly6/uPAR (LU) protein domain. In an evolutionary context, LU domain proteins occur in a wide
range of eukaryotic taxa and come in a variety of different flavors: i) as secreted single domain
proteins; ii) as glycosyl-phosphaditylinositol (GPI-anchored) single domains; iii) as GPI-anchored
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multidomain proteins; and iv), as the extracellular ligand-binding domain in the TGF–β receptor
family of transmembrane proteins. In this review, we will predominantly focus on deletions of
plesiotypic (ancestral) disulfide bonds and acquisitions of apotypic (non-consensus) disulfide bonds
in LU domain–containing proteins and discuss some possible functional consequences thereof. In a
functional context, these proteins participate in a diverse array of different biological processes such as
fertilization, regulation of complement activity, intravascular lipid metabolism, fibrinolysis, cytokine
signaling, envenomation, limb regeneration, embryogenesis, and morphogenesis. To illustrate the
functional diversity of LU domain−containing proteins, we will discuss evolution, function, and
medical relevance of selected members of this protein domain family.

2. Consensus Structures Defining LU Domains

Genes encoding LU domain proteins typically contain three exons: One for the N-terminal
signal sequence followed by a set of two exons for the mature LU domain—generally flaked by
phase-1 introns—thus facilitating genetic mobility (Figure 1A). Consistent with this composition,
genes encoding LU-domain proteins often appear in small clusters in contiguous loci where they
maintain their general intron−exon structure, as shown in Figure 1A. Such clustering of genes
would suggest that an evolutionary expansion and diversification of this gene family occurred via
multiple gene-duplication events. Accordingly, Loughner et al. [3] found that 30 out of the 48 LU
containing-proteins in the human genome are located in just four small gene clusters. These segments
are located on chromosomes 6p21 (LY6G6C, LY6G6D, LY6G6F, LY6G5C, and LY6G5B), 8q24 (PSCA,
LY6K, SLURP1, LYPD2, LYNX1/SLURP2, LY6D, GML, LY6E, LY6L, LY6H, and GPIHBP1), 11q24.2
(ACRV1, PATE1, PATE2, PATE3, and PATE4), and 19q13 (LYPD4, CD177, TEX101, LYPD3, PINLYP,
PLAUR, LYPD5, and SPACA4); the latter gene cluster includes all proteins in the human genome
known to contain multiple LU domains [4]. The remaining LU domain encoding genes are more or less
scattered in the human genome (i.e., LYPD1, LYPD6, LYPD6B, LYPD8, CD59, BAMBI, ACVR1, ACVR1A,
ACVR1B, ACVR1C, ACVR2A, ACVR2B, ACVRL1, BMPR1A, BMPR1B, BMPR2, TGFBR1, and TGFBR2).

The consensus sequence defining the primordial LU domain comprises 60−90 residues with
10 plesiotypic cysteine residues engaged in a stereotypical disulfide-bonded network: 1–5, 2–3,
4–6, 7–8, and 9–10, as depicted by the sequence alignment of LU domains from different metazoan
classes in Figure 1B. A non-glycosylated asparagine residue invariably follows the tenth cysteine in
the LU domain signature. Notwithstanding the conservation of the LU domain signature, a high
sequence diversity and a high propensity for undergoing lineage-specific expansion, diversification
and neo-functionalization are the evolutionary hallmarks driving the functional versatility within this
protein-domain family [5,6]. In some cases, this diversification and neo-functionalization even led
to an erosion of the original plesiotypic disulfide pattern defining the LU domain, as illustrated in
later sections. In particular, deletions of the 2–3 disulfide bond often occurred during this process
(Section 3.1), but in very rare cases the 7–8 disulfide bond was also deleted (Section 4.3). Furthermore,
additional apotypic disulfide bonds have occasionally been introduced into the LU domain scaffold.

Another salient feature of all LU domains is their unique protein-folding topology, where
a cysteine-rich core projects three long β-hairpins (i.e., loops 1, 2, and 3) that assemble into a
slightly curved central β-sheet, thus forming the dominating secondary structure of the characteristic
three-fingered fold (Figure 1C). The six strands forming these three loops are designated A−F in the
order of appearance in the primary sequence. These strands have a high propensity for forming
β-sheets, with the exception of strand E, located at the edge of the LU domain, which can be flexible
and adopt random coils, β-strands, or α-helices. The last disulfide bond (denoted 9–10) forms a small
loop on the “back” of the central β-sheet, where it either terminates the LU domain in secreted proteins
(Section 4.1) or extends into a carboxyl-terminal GPI-moiety that tethers the LU domain to the cell
membrane in glycolipid-anchored variants (Section 4.2). The position of the intron, which divides
the exon set encoding the mature LU domain, corresponds to the tip of loop 2 in the mature protein.
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The protruding loops and the concave face of the central β-sheet of the LU domains are generally
involved in protein−protein interactions [7–10].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 20 
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Bucandin [PDB 1F94 [14]]. The plesiotypic disulfide bonds are shown as yellow sticks and are 

numbered as in panel (b). The protruding strands forming the three loops are labelled A–F; β-sheets 

are colored cyan; α-helices are colored red. 

3. Non-Mammalian LU-Domain Proteins 

Although genes encoding LU-domain proteins are recognized in almost all phyla of the 

metazoan kingdom [15] and proteomics have revealed their presence in coelomic fluids of 

Echiodermata [16], we will only focus on a few examples of non-mammalian LU-domain proteins that 

have contributed significantly to our understanding of the evolutionary origin of the functional and 

structural diversity of LU domains. 

