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Abstract: Mentha canadensis L. has important economic value for its abundance in essential oils.
Menthol is the main component of M. canadensis essential oils, which is certainly the best-known
monoterpene for its simple structure and wide applications. However, the regulation of menthol
biosynthesis remains elusive in M. canadensis. In this study, transcriptome sequencing of M. canadensis
with MeJA treatment was applied to illustrate the transcriptional regulation of plant secondary
metabolites, especially menthol biosynthesis. Six sequencing libraries were constructed including
three replicates for both control check (CK) and methyl jasmonate (MeJA) treatment and at least
8 Gb clean bases was produced for each library. After assembly, a total of 81,843 unigenes were
obtained with an average length of 724 bp. Functional annotation indicated that 64.55% of unigenes
could be annotated in at least one database. Additionally, 4430 differentially expressed genes (DEGs)
with 2383 up-regulated and 2047 down-regulated transcripts were identified under MeJA treatment.
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that “Monoterpenoid
biosynthesis” was one of the most significantly enriched pathways in metabolism. Subsequently,
DEGs involved in JA signal transduction, transcription factors, and monoterpene biosynthesis were
analyzed. 9 orthologous genes involved in menthol biosynthesis were also identified. This is the
first report of a transcriptome study of M. canadensis and will facilitate the studies of monoterpene
biosynthesis in the genus Mentha.

Keywords: Mentha canadensis L.; transcriptome sequencing; JA signaling; transcription factors;
menthol biosynthesis

1. Introduction

The genus Mentha has important economic value for its abundance in essential oils that are widely
used in the flavor, fragrance, and aromatherapy industries [1]. Monoterpenes are the major constituents
of essential oils, which represent a large and diverse class of volatile C10 isoprenoids. The biosynthesis
of monoterpenes originated in the upstream methylerythritol phosphate (MEP) pathway, then
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catalyzed by a series of enzymes. The catalytic mechanisms of monoterpene biosynthetic enzymes have
been extensively studied in peppermint (Mentha × piperita L.) and spearmint (Mentha spicata L.), two
well-known Mentha plants that have been employed as model systems for the study of monoterpene
biosynthesis [2–7]. In genus Mentha, a variety of monoterpenes including (−)-menthol, (+)-neomenthol,
(+)-isomenthol, (+)-carvone, (+)-menthofuran, and so on, are synthesized and stored in the peltate
glandular trichomes on the aerial surfaces of the plant [8,9]. The oil compositions vary in different
Mentha species and are regulated by transcriptional abundance, catalytic properties of enzyme catalysts,
and cell type-specific epigenetic processes [9].

Mentha canadensis L., as the largest cultivated aromatic plant in the world, is mainly cultivated
in China. Not only in the aromatic industry, M. canadensis is also widely used as a medicinal plant
in traditional Chinese medicine [10]. The main component of M. canadensis essential oils is menthol
which accounts for more than 78% of the total essential oils’ components [11]. Menthol is certainly
the best-known monoterpene for its simple structure and wide applications. The earlier studies of
M. canadensis mainly focused on the identification of active compounds and activity assays [12–14].
Since the absence of sequence data, the molecular mechanism of menthol biosynthesis in M. canadensis
is still not clear. Only three menthol biosynthetic genes have been cloned in M. canadensis, including
the Geranyl diphosphate synthase large subunit (GPPS-l), Geranyl diphosphate synthase small subunit
(GPPS-s), and (−)-Limonene synthase (LS) [15].

The phytohormone jasmonate (JA) is an important regulator in plant responses to biotic and abiotic
stresses as well as other metabolic pathways by extensive reprogramming of gene expression [16,17].
It is also an efficient elicitor of plant secondary metabolite production [18]. A lot of plant active
ingredients including artemisinin, vinblastine, nicotine, taxol and ginsenoside may be transcriptional
regulated by JA signal [19]. In Artemisia annua, high content of artemisinin could be produced in
response to JA elicitor [20]. Some JA-responsive transcription factors (TFs) such as AaWRKY1, AaERF1,
and AaERF2 could regulate the transcription of artemisinin biosynthetic genes and increase the
accumulation of artemisinin [21–23]. So far, little is known about JA signal response and its effect on
monoterpene biosynthesis in M. canadensis.

