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Abstract: L-Tryptophan (Trp) is known to play an important role in the health of the large intestine.
However, a role of dietary Trp in the small-intestinal mucosal barrier and microbiota remains
poorly understood. The present study was conducted with weaned piglets to address this issue.
Postweaning piglets were fed for 4 weeks a corn- and soybean meal-based diet supplemented with 0
(Control), 0.1, 0.2, or 0.4% Trp. The small-intestinal microbiota and serum amino acids were analyzed
by bacterial 16S rRNA gene-based high-throughput sequencing methods and high-performance
liquid chromatography, respectively. The mRNA levels for genes involved in host defense and
the abundances of tight-junction proteins in jejunum and duodenum were measured by real
time-PCR and Western blot techniques, respectively. The concentrations of Trp in the serum of
Trp-supplemented piglets increased in a dose-dependent manner. Compared with the control group,
dietary supplementation with 0.2–0.4% Trp reduced the abundances of Clostridium sensu stricto and
Streptococcus in the jejunum, increased the abundances of Lactobacillus and Clostridium XI (two species
of bacteria that can metabolize Trp) in the jejunum, and augmented the concentrations of secretory
immunoglobulin A (sIgA) as well as mRNA levels for porcine β-defensins 2 and 3 in jejunal tissues.
Moreover, dietary Trp supplementation activated the mammalian target of rapamycin signaling and
increased the abundances of tight-junction proteins (zonula occludens (ZO)-1, ZO-3, and claudin-1)
in jejunum and duodenum. We suggested that Trp-metabolizing bacteria in the small intestine of
weaned pigs primarily mediated the beneficial effects of dietary Trp on its mucosal integrity, health,
and function.
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1. Introduction

The commensal microbiota in the gastrointestinal tract has a profound effect on the maintenance
of the small intestine, protection against invasive pathogens, and the maturation of the immune system,
thereby benefiting the health of the host [1–3]. Both genetic and environmental factors (including stress
and dietary nutrients) contribute to the intestinal homeostasis in humans and animals by regulating
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flora colonization [4–6]. Consistently, perturbation of the intestinal ecosystem is associated with
impaired mucosal barrier function and enhanced susceptibility to various intestinal diseases [7–9].
Specifically, weaning stress, an inevitable event for infants and piglets, reconstructs the microbial
ecological community in the gastrointestinal tract [10,11]. Recent studies have emphasized that dietary
nutrients are critical factors affecting intestinal mucosal barrier function by regulating the intestinal
microbiota of the host and inhibiting the colonization of pathogenic bacteria [12]. The intestinal flora
can actively utilize dietary amino acids for protein synthesis and can modify the amino acid profile in
the plasma of the host [13]. Interestingly, dietary supplementation with amino acids influences the
composition and diversity of the intestinal microbiota, thus improving intestinal function [14,15].

L-Tryptophan (Trp) is a nutritionally essential amino acid in all animals. Results of in vitro studies
indicate that Trp enhances the expression of tight junction proteins and promotes protein synthesis in
intestinal porcine epithelial cells [16]. Dietary Trp is metabolized by the intestinal microbiota, liver,
brain, and activated immunocytes [17]. About 25% of dietary Trp is catabolized by the small intestine
in the first pass in weaned piglets [18,19]. Our previous studies with enterocytes isolated from piglets
show that intestinal epithelial cells do not degrade Trp [16,20], indicating that intestinal bacteria are
primarily responsible for the use of dietary Trp by the small intestine.

Recent studies have reported the existence of Trp-metabolizing bacteria in the small intestine,
including Lactococcus lactis subsp. cremoris, L. lactis subsp. lactis, Lactobacillus plantarum, Bacteroides,
Streptococcus thermophilus, Escherichia coli K-12, Morganella morganii, Klebsiella pneumoniae, and Hafnia
alvei [21,22]. These bacteria can convert Trp to serotonin, indole, tryptamine, skatole, and indole
acetate [17,23]. The metabolites of Trp can modify intestinal microbial composition, microbial
metabolism, and the host-microbiome interface [17]. Dietary Trp supplementation improves the
growth of weanling piglets and regulates the composition of the microbiota in their hindgut [24].
However, it remains unknown whether the Trp-metabolizing bacteria in the small intestine may
contribute to the mucosal barrier function in Trp-supplemented piglets.

