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Abstract: Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes
economically important anthracnose diseases on numerous monocot and dicot crops worldwide.
As a model pathosystem, the Colletotrichum–Arabidopsis interaction has the significant advantage that
both organisms can be manipulated genetically. The goal of this review is to provide an overview
of the system and to point out recent significant studies that update our understanding of the
pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic
fungus. The genome sequence of C. higginsianum has provided insights into how genome structure
and pathogen genetic variability has been shaped by transposable elements, and allows systematic
approaches to longstanding areas of investigation, including infection structure differentiation and
fungal–plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system,
with extensive information on the host plant and availability of genomes for both partners, to illustrate
many of the important concepts governing fungal–plant interactions, and to serve as an excellent
starting point for broad perspectives into issues in plant pathology.

Keywords: Arabidopsis; Colletotrichum higginsianum; genomics; hemibiotrophic infection; plant–fungal
interactions; virulence factors

1. Introduction

Colletotrichum is a large ascomycete genus comprising more than 190 species, many of which
cause devastating diseases on a large range of agricultural and horticultural crops worldwide [1].
Among species of Colletotrichum, C. higginsianum is classfied in a main phyogenetic clade within the
C. destructivum complex, and causes anthracnose disease on a wide range of cruciferous plants, such as
species of Brassica and Raphanus as well as the model plant Arabidopsis thaliana [2–4]. Since most
A. thaliana ecotypes are susceptible to C. higginsianum, the pathogen can be regarded as adapted for
A. thaliana [5]. As a typical hemibiotrophic fungus, C. higginsianum develops a series of specialized
infection structures including germ tubes, appressoria, primary biotrophic hyphae (BH), and secondary
necrotrophic hyphae (NH) (Figure 1). Thus, C. higginsianum is one of the best-studied species within
the genus Colletotrichum because of its interesting infection strategy, and the ease with which it
can be cultured axenically and transformed with high efficiency by T-DNA transfer mediated by
Agrobacterium tumefaciens. Furthermore, complete genome sequences and transcriptome data are
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available [6]. For these reasons, the C. higginsianum–Arabidopsis pathosystem has become an attractive
model for research on the molecular basis of fungal pathogenicity and plant–fungal interactions.
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Figure 1. Infection structure development and effector localization in Colletotrichum higginsianum.
(A) Appressorial formation on the leaf surface at 24 hpi. Spores (S) adhere to the host cuticle and
produce a germ tube (GT), and an appressorium (A) is formed to penetrate plant epidermal cells
directly. Effectors, marked with yellow dots, accumulate at the appressorial pore (AP) and then are
secreted from the pore; (B) the biotrophic infection phase at 40 hpi. A penetration peg (PP) develops
from the base of the appressorium and penetrates the host cuticle and cell wall. Primary biotrophic
hyphae (BH) develop inside the epidermal cell and invaginate the plant plasma membrane. The host
protoplast remains alive during this biotrophic stage of the interaction. Effectors accumulate at the
biotrophic interfacial bodies, the yellow layer outside the primary hyphae, and then are secreted to the
host cell from the biotrophic interfacial bodies; (C) the necrotrophic infection phase at 55 hpi. Secondary
necrotrophic hyphae (NH) later develop from the BH and spread into the surrounding cells without
biotrophic interfacial bodies and directly penetrate host cytoplasm. The host epidermal cell shaded in
dark gray then dies after NH production. All graphics were derived from original micrographs for
easier visualization.

2. Infection Strategies

At the start of the hemibiotrophic life cycle of C. higginsianum on Arabidopsis, conidia land on the
leaf surface and produce germ tubes, which then produce appressoria to penetrate the leaf surface [7].
As they mature, cell walls of appressoria become melanized while suitable solutes will accumulate
in the cytoplasm (Figure 1A). High turgor pressure builds up by water diffusion into appressoria,
which provides the force for the peg to penetrate through the plant cell wall. Within a breached
epidermal cell, the initial narrow hypha from the peg gives rise to a swollen, sac-like BH. The BH
enlarge and form lateral bulbous lobes, resembling a haustorium. The fungus establishes itself as
a biotroph within 36 h post infection by forming a multiseptate, multilobed structure, variable in
shape and confined within the initially infected epidermal cells (Figure 1B). At this stage of the
interaction, infected cells can still plasmolyse normally, and the host plasmalemma and tonoplast
remained functional [8]. Upon subsequent colonization of neighbouring cells at 72 h post-infection,
a switch in both hyphal morphology and trophic relationship occur. At the periphery of the lobed BH,
outgrowths develop rapidly to produce narrow NH (Figure 1C). These numerous hyphae radiating
from each BH grow through the adjacent cell walls and infect surrounding cells. Narrow NH grow
rapidly, and hyphal spread will eventually lead to necrotic lesions with the appearance of water-soaked
lesions on the surface of the infected host as soon as 84 h post-infection [9]. In necrotic tissues, acervuli
form to produce numerous conidia.