3.1. Snake venom α-neurotoxins 

Toxins from venomous snakes provide a rich source of information on the evolution of LU-

domain containing proteins, in particular with a view to sequence diversification and neo-

functionalization of α-neurotoxins. The co-evolutionary “arms race” between snake venom α-

neurotoxins and their specific target proteins within the cholinergic system of their agile prey which 

they need to subdue provides a unique setting dominated by gene duplications and sequence 

evolution under positive Darwinian selection [6]. Extensive data mining of the numerous sequences 

from three-fingered toxins (more than 700 are known) has provided a unique insight into the rapid 

evolution and neo-functionalization of this scaffold. In this section, we will emphasize the 

Figure 1. Characteristic properties of typical LU-domain encoding genes and their protein products:
(A) The gene structure encoding an archetypical single LU-domain protein comprises three exons. Note
that the signal sequence for GPI-anchoring is included in exon-3 for those proteins that are destined to
become glycolipid anchored. (B) Sequence alignments of typical LU domains from different metazoan
taxa where the plesiotypic 10-cysteine pattern is maintained (highlighted by yellow boxes along with
the consensus disulfide bonding). Typical LU-domain secondary structure elements are shown in the
top of the alignment as cyan boxes using the structure of Bucandin as reference. SmLy6B (Uniprot:
B8Y6H3) from Schistosoma mansoni represents the class Trematoda [11]; Bucandin (Uniprot: P81782)
from Bungarus candidus and Denmotoxin (Uniprot: Q06ZW0) from Boiga dendrophilae both represent
the class Reptilia; CD59 (Uniprot: P13987) and LYNX1 (Uniprot: P0DP58) from Homo sapiens both
represent the class Mammalia. Dots indicates an extension of the sequence. (C) The three dimensional
protein structures of prototypical single LU-domain proteins are represented in a cartoon representation
for CD59 [PDB 2OFS [12]], LYNX1 [PDB 2L03 [13]], and Bucandin [PDB 1F94 [14]]. The plesiotypic
disulfide bonds are shown as yellow sticks and are numbered as in panel (B). The protruding strands
forming the three loops are labelled A–F; β-sheets are colored cyan; α-helices are colored red.

3. Non-Mammalian LU-Domain Proteins

Although genes encoding LU-domain proteins are recognized in almost all phyla of the metazoan
kingdom [15] and proteomics have revealed their presence in coelomic fluids of Echiodermata [16],
we will only focus on a few examples of non-mammalian LU-domain proteins that have contributed
significantly to our understanding of the evolutionary origin of the functional and structural diversity
of LU domains.

3.1. Snake Venom α-Neurotoxins

Toxins from venomous snakes provide a rich source of information on the evolution of LU-domain
containing proteins, in particular with a view to sequence diversification and neo-functionalization of
α-neurotoxins. The co-evolutionary “arms race” between snake venom α-neurotoxins and their specific
target proteins within the cholinergic system of their agile prey which they need to subdue provides a
unique setting dominated by gene duplications and sequence evolution under positive Darwinian
selection [6]. Extensive data mining of the numerous sequences from three-fingered toxins (more than
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700 are known) has provided a unique insight into the rapid evolution and neo-functionalization of
this scaffold. In this section, we will emphasize the diversification of the plesiotypic disulfide bonds in
the snake toxins with respect to their specificity and efficacy in targeting essential receptors in their
preferred prey.

Three-fingered toxins with the ancestral 10-cysteine LU-domain signature are the main constituent
in venom from the advanced non-front fanged snake lineages (e.g., the genus Boiga in the family
Colubridae). These toxins are often misclassified as “weak neurotoxins” due to their low toxicity
towards synapsid targets (mammals). This is clearly a misnomer, since they are potent inhibitors of the
cholinergic system of diapsids, which makes sense as these snakes feed primarily on birds, reptiles,
and amphibians. Basal-type α-neurotoxin is, thus, a more appropriate terminology for these toxins,
referring to their primordial phylogenetic origin. Within the framework for LU domains, an atypical
covalently linked heterodimeric toxin, irditoxin [17], arose in the Colubridae family (Figure 2). From an
evolutionary perspective, this represents an interesting case as the introduction of an eleventh cysteine
into the LU domain occurred at different positions in the two subunits forming the heterodimeric
irditoxins. It is likely that these changes occurred in concert, given that mutations introducing free
cysteines in secreted proteins rarely survive selection because of the deleterious effects of the reactive
free thiol group [18]. Irditoxin possesses a high taxon-specific lethality, since its blockage of avian
neuromuscular junctions is 1000-fold more potent than blockage of the corresponding neuromuscular
junctions in mammals [17]. The evolution of irditoxin—a toxin that is more potent than the single
LU-domain toxin denmotoxin—is probably among the driving factors for the “success” of Boiga
irregularis as an invasive species in the Pacific island of Guam [17,19].