The transcriptome sequencing technology is a useful method to carry out genome-wide
gene discovery and expression profiling for its high-throughput and accuracy. It has been
widely used to explore plants’ physiological mechanism at the molecular level, such as model
plants Arabidopsis thaliana [24] and Oryza sativa [25], as well as other non-model plants, such as
Brassica napus [26], A. annua [27], and Salvia miltiorrhiza [28]. Using transcriptome sequencing,
genome-wide changes in gene expression patterns under different treatment, such as hormone
treatment, biotic and abiotic stress, could be easily accessed. For example, JA-mediated
transcriptional reprogramming has been studied using RNA-seq in many plants, such as A. annua [27],
Taraxacum koksaghyz [29], and Gentiana macrophylla [30].

In this study, high-throughput RNA-seq was applied to analyze the differential gene expression
profiles of MeJA-treated M. canadensis versus the control. As a result, JA-responsive signal transduction
genes, TFs, and monoterpene biosynthetic genes were identified. The results in this study would help
us to further understand the reprogramming of JA-responsive gene expression in M. canadensis as well
as facilitate studies of monoterpene biosynthesis in genus Mentha.

2. Results

2.1. Transcriptome Sequencing and De Novo Assembly of M. canadensis

Transcriptome sequencing was performed for M. canadensis under control check (CK) and MeJA
treatment using Illumina HiSeq™ 4000. Six sequencing libraries were constructed including three
replicates for both CK and MeJA treatment. As a result, each library produced at least 54 Mb clean
reads and 8 Gb clean bases. The percentage of clean reads was more than 98% and Q20 percentage
was at least 98.69% for the six libraries (Table 1). Then, clean reads of the six libraries were de novo
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assembled using Trinity program and finally 81,843 unigenes were generated with a GC percentage
of 43.92%. The average length and N50 length for the assembled unigenes were 724 and 1126 bp,
respectively (Table 2). The length distribution of the unigenes is indicated in Supplementary Figure S1
and 70.63% of all unigenes show lengths longer than 300 bp.

Table 1. Summary of Illumina HiSeq4000 sequencing data.

Samples a Raw Reads Clean Reads Reads
Length (bp) Clean Bases Q20 Percentage

(%) b
GC Percentage

(%)

CK-1 58,914,374 57,759,958
(98.04%) 150 8,536,291,577 98.69 50.79

CK-2 58,863,024 57,904,740
(98.37%) 150 8,588,205,461 98.88 50.05

CK-3 58,109,454 57,113,908
(98.29%) 150 8,470,135,931 98.83 50.69

MeJA-1 61,076,212 59,885,296
(98.05%) 150 8,855,787,485 98.69 50.55

MeJA-2 55,398,094 54,424,124
(98.24%) 150 8,072,356,234 98.82 50.46

MeJA-3 65,765,946 64,630,794
(98.27%) 150 9,590,111,719 98.82 50.39

a CK and MeJA represent libraries constructed by CK and MeJA-treated samples, respectively. Numbers indicate
three biological replicates; b Q20 percentage represents percentage of bases with a Phred value >20.

Table 2. Statistics of assembly data.