Some Colletotrichum species including C. graminicola, C. falcatum, C. caudatum and C. sublineola
have an intracellular hemibiotrophic infection stage with a short period of biotrophy [10–12]. Unlike
C. higginsianum, the BH of these four species grow not only in the initially infected cell but also into cells
adjacent to the first infected cell before the fungi switch to NH, which ramify throughout host cells [13].
Similarly, for infection by another hemibiotrophic fungus Magnaporthe oryzae, once the fungus has
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breached the outer plant surface, it begins an extended period of biotrophic invasion of successive
host cells. Rice cells invaded by M. oryzae plasmolyze as hyphae colonize them, but plasmolysis stops
when the fungus grows into neighboring rice cells. In this form of hemibiotrophy, necrotrophic growth
appears to be triggered at four to five days post-inoculation, when macroscopic lesions appear [14].
In contrast, biotrophic infection by C. higginsianum is entirely restricted to the first infected epidermal
cell, and development then switches to necrotrophic growth, which then spreads within and between
host cells, and kills host cells ahead of infection.

3. Genomics and Genetics

3.1. Genome Sequencing and Assembly

Two largescale genome projects have been completed for C. higginsianum aiming to produce
high-quality assemblies to provide resources for comparative genomics and molecular analyses of fungal
pathogenicity, which allow the identification of genes relevant to each stage of plant infection. In 2012,
the first genome of C. higginsianum strain IMI 349063 was reported by O’Connell using a multi-source
method, including short-read data from 454 GSFLX (350 bp) and Illumina GAII (100 bp) sequencing
platforms together with a smaller number of longer Sanger reads. Optical mapping showed that the
genome of C. higginsianum strain IMI 349063 was 53.4 Mb distributed among 12 chromosomes, including
two mini chromosomes less than 1 Mb in size [15]. However, the actual assembly was composed of
over 10,000 contigs. This genome is smaller than other sequenced Colletotrichum genomes (88.3 Mb,
55.6 Mb and 57.4 Mb such as C. orbiculare (88.3 Mb), C. gloeosporioides (55.6 Mb) and C. graminicola
(57.4 Mb) [15,16]. Surprisingly, more genes (16172) were predicted from the C. higginsianum assembly in
contrast to assemblies of C. orbiculare (13479), C. gloeosporioides (15469) and C. graminicola (12006) [12,16].
One limitation of this assembly was that many of the predicted protein-coding genes were truncated or
split between contigs, resulting in multiple gene calls. The fragmented nature of the assembly leading
to incomplete gene calls was confirmed by a series of problematic experiments in our labs.

Recently, C. higginsianum strain IMI 349063 had been re-sequenced using the single-molecule
real-time (SMRT) technique, and combined with previous optical mapping data, has achieved a gapless
assembly of all 12 chromosomes except for the ribosomal DNA repeat cluster on chromosome 7 [17].
This assembly of nearly all chromosomes represents the most complete genome assembly to date
of any Colletotrichum species, and becomes part of a short list of completely assembled genomes of
phytopathogenic fungi, namely Zymoseptoria tritici, Sclerotinia sclerotiorum, Botrytis cinerea, Verticillium
dahliae and Fusarium graminearum [18–22]. The final genome assembly of strain IMI 349063 contains
28 unitigs (chromosome 7 is represented by 13 small unitigs and the mitochondrial genome is
represented by 3 unitigs) with a total length of 50.82 Mb. Based on the new gene annotation, a total
of 14,651 protein-coding genes were predicted from the new genome assembly, 1521 fewer than the
previous assembly [17].