An impressive radiation in toxin diversification and potency towards synapsids arose in the
advanced snake lineage Elapidae subsequent to the anatomical acquisition of a high-pressured and
hollow front-fanged venom-delivery system. Evolution of this delivery system was tightly associated
with the neofunctionalization of three-fingered toxins. This occurred primarily via the selective deletion
of one plesiotypic LU-domain disulfide bond—the one that stabilizes loop 1 and is denoted 2–3 in
Figures 1 and 2. One hypothesis proposes that the loss of the structural constraints from this disulfide
bond created a more flexible toxin scaffold, which subsequently facilitated neo-functionalization by
rapid diversification of surface exposed residues [6]. The resultant 8-cysteine LU-domain scaffold
contributed to high potency towards many mammalian targets, resulting in the notorious toxicity of
elapid snake venom in humans. Short-chain α-neurotoxins gained high potency towards mammalian
nicotinic acetylcholine receptors (α1 nAChR), breaching the taxon-specific lethality for the toxins
found in colubrine snakes with the complete 10-cysteine LU-domain signature. The introduction of
an apotypic disulfide bond at the tip of loop 2 in the LU domain of the long-chain α-neurotoxins
(Figure 2) further expanded their targeting repertoire to include α7 nAChR. A subgroup of the
long-chain α-neurotoxins developed into non-covalent homodimeric toxins (e.g., κ-bungarotoxin),
which antagonizes the neuronal α3β2 nAChR. Along the same lines, haditoxin [20], which is a
homodimeric short-chain α-neurotoxin, also exhibits a broad pharmacologic specificity by targeting
muscle as well as several neuronal nAChRs (α7, α3β2, α4β2). The high adaptability of the 8-cysteine
LU-domain scaffold for undergoing neo-functionalization is clearly illustrated by the wide range of
targets that it can antagonize. Besides nicotinic acetylcholine receptor antagonists, these toxins can act
as muscarinic acetylcholine receptor antagonists (MT7), acetylcholinesterase inhibitors (fasiculins),
L-type calcium channel antagonists (calsiceptine), non-specific cytotoxins disrupting the phospholipid
bilayer (cardiotoxins), or as modulators of the acid-sensing ion channels (mambalgins). Intriguingly,
mambalgins exhibit no toxic effects, but by inhibiting the acid-sensing ion channels, they exhibit
potent analgesic effects (comparable to morphine) without inducing tolerance or respiratory distress.
This profile triggered considerable pharmacological interest in these LU-domain proteins as therapeutic
agents to alleviate chronic pain [9,21].
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Figure 2. Evolution and neo-functionalization of LU domains from snake venom toxins: (A) A sequence
alignment of typical members of the different groups of snake-venom toxins. Note, only the basal-type
neurotoxins maintain the 2–3 disulfide bond. Orange boxes highlight apotypic cysteine residues and
yellow boxes highlight plesiotypic LU-domain cysteine residues. Dots indicate sequence extensions.
The apotypic, intra-domain disulfide bond in the long-chain α-neurotoxins is included in the consensus
sequence in light gray. (B) Three-dimensional structures of selected LU domains belonging to
basal-type α-neurotoxins [denmotoxin (PDB 2H5F [22]); irditoxin (PDB 2H7Z [17])], short-chain
α-neurotoxins [dendroaspin (PDB 2LA1 [23])], long-chain α-neurotoxins [α-bungarotoxin (PDB
1HC9 [24]); κ-bungarotoxin (PDB 1KBA [25])], and cytotoxins [β-cardiotoxin (PDB 3PLC)]. The apotypic
disulfide bonds in the long-chain α-neurotoxins and irditoxin are marked with an asterisk.

Of note, a dynamic recruitment of genes to the postorbital venom gland appears to have evolved
by distinct co-option events of genes expressed in other tissues that are supporting normal physiological
processes [26–28]. That concept—where LU domains with normal and toxic functions could have a
shared phylogenetic ancestry—is consistent with the observation that LYNX1 (Figure 1) and SLURP1
(Section 4.1), both prototypical LU domains with 10 cysteine residues, have modulatory roles on nAChR
activities in the normal brain [29,30] and skin [31], respectively. Such an evolutionary trajectory would
be in accordance with the species-selectivity of the early snake-venom toxins for diapsid targets. In line
with this theory for neurotoxin evolution, LU-domain proteins, involved in regulating the activity of
acetylcholine receptors, are often referred to as endogenous prototoxins. One study demonstrated
that expression of α-bungarotoxin in zebrafish muscle fibers in vivo in a tethered version by adding
a GPI-anchor specifically silenced muscle nAChR activity without having systemic toxicity or overt
effects of neuromuscular synapse development, thus reverting this toxin into a “prototoxin-like”
state [32].
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3.2. LU Domain Proteins in Drospohila

LU domains are also widely expressed within the class Insecta, where their expression and
function in Drosophilae has been studied intensively. The genome of Drosophila contains 45 genes
encoding LU-domain proteins, all of which are predicted to be GPI-anchored [33]. As observed in other
metazoan classes, Drosophilae genes encoding LU-domain proteins tend to cluster in specific regions
of the genome, suggesting that they have arisen by multiple gene-duplication events and subsequent
diversification [5,34]. More than half of these genes encode archetypical single LU-domain proteins
with 10 cysteines and a C-terminal signal sequence for GPI-anchoring [33]. A few proteins contain
multiple LU domains (ranging from 2 to 44 LU domains). Among these proteins, two contain LU
domains with only 8 disulfide bonds (lacking the 7–8 plesiotypic disulfide bond), but their expression
in vivo has not yet been verified [33].