Total assembled bases 59,279,270
Unigene number 81,843

GC percentage (%) 43.92
N50 (bp) 1126

Average length (bp) 724

2.2. Functional Annotation of Unigenes

For functional annotation analysis, all the assembled unigenes were searched against the public
databases using BLAST. The results show that 52,700 (64.39%) unigenes could be annotated in Nr
(non-redundant protein) database, 34,565 (42.23%) in Swissprot, 29,536 (36.09%) in KOG (Clusters of
eukaryotic Orthologous Group), and 19,013 (23.23%) in KEGG (Kyoto Encyclopedia of Genes and
Genomes). Taken together, there were 52,826 (64.55%) unigenes that could be annotated in at least
one database (Table 3). GO (Gene Ontology), KOG and KEGG assignments were used to classify
the function of the assembled unigenes of M. canadensis. For GO annotation, 4396, 4422 and 2566
unigenes were assigned to “biological process” category, “molecular function” category and “cellular
component” category, respectively (Supplementary Figure S2). In the “molecular function” category,
genes assigned to “binding” (2260) and “catalytic activity” (3326) accounted for the vast majority of
this category. In the “biological process” category, “cellular process” (2891), “metabolic processes”
(3447) and “single-organism process” (2344) were the main subcategories. For KOG classification,
29,536 unigenes were categorized into 25 KOG functional groups. Among them, “General functional
prediction only” (9523) was the largest group, followed by “Signal transduction mechanisms” (5796)
and “Posttranslational modification, protein turnover, chaperones” (4901) (Supplementary Figure S3).
To further understand the biological functions of M. canadensis unigenes, KEGG pathway analysis
was performed. As a result, a total of 10,365 unigenes could be mapped to 133 metabolic pathways.
“Metabolism” (5104) was the largest category (Supplementary Figure S4).
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Table 3. Functional annotations of M. canadensis unigenes.

Annotation Database Number of Unigenes Percentage (%)

Nr 52,700 64.39
Swissprot 34,565 42.23

KOG 29,536 36.09
KEGG 19,013 23.23

Annotated in at least one database 52,826 64.55
Total unigenes 81,843 100

Nr: National Center for Biotechnology Information (NCBI) non-redundant protein database; KOG: eukaryotic
Orthologous Group; KEGG: Kyoto Encyclopedia of Genes and Genomes.

2.3. Identification and Analysis of Differentially Expressed Genes (DEGs)

To identify differentially expressed genes under MeJA treatment, reads were mapped to the
unigenes and reads per kb per million reads (RPKM) was used to measure the transcriptional levels.
The Pearson correlation analysis indicated that there were high correlations between three biological
replicates of both CK and MeJA treatment (Supplementary Figure S5). Then using a two-fold change
of RPKM with False Discovery Rate (FDR) <0.05 as the cut-off criteria, 4430 differentially expressed
genes (DEGs) were identified between CK and MeJA-treated samples in M. canadensis. Among them,
2383 DEGs were up-regulated and 2047 DEGs were down-regulated under MeJA treatment (Figure 1).
To further explore the possible roles of the DEGs, GO and KEGG enrichment were conducted. For GO
enrichment, 88, 27 and 6 GO terms were significantly enriched in “biological process”, “molecular
function” and “cellular component” categories, respectively (Supplementary Table S1). “Terpene
synthase activity” and “oxidoreductase activity” were the most significantly enriched terms in
“molecular function”. In “biological process” category, biosynthetic processes involved in lipid,
small molecule, dicarboxylic acid, phospholipid, terpene and sesquiterpene were the most significantly
enriched terms. For KEGG pathway enrichment, 25 pathways were significantly enriched under
MeJA treatment (Figure 2 and Supplementary Table S2). Of these, pathways involved in secondary
metabolism accounted for a large part, including biosynthetic pathways of phenylpropanoid, terpenoid,
alkaloid, flavonoid, glucosinolate and so on.

Figure 1. Statistics of DEGs induced by MeJA in M. canadensis transcriptomes. (A) Volcano plots of the
unigenes in the comparisons of MeJA-treated and CK samples; (B) DEG numbers in the comparisons
of MeJA-treated and CK samples. RPKM: Reads per Kb per Million Reads, FDR: False Discovery Rate,
DEG: Differentially Expressed Gene.
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Figure 2. KEGG pathway enrichment of DEGs induced by MeJA.