The present study was conducted with weaned piglets to test the hypothesis that dietary Trp
could enhance the intestinal mucosal barrier function by enhancing defensin expression, regulating the
abundance of tight junction proteins, activating the mammalian target of rapamycin (mTOR) signaling
pathway, and promoting the enrichment of bacteria that can utilize Trp in the small intestine. The pig
was used because it is a useful animal model for studying human nutrition and metabolism [15]. These
two species share similarities in anatomy, physiology, metabolism, and intestinal microbiome [25–27].

2. Results

2.1. Concentrations of Amino Acids (AAs) in Serum

Compared with the control group, the concentration of Trp in the serum of weaned pigs was
increased (p < 0.05) in a dose-dependent manner in response to dietary supplementation with Trp.
The concentrations of L-glutamate, L-asparagine, L-histidine, and taurine in serum were elevated
(p < 0.05) by the supplementation with 0.2% Trp, as compared with the controls. However, dietary
supplementation with 0.1% Trp had no effect on the serum concentrations of amino acids except for
L-glutamate, L-asparagine, and Trp (Table 1).
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Table 1. The concentrations of amino acids in the serum of weaned piglets receiving dietary
supplementation with L-tryptophan 1.

Item (nmol/mL)
Dietary Supplementation

SEM p-Value
0% Trp 0.1% Trp 0.2% Trp 0.4% Trp

L-Asparate 49 50 56 52 1.69 0.536
L-Glutamate 144 b 155 ab 160 a 156 ab 2.62 0.035

L-Asparagine 80 b 86 ab 91 ab 103 a 3.79 0.036
L-Serine 196 198 214 204 5.03 0.608

L-Glutamine 540 540 571 558 10.3 0.692
L-Histidine 69 b 70 b 83 a 76 ab 2.30 0.031

Glycine 1139 1158 1220 1249 32.3 0.611
L-Threonine 114 121 122 135 3.71 0.254
L-Citruline 70 82 86 86 3.74 0.367
L-Arginine 222 230 234 259 11.6 0.731

Taurine 178 b 212 b 252 a 231 ab 9.18 0.020
L-Alanine 672 636 643 585 15.8 0.276
L-Tyrosine 124 127 129 139 5.42 0.812

L-Tryptophan 36 d 52 c 85 b 105 a 5.95 0.001
L-Methionine 41 43 42 47 2.01 0.737

L-Valine 200 201 217 241 7.89 0.218
L-Phenylalanine 100 89 100 100 2.66 0.350

L-Isoleucine 126 126 132 142 3.74 0.387
L-Leucine 215 214 216 234 6.06 0.620

L-Ornithine 116 123 141 143 5.34 0.192
L-Lysine 133 136 153 146 8.05 0.815

1 Values are means with the pooled SEM, n = 6. a, b, c, d Within a row, means not sharing the same superscript letter
differ, p < 0.05.

2.2. Expression of Tight Junction Proteins in the Small Intestine

Compared with the control group, the abundances of zonula occluden (ZO)-1, ZO-3, and claudin-1
proteins in the jejunum of weaned pigs were enhanced (p < 0.05) by dietary supplementation
with both 0.2% and 0.4% Trp, whereas the protein abundance of occludin was elevated only
by 0.4% Trp supplementation (p < 0.05) (Figure 1). The protein level of ZO-1 (Supplementary
Figure S1A) in the duodenum was enhanced (p < 0.05) by 0.2% Trp, but not by 0.4% Trp. Additionally,
the abundances of ZO-3 (Supplementary Figure S1B), claudin-1 (Supplementary Figure S1C),
and occludin (Supplementary Figure S1D) were augmented (p < 0.05) by Trp supplementation in
the duodenum.

2.3. Gene Expression of Porcine β-Defensin (pBD) and Secretory Immunoglobulin A (sIgA) Concentrations in
the Jejunal Mucosa