From a functional perspective, four Drosophila genes encoding GPI-anchored proteins with a
single LU domain (boudin, crooked, coiled, crimpled) have attracted considerable interest. These single
LU-domain proteins play non-redundant roles in establishing the epithelial septate junctions in
Drosophilae, which function as anatomical diffusion barriers equivalent to tight junctions in vertebrate
epithelia [33,35,36]. The precise mode of action of these LU-domain proteins is unclear, but it may
involve the trafficking of septate junction constituents such as Neurexin IV [35,36].

Interestingly, the Drosophila brain contains another GPI-anchored, single LU-domain protein
resembling an endogenous prototoxin. This LU-domain protein, encoded by quiver/sleepless, possesses
a remarkable dual functionality. It both antagonizes the nAChR encoded by redeye [37] and stimulates
the voltage-gated potassium channel shaker [38]. These properties endow quiver/sleepless with the
ability to modulate neuronal excitability and cholinergic synaptic transmission, serving to regulate
sleeping patterns in Drosophila [39]. This observation suggests that the interaction between endogenous
prototoxins and nAChRs is a more general phenomenon, present in metazoan classes as diverse as
Mammalia (LYNX1) and Insecta (sleepless).

3.3. LU-Domain Proteins in Teleosts

From the standpoint of evolution, the wholesale genome duplication that occurred at the base
of the teleost radiation provides another interesting case involving diversification of two paralogous
genes. The fate of duplicated genes may entail neo-functionalization, functional conservation, or drift
into a silenced pseudogene [40]. Although the study on teleost LU-domain proteins is in its infancy, it
is clear that genomes of zebrafish and medaka contain small contiguous clusters of genes with the
prototypical intron−exon structure of plesiotypic LU-domain proteins [41–45]. A cluster on zebrafish
chromosome 21 encodes seven GPI-anchored proteins containing two consecutive LU domains [42];
six of these proteins are expressed primarily in the developing brain and one is expressed in the skin.
Both LU domains in these proteins maintain the 10-cysteine signature. In contrast, all mammalian
proteins containing multiple LU domains lack the 7–8 plesiotypic disulfide bond in the N-terminal LU
domain (Section 4.3).

Herberg et al. [41] demonstrated that one GPI-anchored, single LU-domain protein, bouncer, is
expressed on zebrafish oocytes and is required for fertilization, as it mediates the contact between
the oocyte and the spermatocyte. The closest human homolog of bouncer is SPACA4/SAMP14 (sperm
acrosomal membrane protein 14). Herberg et al. proposed that bouncer is one of the key components
governing species-specific fertilization in teleosts. This conclusion is based mainly on cross-fertilization
experiments after swapping the endogenous expression of bouncer in zebrafish oocytes with that of
medaka. This swapping strategy allowed the entry of medaka sperm into zebrafish oocytes, albeit
at a low efficiency. As illustrated in Figure 3, the gene encoding bouncer occurs in two paralogous
forms (A and B) in medaka, due to the early gene duplication. One variant contains the 10-cysteine
LU-domain signature (B), whereas the other (A) has lost the 2–3 plesiotypic disulfide bond that in
snakes induced rapid diversification and neo-functionalization of the α-neurotoxins (Section 3.1).
Replacing the 10-cysteine LU-domain variant of zebrafish bouncer with the 8-cysteine LU-domain
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variant from medaka (A) may therefore have lowered the efficacy by which cross-fertilization occurred.
It is possible that the B-form of medaka bouncer does not produce a correctly folded protein, as it
contains an unpaired eleventh cysteine residue (Figure 3). As the A-variant of bouncer from Cyprinus
carpio maintains a similar 10-cysteine LU-domain signature as that found in zebrafish bouncer, it
would be interesting to test if the swapping protocol used by Herberg et al. would lead to a higher
cross-fertilization efficacy between these species.

 

2 

 

 

 

Figure 3. Sequence alignment of bouncer from zebra fish (Danio rerio) with two paralogous sequences
(A and B) from medaka (Oryzias lapites). These proteins are expressed by oocytes. The B variant
of medaka bouncer contains an unpaired cysteine (highlighted in orange) and lacks a functional
C-terminal signal sequence entailing membrane tethering by a GPI-anchor. Also shown is the sequence
from the closest human homolog, SPACA4/SAMP14, expressed in spermatocytes.

The importance of another gene (lypd6; LY6/PLAUR domain-containing 6) encoding a
GPI-anchored LU-domain protein on early zebrafish development is also clearly documented [45]. By
genetically manipulating lypd6, it was shown that this protein regulates embryonic mesoderm and
neuroectoderm patterning by enhancing Wnt/β-catenin signaling via binding to Lrp6 in lipid rafts [45].
Lypd6 contains an additional apotypic disulfide bond stabilizing its third loop (as illustrated by the
structure of human LYPD6 in Figure 6D).