Genome mining of C. higginsianum and C. graminicola for candidate secreted effector proteins
(CSEPs), which serve as molecular weapons to evade or suppress plant immunity, revealed only 177 in
C. graminicola, but 365 were found in C. higginsianum [12]. The CSEPs are mostly small, cysteine rich
proteins, averaging 110 residues in C. higginsianum. The larger, more diversified CSEP repertoire of
C. higginsianum might be an adaptation to evade defenses and invade a broader range of host plants.
The more accurate gene annotation from the new assembly revealed many secondary metabolism
(SM) key genes and putative biosynthetic pathways. Interestingly, the annotation demonstrated that
C. higginsianum encodes one of the largest repertoires of SM key genes and SM gene clusters of any
sequenced ascomycete, suggesting a large capacity to produce diverse metabolites [23–28]. Analysis of
the mini-chromosomes showed that both are repeat-rich and AT-rich, gene-poor and highly enriched
with genes encoding putative secreted effector proteins of unknown function, which are different in
their content to the other 10 chromosome [17]. Surprisingly, a study revealed that strains lacking small
chromosome 11 abort infection during biotrophy, while their ability to grow on artificial media was not
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affected, and that chromosome 12 can be lost without effects on virulence or growth on agar plates [29],
indicating that a number of potential genes from chromosome 11 have critical functions in addressing
plant host responses.

The complete genome assembly allows for analysis of genomic features including transposable
elements, telomeres, structural rearrangements and large gene clusters. Moreover, this assembly can
be a reference for investigations of other isolates of C. higginsianum or other Colletotrichum species,
and such data should facilitate future studies including those on functional genomics in this important
model phytopathogen.

3.2. Transcriptome Analyses

Several research studies have been carried out on transcriptomics of C. higginsianum associated
with different developmental and infection stages. Based on flow cytometric purification, intracellular
biotrophic hyphae of C. higginsianum from infected Arabidopsis leaves were purified for biotrophic stage
transcriptome analysis. Six fungal genes, namely homologues of NmrA, saccharopine dehydrogenase,
CIH1 and three unigenes were specifically expressed in planta during the biotrophic phase, and the
three unigenes (3, 125 and 143) are likely to encode small, soluble secreted proteins of unknown
function that represent candidate fungal effectors [30].

RNA-Seq data for samples from infected Arabidopsis corresponding to pre-penetration appressoria,
the early biotrophic phase and the transition to necrotrophy have been released, and the transcription
levels were found to be highly dynamic [15]. At the appressorial phase, genes encoding CAZymes
that were predicted to degrade cutin, cellulose hemicellulose and pectin were upregulated, which
may contribute to initial host penetration, together with a larger set of enzymes that potentially
remodel the fungal cell wall. During early infection, the transcriptome was dominated by secondary
metabolism genes, with the majority of expressed SM gene clusters being induced before penetration
and during biotrophy, and not in vitro. Furthermore, the majority of CSEP-encoding genes were
strongly induced during biotrophy, implying that effector production was especially prominent during
the biotrophic stage. During the switch to nectrophy, there was induction of a wide variety of lytic
enzymes, presumably as the fungus feeds on moribund and necrotic tissues to allow prolific growth
and colonization leading to increased spore production. Among the lytic enzymes produced, there
were CAZymes and putative secreted proteases that may cut the various types of polysaccharides
associated with the host cell walls. Furthermore, there was induction of many genes encoding plasma
membrane transporters which may be required for movement and assimilation of metabolic products
of this degradative enzymatic activity such as sugars, oligopeptides, and amino acids [15].

3.3. Genetic Transformation

A high efficiency transformation system using Agrobacterium tumefaciens-mediated transformation
(ATMT) is available for C. higginsianum [31]. It has become established as the method of random
insertional mutagenesis and targeted gene disruption using homologous recombination.

Random insertional mutagenesis is a powerful approach for discovering novel pathogenicity
genes in fungi. Based on the first application of ATMT for insertional mutagenesis of C. higginsianum,
a T-DNA insertion library was generated [31]. By using a high-throughput infection assay on A. thaliana
seedlings, among 8850 mutants, 40 mutants showed reproducible pathogenicity defects on Arabidopsis
and Brassica plants, 6 were impaired in appressorial melanization, 15 had reduced penetration ability,
14 induced host papillae or hypersensitive cell death, and 5 were affected in the transition from
biotrophy to necrotrophy [31]. Flanking sequence analysis of the tagged genes led to the isolation of
14 putative pathogenicity genes (Table 1). Similarly, another T-DNA insertion library of C. higginsianum
was also generated containing 5012 ATMT mutants, and six virulence-deficient mutants were acquired
(Table 1). Identification and analysis of the T-DNA tagged loci of these mutants revealed several
potential genes possibly related to virulence factors such as genes encoding a copper amine oxidase,
an exosome component EXOSC1/CSL4, and other hypothetical proteins [32]. Korn et al. (2015),
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from a collection of 7200 insertion mutants, isolated 75 mutants with reduced symptoms. Among them,
19 were affected in host penetration, while 17 were affected in later stages of infection [33]. The location
of T-DNA insertions of only 16 mutants could be identified by polymerase chain reaction (PCR) for
further gene functional analysis (Table 1).