To explore the effect of dietary Trp supplementation on the mucosal defense, quantitative real-time
PCR and ELISA assays were performed to determine mRNA levels of pBDs and the secretion of sIgA,
respectively. Dietary supplementation with Trp (0.2%) increased (p < 0.05) the concentration of jejunal
sIgA, whereas dietary supplementation with 0.2% or 0.4% Trp up-regulated (p < 0.05) jejunal pBD-2
and pBD-3 gene expression without affecting the pBD-1 gene expression (Figure 2).
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Figure 1. Protein abundances of ZO-1, ZO-3, claudin-1, and occludin in the jejunum of weaned piglets 
receiving dietary supplementation with 0% (Control, Ctrl), 0.2%, or 0.4% Trp. Western blot analyses 
of ZO-1 (A), ZO-3 (B), claudin-1 (C), and occludin (D) were performed. Values are means ± SEM, n = 
6. Means without a common letter differ, p < 0.05. 
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Figure 1. Protein abundances of ZO-1, ZO-3, claudin-1, and occludin in the jejunum of weaned piglets
receiving dietary supplementation with 0% (Control, Ctrl), 0.2%, or 0.4% Trp. Western blot analyses of
ZO-1 (A), ZO-3 (B), claudin-1 (C), and occludin (D) were performed. Values are means ± SEM, n = 6.
Means without a common letter differ, p < 0.05.
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Figure 2. Dietary supplementation with Trp enhanced pBD expression and sIgA secretion in the small
intestine of weaned piglets. (A–C) The mRNA levels of pBD-1, pBD-2, and pBD-3 in the mucosa of the
jejunum. n = 6; and (D) the expression of sIgA in the mucosa of the jejunum. Values are means ± SEM,
n = 6. Means without a common letter differ, p < 0.05. Ctrl, the control group (% Trp).

2.4. The mTOR Signaling Pathway in the Small Intestine

The abundance of protein kinase B (AKT) was enhanced (p < 0.05) by dietary Trp supplementation
in both the jejunum and the duodenum (p < 0.05) (Figure 3A and Supplementary Figure S2A).
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In the jejunum, the abundances of p-mTOR (Figure 3B), p-4E (eIF4E)-binding protein 1 (4E-BP1)
(Figure 3C), and p-p70 ribosomal protein S6 kinase (P70S6K) (Figure 3D) were enhanced (p < 0.05)
by dietary supplementation with 0.2% or 0.4% Trp. In the duodenum, the abundances of p-mTOR
(Supplementary Figure S2B) and p-P70S6K (Supplementary Figure S2D) were enhanced (p < 0.05) by
dietary supplementation with both 0.2% and 0.4% Trp, whereas the protein levels of total 4E-BP1
(Supplementary Figure S2C) and total ribosomal P70S6K were not affected (p > 0.05) by dietary Trp.
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Figure 3. Dietary supplementation with Trp activated the mTOR signaling pathway in the jejunum of
weaned piglets. Protein abundances of AKT (A), p-mTOR (B), p-4E-BP1 (C), and p-P70S6K (D) were
determined. Values are means ± SEM, n = 6. Means without a common letter differ, p < 0.05. Ctrl,
the control group (% Trp).

2.5. Composition and Diversity of the Jejunal Microbiota

Dietary Trp supplementation altered (p < 0.05) the composition and diversity of the jejunal
microbiota, especially the abundance of Trp-utilizing bacteria. After size filtering, quality control,
and chimera checking, a total of 35,932 ± 921, 35,808 ± 943, and 30,309 ± 795 reads were observed in
the 0%, 0.2%, and 0.4% Trp groups, respectively. Operational taxonomical units (OTUs) were obtained
at a sequence-similarity level of 97%, and the number of OTUs in the 0.2% Trp group was higher than
that in the control and 0.4% Trp groups. These alterations were accompanied with changes in Chao1
and observed species values (p < 0.05, Table 2). Furthermore, dietary Trp supplementation affected the
abundance of Trp-metabolizing bacteria, such as an increase (p < 0.05) in the abundance of Lactobacillus
and Clostridium XI, while reducing (p < 0.05) the abundance of opportunistic pathogens Clostridium
sensu stricto and Streptococcus at the genus level (Figure 4A). The shaped bacterial composition at
the phylum, class, order, and family levels are shown in Supplementary Figure S3. The principal
coordinates analysis (PCoA) was used to assess β diversity among the three diet groups based on
the unweighted unifrac distances, showing that the Trp supplementation groups formed a distinct
cluster that was well separated from the control group along the first principal coordinates (Figure 4B).
Based on the results of the heatmap, which can reflect the actual similarities and differences in the
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community composition of the samples, 22 genera in the jejunal microbiome were altered by dietary
Trp supplementation (Figure 5).

Table 2. Effects of dietary supplementation with Trp on the α diversity indices (Chao1, Observed
species, Shannon, and Simpson) and OTUs 1.