2.4. Identification and Expression Verification of JA Signal Pathway Genes under MeJA Treatment

In Arabidopsis, the JA signal is perceived and transduced via the SCFCOI1-JAZ co-receptor
complex. The SCFCOI1 complex includes COI1, ASK2, CULLIN1, Rbx, and E2. The JAZ repressors
recruit the co-repressor complex consisting of Novel Interactor of JAZ (NINJA), TOPLESS (TPL),
and histone deacetylase (HDA), interact with and repress the transcription activator bHLHzip
transcription factor MYC2 (MYC2). The perception of JA-Ile by SCFCOI1 complex leads to
degradation of JAZs via the 26S proteasome, then activate the downstream transcription factors
of JA responses [17,31]. In this study, 24 DEGs associated with JA signal transduction were identified
in M. canadensis. Of these, 23 DEGs showed up-regulation under MeJA treatment, which encode
putative JAZ (9), MYC2 (7), NINJA (6), and S-phase kinase-associated protein 1 (SKP1) (1) (Figure 3).
12 of the 24 DEGs were selected for quantitative real-time PCR (qRT-PCR) to verify the reliability
of the RNA-Seq data. The results showed that all the expression patterns of qRT-PCR were quite a
good match with the RPKM results of RNA-Seq data (Figure 4). These validation results of qRT-PCR
indicated that the RNA-Seq data were quite reliable.
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Figure 3. Heat maps of the DEGs in JA signal transduction pathway. JAZ, Jasmonate ZIM domain
protein; MYC2, bHLHzip transcription factor MYC2; TPL, TOPLESS; NINJA, Novel interactor of JAZ;
SKP1, S-phase kinase-associated protein 1.

Figure 4. Expression validations of 12 selected JA signal transduction related genes in control and
MeJA-treated samples using qRT-PCR. The RPKM values obtained from RNA-Seq data were indicated
on the top of each graph.
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2.5. Identification and Analysis of Differentially Expressed TFs under MeJA Treatment

To further understand the transcriptional regulation of MeJA-treated M. canadensis, differentially
expressed TFs were identified between CK and MeJA-treated samples. As a result, 1535 TFs belonged to
55 families were identified by annotating in PlantTFDB database. bHLH (basic/helix-loop-helix), ERF
(ethylene-responsive factor), MYB_related (myeloblastosis DNA-binding related protein), C2H2 (C2H2
zinc-finger protein), MYB (myeloblastosis DNA-binding protein), WRKY (WRKY-type DNA binding
protein), C3H (Cys3His zinc finger protein), NAC (NAC domain protein), bZIP (basic region/leucine
zipper motif), and GRAS (Gibberellin-insensitive (GAI), Repressor of GA (RGA), and SCARECROW
(SCR) protein) families were the top 10 largest TF families (Supplementary Table S3). Of the 1535 TFs,
157 belonged to 32 families were differentially expressed. WRKY, bHLH, ERF, MYB, MYB_related,
NAC, bZIP, C2H2, HD-ZIP (Homeodomain-leucine zipper protein), and Trihelix families were the top
10 families that had the largest number of DEGs. Each of these 10 families had more than 5 DEGs and
the WRKY and bHLH family were the largest differentially expressed families that both contained
21 DEGs (Figure 5 and Supplementary Table S3). Comparing the expression levels of these DEGs, 102
of the 157 DEGs were up-regulated and the other 55 were down-regulated. Considering the family
distribution of the up-regulated and down-regulated DEGs, 19 families showed that the up-regulated
unigenes were more abundant than the down-regulated ones, especially in the WRKY family, 19
unigenes were up-regulated and only 2 were down-regulated. On the contrary, there were 11 families
that contained more down-regulated unigenes than up-regulated and 2 families contained the same
number of up-regulated unigenes and down-regulated (Figure 5).

Figure 5. Statistics of differentially expressed TFs under MeJA treatment.