Table 1. Summary of Colletotrichum higginsianum genes identified from T-DNA flanking sequences.

Mutant Insertion a T-DNA Insertion b Putative Function (NCBI Accession) c Reference

path-5 1 In predicted open reading
frame (ORF) Unknown

[31]

path-7 2 In ORF Hypothetical protein (FG06146.1)
1.5 kb upstream Hypothetical protein (FG06145.1)

path-8 1 In predicted ORF Unknown
path-9 1 1 kb downstream Endo–1,3(4)–β–glucanase (AFUA_1G05290)

path-12 1 In ORF MFS transporter (NFIA_086030)
path-16 1 In ORF Ornithine decarboxylase (AY602214)
path-19 1 In ORF Arg–6 protein (EAA35492.1)
path-23 2 620 bp upstream Hypothetical protein (FG02446.1)

In predicted ORF Unknown
path-29 1 730 bp upstream ATP–binding endoribonuclease (ACLA_048430)
path-35 1 In ORF Carbamoyl–phosphate synthetase (EAA36214.1)
path-36 1 620 bp upstream Importin β2 subunit (AFUA_1G15900)
path-38 1 In ORF Importin β2 subunit (AFUA_1G15900)

T732 1 168 bp downstream Copper amine oxidase (XP_001826965)

[32]
T734 1 In ORF Hypothetical protein (ELA33048)
B30 2 In ORF Exosome component EXOSC1/CSL4 (EFQ29835)

850 bp upstream DUF221 domain protein (EFY94646)
T45 Unknown Hypothetical protein (EFQ29552)

vir-2 2 supercontig_1.2671, 583, RB Phosphoribosylaminoimidazole carboxylase
(EFQ26499.1)

[33]

vir-10 2 contig05930, 16777, LB Kelch domain-containing protein (EFQ26610.1)
vir-12 2 supercontig_1.3174,1154, LB Plasma-membrane proton-efflux P-type ATPase
vir-14 2 supercontig_1.6150,870, RB ABC transporter (EFQ25092.1)

supercontig_1.903,6335, LB Nucleoside-diphosphate-sugar epimerase
vir-22 1 supercontig_1.3174,1748, RB Plasma-membrane proton-efflux P-type ATPase
vir-24 1 supercontig_1.3174,1422, RB Plasma-membrane proton-efflux P-type ATPase
vir-27 2 supercontig_1.6150,873, RB ABC transporter (EFQ25092.1)

supercontig_1.826,7944, RB STE like transcription factor
vir-51 1 supercontig_1.1848,6585, LB Unknown

vir-52 2 contig 00557 Alanine dehydrogenase/PNT domain containing
protein (EFQ25467.1)

contig 11896 FAD dependent oxidoreductase superfamily protein
(XP_007280006)

vir-53 2 supercontig_1.6692, RB Unknown
vir-56 3 supercontig_1.66,3878, LB Peroxisomal membrane protein 24
vir-76 2 supercontig_1.56,17248, LB Spindle assembly checkpoint component MAD1
vir-84 2 supercontig_1.3742,1175, LB Sporulation protein RMD1 (ELA35952.1)
vir-88 2 supercontig_1.5277,868–879 Mob1/phocein family protein (EFQ26211.1)
vir-97 2 supercontig_1.3174,812, LB Plasma-membrane proton-efflux P-type ATPase

vir-102 1 supercontig_1.3174,793, LB Plasma-membrane proton-efflux P-type ATPase
a Number of insertion sites determined by Southern Blot analysis. b Locations of T-DNA insertion sites or position of
the T-DNA border sequence in the Colletotrichum database Supercontigs. Sequence names are shown with left border
(LB) or right border (RB). c Open reading frames (ORFs) predicted by Softberry were used in the BLAST search.