Items
Dietary Supplementation

SEM p-Value
0% Trp 0.2% Trp 0.4% Trp

Chao1 127 b 373 a 304 a 39.0 0.009
Observed species 87 c 307 a 242 b 34.5 0.009

Shannon 2.03 3.56 3.34 0.39 0.240
Simpson 0.55 0.74 0.73 0.07 0.459

OTUs 110 c 349 a 276 b 35.5 0.003
1 Values are means with the pooled SEM. a, b, c Within a row, means not sharing the same superscript letter differ,
p < 0.05.
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3. Discussion

The intestinal microbiota has an important impact on key physiological functions in the host
intestine, including metabolism, immune system maturation, and nutritional homeostasis [1–3].
Importantly, dietary factors have been reported to regulate the composition and diversity of the
gut microbiota, therefore forming a crosstalk to modify the physiology and health of the host [28].
Despite a vast number of studies on the interaction between intestinal microbiota and host, the
underlying mechanisms remain largely unknown. As a nutritionally essential amino acid, Trp has been
reported to enhance intestinal protein synthesis and regulate the expression of tight junction proteins
and intestinal transporters to benefit intestinal mucosal barrier function in humans and animals [16,22].
Of note, we found that intestinal porcine epithelial cells cannot degrade Trp [16,20], indicating a
critical role of intestinal bacteria on Trp metabolism in the gastrointestinal tract. Our recent study
showed that Trp supplementation could modulate the composition of microbiota in the hindgut of
weaned piglets [24]. However, it is unknown whether the composition of bacteria in the small intestine,
especially those that can metabolize Trp, can be regulated by Trp supplementation in weaned piglets.

In the present study, a corn- and soybean-based diet was formulated, according to nutritional
requirements for weaned piglet. The basal diet contained 0.2% Trp and was supplemented with 0%
(Control), 0.1%, 0.2%, or 0.4% Trp. We found that the concentrations of L-glutamate, L-asparagine,
L-histidine, and taurine in serum were elevated in the 0.2% Trp group, as compared with the controls.
It is possible that Trp modulates the intestinal absorption and whole-body metabolism of these amino
acids in young piglets. However, the underlying mechanisms are currently unknown.

The intestinal mucosal barrier is maintained mainly by tight-junction proteins located between
the epithelial cells [29]. We found that the abundances of ZO-1, ZO-3, occludin, and claudin-1 proteins
in both the duodenum and the jejunum were upregulated by dietary supplementation with 0.2% or
0.4% Trp. This result is in agreement with our in vitro data from studies involving intestinal porcine
epithelial cells [16] and a report that dietary Trp enhances the expression of tight-junction proteins in
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the intestine piglets infected by Escherichia coli [30]. Considering that the protein abundances of ZO-1,
ZO-3, occludin, and claudin-1 were enhanced by Trp, it is imperative to determine whether Trp can
exert such an effect in a bacteria-challenged model.

Host defense peptides exert both antimicrobial and immunomodulatory activities, and contribute
to epithelial immune defense [31]. pBD is a major group of porcine antimicrobial peptides and plays
an important role in both mucosal barrier function and immune response due to their antimicrobial,
chemotactic, and regulatory activities [32,33]. Weaning stress and pathogen infection are associated
with reduced expression of β-defensin [11,34]. Consistently, overexpression or exogenous supply of
pBD improves the intestinal integrity and growth performance of weaned piglets [35]. Interestingly,
we found that the mRNA levels of pBD-2 and pBD-3 were enhanced by Trp supplementation, indicating
a regulatory effect of Trp on intestinal pBD gene expression. Furthermore, recent study has shown
that the expression of defensins is tightly associated with the activation of mTOR cell signaling [36].
Consistently, we found that the expression of mTOR and its target genes in the 0.2% Trp group was
higher than that in the 0.4% Trp group, indicating that an appropriate dosage of Trp was favorable
for both the activation of mTOR cell signaling and the expression of the defensins. In addition to
defensins, Trp supplementation also stimulated sIgA expression in the piglet small intestine. This
protein plays an integral role in protecting the intestine against pathogen adherence by forming a
mucus layer in the intestine [37,38]. These regulatory effects of Trp may be brought about through
four mechanisms. First, Trp serves as a substrate for the intestinal synthesis of peptides and proteins,
including pBD and sIgA [39]. Second, Trp regulates the expression of the pBD and sIgA genes
through the Sirt1/ERK/90RSK signaling pathway [40]. Third, Trp can activate the mTOR cell signaling
pathway in porcine enterocytes [16]. Fourth, the increased abundance of sIgA may be due to the
altered microbiota composition following Trp supplementation, as the gut microbiota interacts directly
or indirectly with the host immune system [12].