2.6. Identification and Expression Verification of Monoterpenoids and Menthol Biosynthetic Genes under
MeJA Treatment

In M. canadensis, monoterpenes are the major constituents of essential oils. In this study,
the enrichment results of the KEGG database indicated that “Monoterpenoid biosynthesis” was
one of the most significantly enriched pathways under MeJA treatment. 20 DEGs associated with
monoterpenoid biosynthesis were identified, which consisted of genes encoding 10 terpene synthases
(TPSs), 1 (−)-isopiperitenone reductase (IPR), 1 menthol dehydrogenase (MR), and 8 neomenthol
dehydrogenases (NMRs). TPS is a multi-gene family that is widespread in plants, whose diversity and
substrate complexity lead to the wide variety of terpenoids [32]. In this study, 10 differentially
expressed TPSs were identified under MeJA treatment, 8 of which were up-regulated and the
other 2 were down-regulated. The remaining 10 DEGs in “Monoterpenoid biosynthesis” were
menthol/neomenthol biosynthesis related genes. Interestingly, the expression levels of the 10 DEGs
were almost all up-regulated except for an NMR (Unigene0051701) under MeJA treatment (Figure 6).
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Figure 6. Heat maps of the DEGs in the monoterpenoid biosynthesis pathway. TPS,
Terpene synthase; IPR, (−)-Isopiperitenone reductase; MR, (−)-Menthol dehydrogenase; NMR,
(+)-Neomenthol dehydrogenase.

Menthol is the main constituent of monoterpenoids in M. canadensis, which is synthesized
by a series of enzymatic reactions in the peltate glandular trichomes on the aerial surfaces of the
plant. The biosynthetic pathway and enzyme catalysis mechanism of menthol has been extensively
studied in peppermint and spearmint, two other species of genus Mentha [2–6]. Using the reference
genes of peppermint and spearmint as queries, 9 orthologous genes were identified in M. canadensis
(Supplementary Figure S6), including the previously reported GPPS-l, GPPS-s, and LS [15]. The other 6
genes that catalyze the biosynthesis of (−)-Menthol from (−)-Limonene were identified in M. canadensis
for the first time. Considering the transcriptional levels of the 9 genes, although their RPKMs showed
a certain level of increase after MeJA treatment, they did not reach significant levels above controls.
Then, qRT-PCR was used to verify the expression of the 9 menthol biosynthetic genes (Figure 7).
The results indicated that the expression levels of most genes were not significantly different between
MeJA treatment and CK groups, which was consistent with the RNA-seq results. Among these genes,
only Unigene0030907 (MFS) showed significant down-regulated expression after MeJA treatment.
Unigene0038587 (GPPS-s) and Unigene0033747 (iPD) showed a certain degree of up-regulation in both
qRT-PCR and RNA-Seq data.
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Figure 7. Expression validations of 9 menthol biosynthetic genes in control and MeJA-treated
samples using qRT-PCR. The RPKM values obtained from RNA-Seq data are indicated on the
top of each graph. GPPS, Geranyl diphosphate synthase; LS, (−)-Limonene synthase; L3OH,
(−)-Limonene-3-hydroxylase; iPD, (−)-trans-Isopiperitenol dehydrogenase; iPR, (−)-Isopiperitenone
reductase; iPI, (+)-cis-Isopulegone isomerase; PR, (+)-Pulegone reductase; MFS, Menthofuran synthase;
MR, (−)-Menthol dehydrogenase.

3. Discussion

Transcriptome sequencing is an effective tool for large-scope gene identification and expression
profiling analysis. In this study, high-throughput RNA-seq was applied to characterize the
transcriptomes of M. canadensis treated with MeJA. Six sequencing libraries were constructed including
three replicates for both CK and MeJA treatment and at least 8 Gb clean data was produced for each
library. After assembly, a total of 81,843 unigenes were obtained with an average length of 724 bp.
Functional annotation indicated that 64.55% of unigenes could be annotated in at least one database.
This is the first reported transcriptome study of M. canadensis and will provide useful information for
further study of this species.