Among the T-DNA insertion library, two C. higginsianum mutants defective in the switch from
biotrophy to necrotrophy showed high homology to conserved importin-β2 proteins. This class of
importins is known to mediate the nuclear importation of pre-mRNA processing proteins in mammals,
yeast and plants [34,35]. Importins are considered essential for the asexual/sexual development in
Trichoderma reesei and pathogenicity in Aspergillus nidulans, Phytophthora sojae [36–38]. Importantly,
there have been no reports that importin proteins are involved in the transition from biotrophy to
necrotrophy. Otherwise, many T-DNA tagged loci of these mutants were annotated as hypothetical
proteins, and these genes have the potential to be involved in novel functional genes possibly related
to virulence factors. There needs to be more attention and penetrating research on these genes.
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To validate that the integrated T-DNA is responsible for the observed phenotypes,
complementation experiments or the generation of targeted knockout mutants are important. Since
targeted gene mutagenesis through homologous recombination occurs with relatively low frequency
in C. higginsianum [33], an efficient gene knockout protocol, which could increase homologous
recombination frequency to 60–90%, was established based on the inactivated Ku70 and Ku80
components of the non-homologous end-joining (NHEJ) pathway in C. higginsianum [33,39]. The method
of inactivated NHEJ pathway components to increase the homologous recombination frequency was
previously reported in other filamentous fungi, and this method raised the transformation efficiency
to 60–90% in A. sojae and A. oryzae [40] and by over 80% in M. oryzae [41]. Overall, these findings
indicate that insertional mutagenesis by ATMT could be a valuable tool for genome-wide analysis of
gene function in this important model pathogen.

4. Virulence Factors

Genome and transcriptome analyses of C. higginsianum infecting A. thaliana has shown that this
fungus has many virulence factors. However, relatively few molecular determinants of virulence in
C. higginsianum have been experimentally verified (Table 2).

Table 2. Genes involved in virulence have been reported in Colletotrichum higginsianum.

Gene ID Description Reference

path-19 CH063_11554 Putative Arg6 precursor [42]
path-35 CH063_15109 Carbamoyl–phosphate synthetase [42]

Ch-MEL1 unknown Hypothetical protein [32]
ChPma2 CH063_09060 Plasma-membrane proton-efflux P-type ATPase [33]
ChELP1 CH063_13023 LysM effectors [43]
ChELP2 CH063_04445 LysM effectors [43]
ChSte7 CH063 02455 Serine/threonine protein kinases [44]
ChRgf CH063_04363 Ras guanine-nucleotide exchange factor [45]

ChMK1 CH063_08490 Fus3/Kss1-relatedMAPKgene [46]
ChMfs1 CH063_12120 Major facilitator superfamily (MFS) transporter [47]
ChMob2 CH063_12012 Mob1/phocein family protein [48]
ChCbk1 CH063_12968 NDR/LATS kinase [48]

4.1. Mitogen-Activated Protein (MAP) Kinase and cAMP/PKA Signaling Pathway

Adhesion to the plant surface is the first step in initiation of the infection process in many plant
pathogenic fungi [49]. Following adhesion, physical signals such as those involving tissue hardness
and hydrophobicity or chemical signals (cutin monomers and leaf waxes) induce germination and
appressorial formation in several plant pathogenic fungi [50]. In eukaryotic cells, the transduction of
a variety of extracellular signals and the regulation of different developmental processes are regulated
by mitogen-activated protein (MAP) kinase pathways and cAMP/PKA signaling pathways [50,51].
Thus, some intensive studies on these two pathways have been carried out based on the infection
process of C. higginsianum. ChSte7, encoding a MAPKK orthologue gene Ste7 in yeast, was highly
expressed in vegetative and invasive growth stages in C. higginsianum. Deletion of ChSte7 resulted in
significant reduction in vegetative growth, inability to form appressoria and also reduced invasive
growth inside host plant tissues, which was similar for M. oryzae, B. cinerea and Ustilago maydis [44].
A Fus3/Kss1 related MAPK gene in C. higginsianum, ChMK1, was also reported to play an important
role in cell wall integrity, colony melanization, and pathogenicity on A. thaliana [46]. ChRgf, encoding
a Ras guanine-nucleotide exchange factor protein, might be a control element of MAPK pathway (REF),
and its deletion resulted in some phenotypes similar to those involving deletion of the two MAPK
pathway genes: defects in vegetative growth, altered hyphal morphology, reduced conidiation, poor
surface attachment and low germination on hydrophobic surfaces [45]. These results indicate that
the MAPK pathway is involved in a critical conserved role to control the pathogenicity and growth



Int. J. Mol. Sci. 2018, 19, 2142 7 of 18

of C. higginsianum through the extracellular signal transmission compared to other phytopathogenic
fungi. Moreover, another extracellular signal transmission pathway, cAMP/PKA signaling pathway,
was also studied in C. higginsianum. The PKA catalytic subunits ChPKA1 and adenylate cyclase
ChAC deletion mutants were significantly reduced in hyphal growth rate, tolerance to cell wall
inhibitors and conidiation, but had an increased tolerance to elevated temperatures and exogenous
H2O2 [52]. In contrast, the ChPKA2 mutant had no detectable alteration of phenotypes, suggesting
that ChPKA1 contributes mainly to PKA activities in C. higginsianum [52]. These findings suggest that
the cAMP/PKA signaling pathway also contributes to growth, conidial formation, stress tolerance and
pathogenesis in C. higginsianum.