Intestinal microbiota dysfunction has been reported to be associated with impaired intestinal
mucosal barrier and reduced growth performance in piglets [11]. In the present study, we found
that the number of OTUs of the jejunal microbial flora and species richness (Chao1 and Observed
species value) was increased by dietary Trp, indicating a regulatory effect on the intestinal microbiota
in piglets. Several types of intestinal bacteria, such as Lactococcus lactis subsp. cremoris, L. lactis subsp.
lactis, Lactobacillus plantarum, Bacteroides, Streptococcus thermophilus, Escherichia coli, Morganella morganii,
Klebsiella pneumoniae, Hafnia alvei, and Clostridium, have tryptophanase for Trp catabolism [41] to
maintain bacterial growth and survival [21–23,42–44]. Importantly, metabolites produced by these
bacteria can regulate intestinal microbiota diversity and benefit the host [17]. In our study, the
abundances of Lactobacillus and Clostridium XI in the small intestine were enhanced, whereas those of
Clostridium sensu stricto and Streptococcus (two opportunistic pathogens of the intestine) were reduced
by dietary Trp supplementation. Lactobacillus has been regarded as a beneficial intestinal bacterium
for intestinal health in humans and animals [45], including weanling piglets [46]. An increase in the
abundance of bacillius and a decrease in the abundances of opportunistic pathogens can contribute
to an improved intestinal ecosystem. Of note, the regulatory effect of Trp on Trp-metabolizing
bacteria was observed in the jejunum, instead of the hindgut [24], indicating a different response of
different segment of the gastrointestinal tract to dietary Trp supplementation. The exact reason for this
phenomenon remains unknown. It is possible that supplemental Trp does not enter the large intestine
of pigs, because it is both absorbed into enterocytes and utilized by bacteria in the small intestine. It is
also possible that the small intestine might be a suitable environment for the survival and colonization
of Trp-metabolizing bacteria in piglets.

In conclusion, results of the present study indicate that dietary supplementation with Trp
enhanced the intestinal mucosal barrier function as shown by the enhanced abundances of tight-
junction proteins, as well as the upregulation of pBD and sIgA expression. These beneficial effects of
Trp was associated with the activation of mTOR signaling and the enrichment of Trp-metabolizing
bacteria in the small intestine of weaned pigs. Adequate provision of dietary Trp may be a nutritional
strategy to improve intestinal mucosal barrier integrity, health and function in animals.
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4. Materials and Methods

4.1. Experimental Design and Animals

All animal treatment and experimental procedures were approved by the China Agricultural
University Animal Care Committee (No. CAU-DKY-20160308, 08 September 2016). A total of 168
crossbred weaned piglets (Landrace × Yorkshire) with similar bodyweights (7.6 kg of average BW,
weaned at 24 d of age) were randomly assigned into one of the 4 groups: 0 (Control), 0.1, 0.2, and 0.4%
supplemental Trp. L-Alanine was used to formulate isonitrogenous diets, as previously described [47].
Briefly, L-alanine is not toxic and can be extensively catabolized by pigs [48]. Additionally, in contrast
to glycine and glutamate (substrate for the synthesis of glutamine and glutathione), which were
confirmed as functional amino acids in the regulation of antioxidant function, L-alanine was not
an antioxidant [49,50]. Additionally, dietary supplementation with glutamate, glycine, aspartate,
and metabolites of tyrosine (dopa and dopamine) may alter food intake of pigs, due to their
neuromodulator activity [51]. Furthermore, interconversion of biosynthesizable amino acids should
not be ignored in animal nutrition [52]. For example, serine and asparagine are readily converted
to glycine and aspartate in animals, respectively [53]. Therefore, among biosynthesizable amino
acids, L-alanine is most appropriate for the isonitrogenous control. Each treatment group consisted
of 6 pens (7 piglets/pen). The supplemental levels of Trp were based on a previous study showing
that 0.23% supplemental Trp could increase the feed intake and body weight gain of piglets without
any adverse effect [54]. The basal diet was formulated to meet nutritional requirements (NRC, 2012)
of piglets throughout phase I (7–11 kg BW) (Supplementary Table S1) and phase II (11–25 kg BW)
(Supplementary Table S2). In the present study, the day of weaning was recorded as day 0 of the
experimental period. At the end of a four-week period of Trp supplementation, 24 piglets (8 from each
of the 0, 0.2, and 0.4% Trp groups) were sacrificed by exsanguination. These three groups were chosen
because dietary supplementation with 0.1% Trp had no effect on the growth performance of weaned
piglets (Supplementary Table S3). Blood samples, the small intestinal tissues, and small intestinal
contents were obtained from pigs in each treatment group. Serum, the small intestine, and intestinal
contents were frozen in liquid nitrogen and then stored at –80 ◦C for later analysis.