Endogenous MeJA is believed to be a primary regulator of the JA signal pathway in plants.
In Arabidopsis, the JA signal is perceived and transduced via the SCFCOI1-JAZ co-receptor complex.
In the resting state, JAZ proteins interact with and repress downstream MYC2 to suppress of JA
responses. In response to JA signal, JAZs are degraded by SCFCOI1-ubiquitin-proteasome, then MYC2
is released from the repressor complex to regulate gene expression [17,31]. In this transcriptome
dataset, 24 DEGs associated with JA signal transduction were identified in M. canadensis. Of these,
23 DEGs showed up-regulation under MeJA treatment, encoding putative JAZ (9), MYC2 (7), TPL
(1), NINJA (6), and SKP1 (1). qRT-PCR was also used to verify the reliability of the RNA-Seq data.
These results suggested that application of exogenous MeJA may regulate the JA signaling pathway in
M. canadensis.



Int. J. Mol. Sci. 2018, 19, 2364 10 of 16

TFs are sequence specific DNA-binding proteins that interact with the regulatory regions of the
target genes and regulate their expression. Several transcriptome profiling studies have indicated that
MeJA treatment triggers an extensive transcriptional reprogramming of metabolism [33–35]. A lot of
TFs are elicited by MeJA and participate in regulation of specific metabolic processes [36]. Here, 157
differentially expressed TFs (102 up-regulated and 55 down-regulated) belonged to 32 families were
identified by annotating in PlantTFDB database. It is worth noting that the WRKY family was the
largest differentially expressed family containing 21 DEGs. It is also reported that more than 25% of
WRKYs are induced in response to jasmonate in A. thaliana and Catharanthus roseus [37]. Of the 21
differentially expressed WRKYs, the number of up-regulated genes was much higher than that of
down-regulated ones (19 vs. 2). Similar observations have been found in other plants. For example, 16
up-regulated and 3 down-regulated WRKY TFs were identified under MeJA treatment in A. annua [27].
In Lycoris aurea, 32 differentially expressed WRKY TFs were identified, of which 26 were up-regulated
and only 6 were down-regulated [38]. The WRKY family is an important class of JA-responsive TFs
that regulate plant secondary metabolism [39]. In A. annua, a WRKY TF AaWRKY1 was strongly
induced by MeJA and regulated the expression of ADS, a key gene of artemisinin biosynthesis [21].
In Panax quinquefolius, a MeJA-responsive WRKY TF PqWRKY1 was isolated, which could positively
regulate the biosynthesis of triterpene ginsenoside [40]. The large number of up-regulated WRKY
TFs in M. canadensis suggests that they may function in JA-responsive transcriptional regulation of
secondary metabolism.

Monoterpenes are the major constituents of M. canadensis essential oils. In this study, the KEGG
pathway enrichment of DEGs indicated that “Monoterpenoid biosynthesis” was the most significantly
enriched pathway under the treatment of MeJA. 20 DEGs associated with monoterpenoid biosynthesis
were identified, which consisted of genes encoding TPS (10), IPR (1), MR (1), and NMR (8). Of these,
genes encoding IPR, MR, and NMR were involved in menthol and neomenthol biosynthesis and
interestingly, the expression levels of the 10 DEGs were almost all up-regulated under MeJA treatment.
These results suggest that the biosynthesis of monoterpenes including menthol and neomenthol
might be elicited by the MeJA signal in M. canadensis. The biosynthesis pathway of menthol has
been extensively studied in peppermint and spearmint [2–6]. In this study, 9 orthologous genes were
identified in M. canadensis including 6 new reported genes. However, expression analysis of these
9 genes in CK and MeJA-treated samples indicated that most of the gene expression levels did not
change significantly after treatment. qRT-PCR results indicated that GPPS-s and iPD showed a certain
degree of up-regulation and MFS was down-regulated. We speculate that only part of the menthol
biosynthetic genes responds to the JA signal in M. canadensis. The response mechanism of menthol
biosynthetic genes to JA signaling needs further study in M. canadensis, especially the possible DEGs
including GPPS-s, iPD, and MFS. Another explanation might be that different secondary metabolic
pathways are controlled by different regulatory modules. For example, in Medicago truncatula, genes
involved in phenylpropanoid biosynthesis were transiently induced after application of MeJA at low
concentrations (0.5–5 µmol/L), but triterpene biosynthetic genes were induced after 12–24 h at high
concentrations (5–500 µmol/L) [41]. Many M. canadensis menthol biosynthetic genes might not respond
to the MeJA signal under our treatment conditions (200 µmol/L, 24 h).