The MAPK and cAMP/PKA signaling pathways are well known in regulation of appressorial
morphogenesis and plant infection in M. oryzae, C. truncatum and some other phytopathogenic
fungi [53–56], but investigation of these two signaling pathways in C. higginsianum still helped to
provide insights into the mechanism of the C. higginsianum–cruciferous crop interaction, and to facilitate
investigation of efficient management of anthracnose disease. Functional comparisons of MAPK and
cAMP/PKA signaling pathways in C. higginsianum with other phytopathogenic fungi may provide
a deeper understanding of pathogenic mechanisms of this fungus.

After adhesion to plant surfaces, the infection strategy of C. higginsianum includes two phases:
an initial biotrophic phase and a subsequent necrotrophic growth phase [57]. For biotrophic growth
and transition to necrotrophic growth, fine-tuned regulation of cell wall developmental processes are
essential. For fungi, management of these processes involves many pathways, including kinases and
the co-activator Mob-family proteins [58]. These pathways have been called morphogenesis-related [59]
and the septum initiation network [60] in Saccharomyces pombe, or regulation of Ace2p activity and
morphogenesis [61] and the mitotic exit network [62] both in S. cerevisiae. In this latter fungus, Cbk1
is the terminal kinase in the RAM pathway, and it is classified in the kinase subfamily of nuclear
Dbf2-related or large tumor suppressor. The function of Mob-family proteins which are essential for
the activation of NDR kinases was also studied in C. higginsianum [48]. The results showed that the C.
higginsianum genome encodes three members of the Mob1/phocein protein family. ChMob1 is required
for conidiation, cytokinesis and plant infection. ChMob2 binds to the conserved NDR/LATS kinase
ChCbk1, and is involved in virulence on A. thaliana and is required for both conidiation and formation
of functional appressoria. ChMob3 knockout mutants have no obvious phenotype in vegetative cells
or during infection. Moreover, Mob2 and Cbk1 co-localize to the cytoplasm and are excluded from
nuclei in conidia and during appressorial formation in vitro. Mutants in the two potential Mob2/Cbk1
complex targets ChSSD1 and ChACE2 genes show defects in pathogenicity.

4.2. Nutrition, Transporter and Amino Acid Biosynthesis

Several studies provide evidence that nutritional requirements, such as amino acid biosynthesis or
nutrient availabilities, are important for fungal infection cycles and pathogenicity in many fungi [63–66].
In C. higginsianum, two arginine auxotroph mutants showed reduced penetration and invasive growth
ability, which was restored when L-arginine was supplied. Thus arginine biosynthesis was shown to be
dispensable for conidial germination and appressorial morphogenesis of C. higginsianum, suggesting
that arginine reserves in conidia are sufficient for the completion of pre-penetration development.
However, arginine biosynthesis was critical for initial host penetration by appressoria and early
biotrophic growth inside living host cells [42]. Although not many genes related to nutritional
requirements have been genetically analyzed in C. higginsianum so far, there are many such studies
in other species of Colletotrichum. The GATA transcription factor, AreA, regulates the use of poor or
complex nitrogen sources, and restricts their use when sufficient nitrogen sources are available within
the organism. The AreA plays a critical role in fungal development, conidial production, and regulation
of nitrogen metabolism and virulence in C. gloeosporioides [67]. Kre5 and Kre6 are the key enzymes
in β-1,6-glucan synthesis and formation of branch points of the β-glucan network. In C. graminicola,
RNAi-mediated reduction of KRE5 and KRE6 transcript abundance caused appressoria to burst and



Int. J. Mol. Sci. 2018, 19, 2142 8 of 18

necrotrophic hyphae to swell, indicating that β-1,6-glucosidic bonds are essential in these cells [68].
The homologous proteins in C. higginsianum should play important roles in fungal development
or virulence.