4.2. Determination of Serum AAs by High-Performance Liquid Chromatography (HPLC)

The concentrations of AAs in serum were analyzed by HPLC methods as previously described [55],
except that a model of Waters 2690 (Waters Chromatography Division, Milford, MA, USA) was used
for separation and quantification.

4.3. Extraction of Proteins and Western Blot Analysis

Frozen duodenal and jejunal tissues were homogenized in liquid nitrogen for protein extraction
and the analysis of protein abundance with the using of Western blot technique as previously
described [56]. Briefly, 40 µg of protein was separated on 12% acrylamide SDS-PAGE gels, and then
proteins were transferred onto PVDF membranes (Millipore, Billerica, MA, USA). The membranes were
blocked with 5% skimmed-milk solution for 30 min at room temperature (25 ◦C), and then probed with
a primary antibody overnight at 4 ◦C and subsequently incubated with an HRP-conjugated secondary
antibody for 1 h at room temperature. The protein bands were detected with the Image Quant LAS
4000 mini system (GE Healthcare) and quantified with the use of the Quantity One software (Bio-Rad
Laboratories, Hercules, CA, USA).

4.4. Quantitative Real-Time PCR Analysis

Total RNA was extracted from the tissues of jejunum using the Trizol reagent (Takara, Takara
Biomedical Technology in Beijing. China), followed by reverse transcription using the High Capacity
cDNA Archive kit (Takara), according to the manufacturer’s protocols. Real-time PCR was carried out
by the ABI 7500 real-time PCR system (Applied Biosystems, Waltham, MA, USA) involving the use of



Int. J. Mol. Sci. 2019, 20, 20 10 of 13

SYBR Green. The primer sequences used for the mRNA determined were listed in Supplementary
Table S4. The relative abundance of a target gene was calculated by the ∆∆Ct method [57].

4.5. Measurements for sIgA

The jejunal mucosa (0.1 g) were mixed with 0.1 mL physiological saline by tissue homogenate.
Then sIgA was determined by using a porcine ELISA kit (Lianshuo Biochemical Reagent Company,
Shanghai, China) according to the manufacturer’s instructions.

4.6. DNA Extraction and Bacterial 16S Ribosomal RNA (rRNA) Gene Sequencing

Jejunal bacteria were subjected to genomic DNA isolation with the use of the Qiagen DNA
isolation kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. The quality
of isolated DNA was determined by agarose gel electrophoresis and then was stored at −20 ◦C until
further processing. The 16S RNA V3-V4 gene region was amplified by using the primers F341 and
R806 [58] and the 16S rRNA gene was sequenced on the Illumina HiSeq sequencing platform at the
Realbio Genomics Institute (Shanghai, China). Sequences were quality filtered and clustered into
OTUs at 97% identity [59].

4.7. Statistical Analysis

Data on serum AAs, α diversity indices (Chao1, Observed species, Shannon, and Simpson),
protein abundances, and gene expression were analyzed by one-way ANOVA and the Duncan multiple
comparison method (SPSS statistical software, SPSS Inc., Chicago, IL, USA). p < 0.05 was taken to
indicate statistical significance. α diversity (Chao1, observed species, Shannon index, and Simpson
index) was assessed by MOTHUR v.1.35.0 [60]. β diversity was calculated based on unweighted
unifrac distances by QIIME. An unweighted unifrac PCoA based on OTUs was performed to provide
an overview of the microbial diversity and composition in the pig jejunum.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/1/
20/s1.
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