Transcriptional regulation is central to plant secondary metabolism. Compared with well-studied
metabolic pathways such as flavonoids, the transcriptional regulation of terpene metabolism
has been validated in a few studies. Several TFs have been identified from plants including
A. annua (AaWRKY1, AaERF1, AaERF2, AabZIP1, and AaMYC2), Gossypium arboretum (GaWRKY1),
Taxus chinensis (TaWRKY1), Hevea brasiliensis (EREBP1 and HbWRKY1), and O. sativa (OsTGAP1)
that regulate terpene biosynthesis [21–23,42–48]. In Mentha species M. spicata, two TFs MsYABBY5
and MsMYB (M. spicata MYB DNA-binding protein) have been reported that negatively regulate
monoterpene production [49,50]. In this study, homologous genes of the two TFs (Unigene0062650,
homolog to MsYABBY5 and Unigene0030793, homolog to MsMYB) were identified in M. canadensis.
Sequence alignment indicated that both genes had quite high similarities between M. spicata and
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M. canadensis (Supplementary Figure S7). Expression patterns deduced from RPKM values indicated
that the expression of the two homologous genes declined to a certain extent under MeJA treatment
(52.9-vs.-35.6 for Unigene0062650 and 0.72-vs.-0.38 for Unigene0030793), although the decline was
not significantly (two-fold change with FDR <0.05). These results suggest that Unigene0062650 and
Unigene0030793 might be MeJA-responsive TFs and similar negative regulation mechanism may also
exist in M. canadensis.

4. Materials and Methods

4.1. Plant Material and JA Treatment

The M. canadensis used for this study was maintained at the Germplasm Nursery in the Institute
of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu Province. Mint plants
were planted in plastic pots containing a mixture of organic nutrient soil (XingNong Organic Fertilizer
Co., Ltd., Zhenjiang, China) and vermiculite (3:1, v/v). The plants were cultured in an artificial climate
chamber (Jiangnan, Ningbo, China) under 14 h light/10 h dark cycles (120 µmol/m2/s) with a constant
temperature at 25 ◦C. For MeJA (Aladdin, Shanghai, China) treatment, plants were sprayed with 10 mL
200 µmol/L MeJA that dissolved with 2% ethanol (Sangon, Shanghai, China), and further wrapped in
plastic wrap for 24 h to prevent water evaporation. 2% ethanol solution was used as control and the
plants were also wrapped in plastic wrap. After 24 h, leaves of mint plants were harvested and frozen
in liquid nitrogen and stored at −80 ◦C. Three biological replicates for both CK and MeJA treatment
were performed.

4.2. RNA Extraction, cDNA Library Construction and Illumina Sequencing

Total RNA of the M. canadensis samples was extracted using RNAiso Plus (Takara, Dalian, China)
according to the manufacturer’s instructions. The quality and concentration of RNAs were measured
using a ND-2000 UV spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) and Agilent
2100 (Agilent, Santa Clara, CA, USA). cDNA library construction and Illumina sequencing were
performed by Gene Denovo Biotechnology Co. (Guangzhou, China). Briefly, mRNA was enriched
from total RNA by Oligo(dT) beads and then fragmented into short fragments. The fragmented mRNA
was reverse transcribed into cDNA with random primers and second-strand cDNA was subsequently
synthesized. Then the cDNA fragments were purified, end repaired, poly(A) added, and ligated to
sequencing adapters. After size selection by agarose gel electrophoresis, the ligation products were
PCR amplified and sequenced using Illumina HiSeqTM 4000 (Illumina, San Diego, USA).