The ATP-binding cassette (ABC) and major facilitator superfamily (MFS) of transporters are
two families that play important roles in transport processes. In recent research, MFS transporters
are usually demonstrated to be involved in multidrug resistance in fungi [69]. MFS transporters are
capable of transporting small molecules in response to ion gradients or function as drug:H+ antiporters
in microorganisms. Mounting evidence indicates that MFS transporters may also indirectly control
membrane potential by changing membrane lipid homeostasis and regulating internal pH and the
stress response machinery and pathogenicity in fungi [70–72]. Moreover, some MFS transporters also
are involved in secretion of phytotoxins [73–76]. Recently, a virulence-deficient mutant, Ch-1-T513,
from a T-DNA insertion mutant library in C. higginsianum was found to have abnormal hyphae, which
might be a key factor affecting virulence of the fungus. The study demonstrated that a MFS transporter
named ChMfs1 is responsible for the mutant Ch-1-T513 phenotype, and ChMfs1 in C. higginsianum is
the first reported to be involved in pathogenicity and the production of intra-hyphal hyphae [47].

The plasma membrane H+-ATPase is a proton pump that plays important energetic and regulatory
roles in the physiology of plants and fungi controlling essential functions including nutrient uptake and
intracellular pH regulation [77]. In fungal cells, the activity of the proton pump is regulated by a large
number of environmental factors at both transcriptional and post-translational levels [78]. Structure
and function of plasma membrane H+-ATPases have been extensively explored in fungi, revealing their
role in vegetative growth, nutrient transport and pathogenicity [79–83]. In C. higginsianum, a potential
plasma membrane H+-ATPase Pma2 was frequently targeted in five independent insertion mutants
from the T-DNA insertion mutant library. Chpma2 deletion mutants form fully melanized appressoria
but entirely fail to penetrate the host tissue. Targeted gene knockout of another plasma membrane
pump gene, ChPMA1, gave a non-viable phenotype, indicating that ChPMA1 may be an essential gene
and encode the major H+-transporting ATPase [33].

4.3. Effectors

In the case of plant pathogenic hemibiotrophs, colonization and the initial biotrophic interaction
with host cells is facilitated by pathogen-encoded small, secreted proteins termed effectors [84].
Biotrophy-specific hyphal cells play important roles in transporting effectors into the host cells and in
obtaining nutrition from the host [85]. Depending on the fungal species, the interfacial matrix is either
continuous with the host plant apoplast such as for Puccinales or separated into an interfacial apoplastic
compartment like that in M. oryzae. The interfacial membrane among a variety of pathosystems ranges
from undifferentiated plant plasma membranes to highly specialized membranes with complicated
elaborations and unique components [86]. Vesicles are abundant in both host and pathogen cytoplasm
near the interface, implying that both are involved in active production of secreted compounds into
and across interfacial zones [87,88]. Shimdada et al. found some evidence for localized specialization
of the interfacial membrane around BH of C. higginsianum [5]. Biotrophic infection by C. higginsianum
has differences from other biotrophic fungus, and the process of interfacial membrane exchange with
the fungus deserves further study.

In C. higginsianum, inventories of putative effectors have been predicted from the annotated
genomes of C. higginsianum revealing 18 genes, of which six were not predicted to be secreted,
and two were chitinases, leaving 10 putative secreted LysM effectors [89]. The LysM domain
comprises 40–60 amino acid residues and mediates binding to chitin and peptidoglycans [89].
Chitin is a microbe-associated molecular pattern (MAMP) that can be detected by plant pattern
recognition receptors (PRRs) to activate a variety of MAMP-triggered immune responses [90]. To avoid
recognition by host receptors, several ascomycetes are known to produce effector proteins which
either block the activity of host plant chitinases or compete with host plant receptors which bind
chitin fragments [91–95]. The function of two effectors, ChELP1 and ChELP2, homologs of LysM
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proteins were characterized in C. higginsianum. ChELP2 has been found to be located on the surface of
bulbous biotrophic hyphae at the interface with living plant cells, but it has not been discovered in
necrotrophic hyphae. In previous experiments, recombinant ChELP1 and ChELP2 were found to bind
chitin oligomers in vitro with high specifity and high affinity. Both proteins suppressed chitin-triggered
activation of two immunity-related plant mitogen-activated protein kinases in Arabidopsis. These results
suggested a double role for these LysM proteins as effectors for suppressing chitin-triggered immunity
and as proteins essential for appressorial development and function [43].