4. Mammalian LU Domain Proteins

4.1. Secreted Single LU Domain Proteins

Of the 48 genes encoding LU-domain proteins in the human genome, 11 encode a secreted
version of a single LU-domain protein, such as SP-10, PATE 1–4, SLURP-1, and SLURP-2 (secreted
Ly6/uPAR-related proteins). These secreted proteins retain the genetic and structural hallmarks of
LU domains. Among the secreted LU-domain proteins, SLURP-1 has received the most attention,
since missense mutations in that gene cause a rare autosomal-recessive skin disease, mal de Meleda [46].
Patients with mal de Meleda exhibit palmoplantar keratoderma with transgrediens. SLURP-1 is
expressed primarily in the stratum granulosum of the epidermis [47]. Several of the missense mutations
in SLURP-1 associated with mal de Meleda affect one of the 10 plesiotypic LU-domain cysteine residues
(pCys77Arg, pCys94Ser, and pCys99Tyr [46]). These mutations grossly impair the folding of the LU
domain, preventing efficient secretion from cells [48]. Deletions of either SLURP-1 or SLURP-2 leads
to a mal de Meleda-like phenotype in mice and the combined double deficiency causes a comparable
disease severity, as presented by the individual single deficiencies, suggesting that SLURP-1 and
SLURP-2 either act together or act sequentially in the same pathway [49–51]. SLURP-1 inhibits
keratinocyte proliferation in vitro by 40%, presumably by antagonizing binding to the α7-nAChR with
low nanomolar affinities [31], while SLURP-2 in contrast stimulates keratinocyte proliferation in vitro
and presents a more promiscuous binding profile towards several AChRs [52]. Whether these effects
are causally related to development of mal de Meleda remains unclear.

4.2. Glycolipid-Anchored Single LU-Domain Proteins

The majority of LU-domain proteins encoded in the human genome are GPI-anchored
single-domain proteins with the 10-cysteine signature. Although protein structures and biological
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functions of a few of these proteins are well-characterized (e.g., CD59, GPIHBP1, LYNX1, LYPD6),
molecular and functional insights into the majority of these family members are at best rudimentary.

4.2.1. CD59

One of the best-characterized proteins within this group is the complement regulatory protein
CD59 (Figure 1). CD59 protects host cells from autologous complement damage by binding to the
premature membrane attack complex C5b–8, thus preventing maturation into the terminal pore-forming
cytolytic complex. Phylogenetically, CD59 exhibits a broad taxonomic distribution in vertebrates,
spanning from teleost to mammals, but CD59 is lacking in Cavia porcellus (guinea pig), where the CD59
gene has been transformed into a pseudogene [53]. A few rare cases of homozygous missense mutations
leading to defective CD59 have been identified in humans [54–57]. These defects are associated with a
life-threating prothrombotic phenotype with intravascular hemolysis, cerebral infarction, and relapsing
peripheral neuropathy. The ability of rodents to withstand CD59 deficiency could be due to the
protective activity of another complement regulatory component (Crry) in those species [58]. One of
the two deleterious single-site missense mutations in human CD59 disrupts the 9–10 disulfide bond
(pCys64Tyr). This mutation destabilizes CD59 folding and interferes with transport of the protein to
cell surface [57], thus providing the molecular basis for its association with disease development.

4.2.2. LYNX1

Studies on mice with genetic ablation of Lynx1 reveal that this prototoxin limits neuronal plasticity
in the adult visual cortex by attenuating the cholinergic response of α4β2 and α7 nAChRs [29,59].
Lynx1 is widely expressed in a variety of neuronal subtypes in the brain where it colocalizes with α4β2
and α7 nAChRs [32,60]. The progressive increase in Lynx1 expression in the visual cortex neurons of
the developing brain thus gradually impair visual acuity after monocular deprivation (amblyopia)
in adults versus juveniles, but importantly this limitation of adult mice is rescued by increased
neuronal plasticity in Lynx1 deficient mice [29]. Pharmacological intervention via administration of
an acetylcholinesterase inhibitor (physostigmine) also induces neuronal plasticity in the adult mouse
brain [29]. The impact of Lynx1 on the complex regulation of cholinergic output is nonetheless not
restricted to the visual cortex, but includes additional functions, such as motor learning and associative
learning [30,61]. The integrity of the 2–3 plesiotypic disulfide bond in the LU domain of Lynx1 is
essential for its nAChR modulating function [60,62], which is in contrast to observations with CD59,
uPAR DI, and κ-bungarotoxin where this particular disulfide bond is non-essential for the function of
these proteins. One study reports that another GPI-anchored LU-domain protein, LYPD6, also interacts
with and modulates nAChR function [63]. A more comprehensive review on the functional aspects of
endogenous LU domain modulators of nAChRs is found elsewhere [64].

4.2.3. GPIHBP1

From an evolutionary perspective, the inclusion of GPIHBP1 in the LU-domain protein superfamily
represents a recent event, as this protein occurs exclusively in the class Mammalia [65]. GPIHBP1
serves an important role in delivering lipids to oxidative tissues such as heart and muscles by focusing
active triglyceride hydrolysis to the lumen of capillaries [66]. Several of the essential steps in this
complex process are regulated by GPIHBP1: (i) Shuttling of the lipoprotein lipase from the interstitial
spaces (where it is secreted by parenchymal cells) to the capillary lumen is exclusively dependent
on GPIHBP1 [67]; (ii) margination of triglyceride-rich chylomicrons on the endothelial membrane is
mediated by the GPIHBP1•LPL complex [68]; (iii) extraction of LPL from a dynamic pool, loosely
tethered to heparan sulfate proteoglycans, is driven by GPIHBP1 [69]; (iv) stabilization of LPL structure
and activity is accomplished by GPIHBP1 binding [70]; and (v) protection from the endogenous protein
inhibitors ANGPTL4 and ANGPTL3/8 is also accomplished by GPIHBP1 binding [71]. To perform
these roles, GPIHBP1 developed a number of unique properties, which partly were made possible by
the addition of an extra exon in front of the exon-set encoding the generic GPI-anchored LU domain
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(Figure 4A). Remarkably, this exon encodes a highly acidic N-terminal extension with 21 negatively
charged residues (Glu or Asp) as well as a sulfated tyrosine [69] within 26 consecutive residues in
human GPIHBP1 (Figure 4B). The length of this extension is highly variable among mammalian species
and can be as long as 50 amino acid residues, including 32 negative charges (Monodelfis domestica;
XP_016287565.1). The evolutionary origin of the additional exon-2 in the GPIHBP1 gene remains
unclear, but it was speculated to have arisen from integration of a segment of the BCL11A gene [72].