4.3. Transcriptome Assembly and Annotation

The raw reads obtained from RNA sequencing were filtered by trimming adapters and removing
low quality reads (reads containing more than 10% of unknown nucleotides (N) or 40% of low quality
(Q-value ≤ 10) bases) to obtain the high-quality clean reads. All data generated in this study have
been deposited in the National Center for Biotechnology Information (NCBI) and can be accessed in
the Short Read Archive (SRA) Sequence Database under accession number SRP132644. Then, Trinity
program was used to perform de novo assembly of the clean data [51]. After assembly, unigenes
were obtained and functional annotation was carried out using BLASTx program (http://www.ncbi.
nlm.nih.gov/BLAST/) with an E-value threshold of 1 × 10−5. Public databases including the NCBI
non-redundant protein database (Nr) (http://www.ncbi.nlm.nih.gov), the SwissProt database (http:
//www.expasy.ch/sprot), the KEGG (http://www.genome.jp/kegg), and the COG/KOG database
(http://www.ncbi.nlm.nih.gov/COG) were used to annotate the M. canadensis unigenes. TFs were
identified by aligning unigenes to the PlantTFDB database [52].
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4.4. Differentially Expressed Genes Analysis

The abundances of unigenes were calculated and normalized to RPKM [53]. To identify DEGs
between MeJA-treated samples and controls, the edgeR package (http://www.r-project.org/) was
used. Genes with a fold change ≥2 and a FDR <0.05 in a comparison were identified as significant
DEGs. Pathway enrichment analysis was conducted by comparing gene numbers of each pathway
in DEGs to genome background. The significance test of enriched pathways was determined by
calculating the p-value and FDR correction. Heatmaps of DEGs were generated using HemI [54].

4.5. Quantitative Real-Time PCR

qRT-PCR was conducted to verify the expression of selected genes in M. canadensis. Goldenstar™
RT6 cDNA Synthesis Kit (TsingKe Biotech, Nanjing, China) was used with 1 µg of total RNA
to synthesize first-strand cDNA. The qRT-PCR reactions were carried out using the qTOWER2.2
Real-Time PCR Systems (Analytik, Jena, Germany). 2 × T5 Fast qPCR Mix Kit (SYBR Green I) (TsingKe
Biotech, Nanjing, China) was used to prepare qRT-PCR reactions with 2 µL of diluted cDNA as a
template. The reaction systems and steps were performed according to the manufacturer’s instructions.
The M. canadensis actin gene was used as a control to normalize the relative expression levels of target
genes. All results were representative of three independent experiments. Primers used for qRT-PCR
were listed in Supplementary Table S4.

5. Conclusions

In this study, high-throughput RNA-seq was applied to characterize the transcriptomes of
M. canadensis treated with MeJA. A total of 81,843 unigenes were obtained and 64.55% of which could
be functionally annotated in at least one database. Additionally, 4430 DEGs with 2383 up-regulated and
2047 down-regulated transcripts were identified under MeJA treatment. A lot of unigenes associated
with JA signal transduction were up-regulated, which suggested that application of exogenous
MeJA may regulate the JA signaling pathway in M. canadensis. KEGG enrichment indicated that
“Monoterpenoid biosynthesis” was one of the most significantly enriched pathways in metabolism.
9 orthologous genes involved in menthol biosynthesis were identified in M. canadensis and the
response mechanism of menthol biosynthetic genes to JA signaling needs further study, especially
the possible DEGs including GPPS-s, iPD, and MFS. 157 differentially expressed TFs belonged to
32 families were identified and the WRKY family was the largest differentially expressed family.
The number of up-regulated WRKY TFs was much higher than that of down-regulated ones (19 vs. 2).
The large number of up-regulated WRKY TFs in M. canadensis suggests that they may play important
roles in JA-responsive transcriptional regulation of secondary metabolism. However, the regulation
mechanism of JA signaling on development and metabolism of M. canadensis still requires further
characterization and putative DEGs identified in this study might be important targets. This is the first
reported transcriptome study of M. canadensis and will provide useful information for further study of
this species.
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