 

2 

 

 

 

Figure 4. Gene structure, sequence, and three-dimensional structure of GPIHBP1: (A) The gene
organization of GPIHBP1, containing an additional exon (IDR) in front of the traditional exon-set
encoding the LU domain. (B) A sequence alignment of the LU domains of GPIHBP1 and SP-10, the
only two proteins in the human genome with an extra exon encoding an intrinsically disordered
N-terminal segment. Gray arrowheads highlight the positions of introns 2 and 3. The length of the
IDR extension of SP-10 varies considerably due to alternative splicing events in exon 2 [73]. (C) The
crystal structure of GPIHBP1 bound to the lipoprotein lipase (LPL). The gray surface represents LPL,
whereas the LU domain of GPIHBP1 is shown as a cartoon representation, using the same color-coding
as in the earlier figures [PDB 6E7K [7]]. Only the LU domain is defined in the crystal structure; as the
acidic intrinsically disordered domain at the amino terminus is not well defined in the electron density
map and most likely forms a fuzzy complex with LPL. (D) A model of GPIHBP1 based on small-angle
X-ray scattering, with the likely spatial distribution of the acidic disordered extension illustrated with
colored beads, each color representing one likely spatial distribution. Reproduced with permission
from Kristensen et al. [69].

The acidic extension, which is intrinsically disordered, endows GPIHBP1 with several unique
functional properties. First, it dramatically increases the encounter rate with LPL due to electrostatic
steering; the association rate constant (kon) between LPL and GPIHBP1 is thus >250-fold greater for
full-length GPIHBP1 than for a mutant lacking the acidic N-terminal extension [69]. Second, GPIHBP1′s
acidic N-terminal extension is crucial for the ability of GPIHBP1 to extract LPL from heparan sulfate
proteoglycans in the subendothelial space [69]. Third, GPIHBP1′s intrinsically disordered extension
has a chaperon-like function, blocking the tendency of LPL to unfold [70]. Finally, GPIHBP1 limits the
unfolding of LPL catalyzed by its physiologic inhibitors, the ANGPTL proteins [71]. The entire concave
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face of the central β-sheet and the three protruding loops of GPIHBP1′s LU-domain participate in a
hydrophobic binding interface with LPL [7], adding stability to the LPL•GPIHBP1 complex (Figure 4C).

Any defect in the assembly of the LPL•GPIHBP1 complex causes severe hypertriglyceridemia
(chylomicronemia)—a condition associated with life-threatening bouts of acute pancreatitis.
Chylomicronemia is lifelong in the setting of homozygosity or compound heterozygosity for
loss-of-function mutations in GPIHBP1 or LPL [74,75]. Several of these disease-causing missense
mutations in human GPIHBP1 involve elimination of one of the plesiotypic cysteine residues in the
LU domain (e.g., pCys65Tyr, pCys65Ser, pCys68Tyr, pCys68Gly, pCys83Arg, pCys89Phe), leaving the
partner half-cystine with an unpaired thiol-group [74]. In one case, the deleterious mutation actually
introduced a new unpaired cysteine in the LU domain of GPIHBP1 (pSer107Cys) [76]. The severe
phenotypes of these patients are most likely caused by the destabilizing of the LU-fold leading to
multimerization of dysfunctional mutant protein [77].

Acquired forms of chylomicronemia can occasionally occur in children or adults as a result of
autoantibodies against GPIHBP1 [78,79]. These autoantibodies, which are directed against the LU
domain of GPIHBP1, abolish the ability of GPIHBP1 to bind LPL. Consequently, LPL cannot reach its
site of action in the capillary lumen. Approximately one-half of patients with GPIHBP1 autoantibodies
have clinical or serologic evidence for autoimmune diseases.

4.2.4. LY6E

Two interferon inducible LU genes (LY6E and PSCA) have adverse pathogenic effects, as they
enhance the susceptibility of certain cell types to a subset of viral infections. Host entry of Flaviviridae,
such as Zika virus, dengue virus, and yellow fever virus, occurs via clathrin-mediated endocytosis,
but the size of these virion particles requires the active engagement of a non-canonical endocytosis
pathway, which includes the GPI-anchored LU domain protein LY6E [80]. A different mechanism for
enhanced viral infection revealed that influenza A rely on LY6E for promoting disassembly of the viral
capsid (uncoating) after endosomal escape of the internalized virus. How LY6E aids disassembly of the
capsid proteins remains nevertheless unclear, but the base of loop 1 in the LU domain of LY6E seems
to play an essential role in this process. Possible mechanistic insights into the LY6E-facilitated entry
of viruses may perhaps be gleaned upon from studies on the biological function of LY6E in normal
physiology. Ly6e-deficient mice show mid-gestational embryonic lethality (E15.5) due to placental
malfunction with impaired labyrinth morphogenesis and imperfect syncytiotrophoblast fusion [81].
This phenotype relates to Ly6e being the endogenous receptor for syncytiotrophoblast layer fusogenic
protein A (Syncytin A), which is encoded by Syna, an ancient retroviral envelope gene that was co-opted
in Mammalia to mediate fusion of distinct placental cells into functional syncytiotrophoblasts [82].

4.3. Glycolipid-Anchored Proteins with Multiple LU Domains

The human genome contains a small locus on chromosome 19q13 that encodes atypical LU
domain-containing proteins (LYPD4, CD177, TEX101, LYPD3, PINLYP, PLAUR, LYPD5, SPACA4).
Several of these genes encode GPI-anchored proteins with two or more LU domains with the generic
intron−exon structure preserved for each added LU domain. As a completely unexpected and unique
feature, the N-terminal LU domain in all these multi-LU-domain proteins lack the 7−8 plesiotypic
disulfide bond [4,83]. Deleting that particular disulfide bond in the single LU-domain proteins
invariably leads to an unstable and aggregated recombinant protein product, implying that this
disulfide bond is essential for integrity of a proper folded LU domain [77,84,85]. In this section, we
will focus on three GPI-anchored proteins from this locus: The urokinase-type plasminogen activator
receptor uPAR (PLAUR) with three consecutive LU domains and the two LU domain-containing
proteins, C4.4A (LYPD3) and Haldisin (LYDP5).

The best-characterized member of these glycolipid-anchored, multi-LU-domain proteins is the
urokinase-type plasminogen activator (uPA) receptor (uPAR), which is also the founding member of
the LU domain superfamily. In a functional context, uPAR serves to focus uPA-mediated plasminogen
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activation on the cell surface though high-affinity interaction with the growth factor-like domain
of uPA (Figure 5D). One important function of this cell-surface plasminogen activation system is
to provide a “clean-up” mechanism for extravascular fibrin. With aging, mice deficient in uPAR
show signs of chronic hepatic inflammation due to accumulating fibrin deposition [86], and they also
have an impaired neuronal recovery after cerebral ischemia [87,88]. Notwithstanding the beneficial
function of uPAR, high expression levels of uPAR and uPA may also elicit detrimental pathological
effects, particularly in the setting of chronic inflammation. Progression of arthritic lesions seems to be
exacerbated by the presence of a high expression levels of uPA and uPAR [89,90]. Likewise, numerous
studies have demonstrated that high levels of uPAR predict poor survival for patients with solid
cancers [91]. These observations have prompted several strategies for uPAR-targeted treatment [92–95].
In addition, they have triggered the development of non-invasive PET-imaging modalities designed
to visualize uPAR expression in cancer patients by PET-imaging, with the goal of improved patient
stratification [96–98]. Optical imaging of uPAR expression with near-infrared fluorescence is also
currently being pursued as an intra-operative tool in guiding precision cancer surgery [99,100].

 

2 

 

 

 
Figure 5. Multi-LU-domain proteins. (A) A sequence alignment of three human multi-LU-domain
proteins: uPAR/PLAUR (Uniprot: Q03405), C4.4A/LYPD3 (Uniprot: O95274) and Haldisin/LYPD5
(Unitprot: Q6UWN5). This alignment includes the first two LU domains in uPAR, C4.4A and Haldisin,
along with third LU domain in uPAR. Note, that the plesiotypic 7−8 disulfide bond is lacking in all the
N-terminal LU domains. (B) Cartoon representation showing that the structure of the N-terminal LU
domain of uPAR with the position of the missing 7−8 disulfide highlighted by an asterisk. Disulfide
bonds are shown as yellow sticks. (C) Cartoon representation illustrating the assembly of the three
LU domains in intact uPAR, with DI in cyan, DII in purple, and DIII in blue. The position of the
glycolipid-anchor that tethers uPAR to the cell membrane is shown (GPI). (D) The complex between
uPAR (gray surface representation) and the amino-terminal fragment (ATF) of its primary high-affinity
ligand uPA (shown in a green cartoon representation). The structures were created by PyMol with the
PDB coordinates 3BT1 [101].

The two key physiological binding partners for uPAR, uPA and vitronectin, bind uPAR with
markedly different affinities (KD’s for uPA and vitronectin are 0.02 nM and 4 µM, respectively).
A dynamic assembly of all three LU domains in uPAR creates a large hydrophobic uPA-binding cavity
involving the concave faces of all of the central β-sheets of its LU domains [101–106]. Biophysical
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studies have demonstrated that uPAR DI (the first LU domain) is highly flexible and exhibits a dynamic
association with DII and DIII, but this inter-domain interface is far more rigid after uPA-binding [106].
This relationship is remarkable, given that uPAR DI lacks the plesiotypic 7–8 disulfide bond, which is
indispensable for the folding of single LU-domain proteins. Moreover, this particular disulfide bond
stabilizes loop 3 of the LU domain, which is engaged in the interface between uPAR’s first and second
LU domain (Figure 5C). We therefore propose that some flexibility of this scaffold is needed for the
assembly of the LU domains in intact, unoccupied uPAR. Supporting this assumption, we showed
that reintroducing the 7–8 disulfide bond into the first LU domain of uPAR impairs uPA binding as
well as the dynamic association between DI and DII-DIII in the unoccupied receptor [107]. From an
evolutionary perspective, it is noteworthy that all uPAR orthologues identified thus far in Mammalia
and Reptilia have three consecutive LU domains, and in each case the N-terminal LU domain lacks the
plesiotypic 7–8 disulfide bond [107,108]. The uPAR-like proteins with three consecutive LU domains
identified in Sarcopterygii and Amphibia maintain a generic 10–cysteine pattern in each of the three LU
domains [108]. However, the uPAR-binding sequences in uPA (as defined within Mammalia) are only
present in those species where the 7–8 disulfide bond in the first LU domain of uPAR is absent [107].

Another pair of genes, LYPD3 and LYPD5, located in the same locus as uPAR on chromosome
19q13, encode two GPI-anchored proteins, which are robust biomarkers of epithelial differentiation.
C4.4A/LYPD3 is confined to stratum spinosum [109–111], and Haldisin/LYPD5 is confined to stratum
granulosum [112]. Both proteins contain two LU domains and the aforementioned 7–8 disulfide bond is
absent from their N-terminal LU domain (Figure 5A). In addition, the first LU domain of Haldisin
lacks the 2–3 disulfide bond, resulting in a LU domain containing only three of the five plesiotypic
disulfide bonds. The biological function of these proteins in the stratified squamous epithelium is
unclear, and mice deficient in C4.4A manifest only minor phenotypes [113]. Nonetheless, several
independent studies have shown that high levels of C4.4A expression in pulmonary non-small cell
adenocarcinomas predicts poor patient survival [114–116].

4.4. Transmembrane Proteins with a Single Extracellular LU Domain

It is possible that the LU domain, in an evolutionary context, first appeared as an extracellular
ligand-binding domain in the primordial TGF–β signaling receptors. These receptors are essential for
embryogenesis and ontogenesis of multicellular organisms, and they are already present in primitive
bilaterian metazoans with elaborate body plans [15,117]. This important class of signaling molecules
comprises a large group of agonists, antagonists, anchoring molecules (e.g., latent TGF-β binding
protein), signaling receptors (type I and type II), and co-receptors [117]. The co-evolution, protein
structures, and molecular mechanisms defining this system have been thoroughly investigated. A
more detailed description can be found in a comprehensive and contemporary review by Hinck
et al. [117]. A central event in this signaling pathway is driven by the heterodimerization of two
integral membrane receptors by ligand binding to their extracellular domains (ECD). The ECD of
type I receptors (e.g., TGF-βR1, BMPR1A, and ACVR1A) all comply with the plesiotypic LU domain
signature with 10 cysteines and the stereotypic disulfide bonding pattern (Figure 6A). In contrast,
ECDs of type II receptors have a more divergent cysteine pattern and a longer loop 1. In BMPR2 and
ACVR2, the ECD has lost the 2–3 disulfide bond and gained another apotypic disulfide bond tethering
strand E to the back of the three-fingered scaffold (Figure 6C). This cysteine configuration resembles
the one found in LYPD6, where an apotypic disulfide bond also stabilizes loop 3, albeit at a more distal
position (Figure 6D). The ECD of TGF-βR2 represents the most divergent member of this family. This
domain has lost the 7–8 plesiotypic disulfide bond, but gained two additional apotypic disulfide bonds
stabilizing loop 1 and loop 3 (Figure 6).
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Figure 6. Integral membrane receptors in which the LU domains function as extracellular ligand-binding
domains. (A) A sequence alignment of the extracellular N-terminal ligand-binding LU domain of
the TGF–β receptor 1 (Uniprot: P36897), bone morphogenetic protein receptor 1A (Uniprot: P36894),
activing receptor 1A (Uniprot: Q04771), LYPD6 (Uniprot: Q86478), TGF–β receptor 2 (Uniprot: P37173),
bone morphogenetic protein receptor 2 (Uniprot: Q13873), and activin receptor 2 (Uniprot: P27037).
The separation of the alignment for type 1 and type 2 receptors emphasizes the preservation of the LU
signature in type 1 receptors and the introduction of apotypic disulfide bonds in the type 2 receptors
(highlighted by orange boxes). Representative structures of (B) bone morphogenetic protein receptor
1A [PDB: 1REW [118]]; (C) bone morphogenetic protein receptor 2 [PDB: 2HLQ [119]]; and (D) LYPD6
(PDB: 6GBI [120]). Orange asterisks mark positions of the apotypic disulfide bonds.

5. Conclusions

The LU domain is widespread in the Metazoa kingdom, where it carries out an extremely
diverse set of biological functions. Although this domain is encoded by an exon-set with symmetrical
intron−exon boundaries (mostly of phase 1), it probably cannot be considered a bona fide mobile
protein module, as it is found predominantly as single LU-domain proteins or as repetitive units
in multidomain proteins containing only this domain. However, it would be entirely reasonable to
propose the LU domain as a “proto-module”, given that it is found in the context of a non-homologous
protein environment in a few proteins, for example, GPIHBP1, SP-10 and the ECD of TGF-β receptors.
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Abbreviations

ECD Extracellular domain
GPIHBP1 Glycosylphosphatidylinositol-anchored high density lipoprotein–binding protein 1
HSPG Heparan sulfate proteoglycan
LU Ly6/uPAR type
uPAR Urokinase-type Plasminogen Activator Receptor
SLURP1 Secreted Ly6/uPAR related protein 1
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