The role of secreted effector proteins during infection by hemibiotrophic plant pathogens is
poorly understood. Based on deep transcriptome sequencing and computational mining of Expressed
Sequence Tags from precise infection stages, a large of planta-expressed effector candidates were found
in C. higginsianum. Most biotrophy-associated ChEC genes were dramatically upregulated exclusively
in planta and distinct sets of effectors are deployed in successive waves by particular fungal cell
types [96]. With fluorescent protein tagging and transmission electron microscopy-immunogold
labelling, early expressed effector proteins are observed to be focally secreted from appressorial
penetration pores before host invasion (Figure 1A). In addition, later-expressed effectors accumulate
in structures formed at the interface between primary hyphae and living host cells (Figure 1B),
implicating these hyphae in effector delivery. Furthermore, the coordinated expression and secretion
of antagonistic biotrophy effectors and toxin effectors contribute to fungal virulence and the regulation
of hemibiotrophy in C. higginsianum. These findings indicate new functions for fungal infection
structures that have not been reported previously, specifically the localized release of effector proteins
at the interface between fungal pathogen and plant host, and associated with the penetration pore.
This provides the basis to model the switch to necrotrophy from biotrophy by this fungus [96]. Future
research should attempt to decipher the nature of the plant signals inducing effector gene expression
and the way that they are sensed by the pathogen.

Recently, 61 putative effector proteins were separately cloned into a plant expression vector
providing an N-terminal GFP tag, and the tagged proteins were transiently expressed directly inside
plant cells using ATMT [97]. Among them, subcellular localization of 16 candidate effectors was
verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes,
three decorated cortical microtubule arrays, and one was associated with Golgi stacks [97]. These
findings revealed that plant peroxisomes, microtubules and Golgi are novel targets for fungal effectors.

5. Molecular Interactions

Plants usually defend against microbial pathogens by activating both localized and systemic
resistance responses. These responses include hypersensitive response [98], cell-wall fortification [99],
synthesis of phytoalexins [100] and production of other antimicrobial secondary metabolites or
pathogenesis-related proteins (PR proteins) [101]. Signaling molecules implicated in these inducible
defense systems include salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA),
auxin, gibberellins (GAs), cytokinins (CKs), brassinosteroids (BRs), and reactive oxygen species
(ROS) [102,103]. These phytohormones can induce defense responses individually, and also interact
synergistically or antagonistically to further orchestrate downstream signaling.

A large number of fungal and oomycete pathogens have been reported to infect the model plant
A. thaliana, either naturally or in the laboratory. As a typical hemibiotrophic fungus, C. higginsianum
develops a series of specialized infection structures. In particular, the intracellular BH of C. higginsianum
are equivalent to haustoria, and hence this pathosystem can provide insights into the molecular basis
of biotrophy in obligately parasitic organisms, such as rusts, powdery mildews, and downy mildews,
all of which are not readily culturable or genetically manipulated.

5.1. Primary Metabolic Pathways

For successful establishment in host plants, biotrophic and hemibiotrophic fungi need to obtain
nutrients from living host cells, and effectively evade the host defense system. Colonization by a fungal
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pathogen is associated with multiple metabolic changes in the plant host, notably increases in the
expression of several genes involved in primary metabolic pathways, synthesis or degradation of
carbohydrates, amino acids, lipids, and mineral transport [104]. It has been suggested that the role of
primary metabolism during plant–pathogen interactions is to support cellular energy requirements for
plant defense responses [105]. The mutation of lht1 (lysinehistidine transporter 1) in Arabidopsis can
significantly reduce contents of glutamine, alanine, and proline, resulting in enhanced resistance not
only to C. higginsianum but also to diverse bacterial and oomycete pathogens [106]. After inoculation
with these pathogens, the lht1 mutant also exhibited increased callose deposition, higher accumulation
of SA and constitutive expression of PR-1.

Furthermore, more evidence has suggested that components of primary metabolism also can
act as signals regulating various aspects of plant defense. For example, fatty acids and lipids play
important roles in plant defense and and biosynthesis of the major defense hormone JA [107]. Little
is known about the role of plant primary metabolism in defense against attack by this hemibiotroph.
To date, several metabolic functions have been identified that influence compatibility of C. higginsianum
with the plant host. Glycerol-3-phosphate (G3P) is an important component in carbohydrate and
lipid metabolic processes. Infection of Arabidopsis by C. higginsianum leads to an increase in G3P
levels and a simultaneous decrease in glycerol levels in the plant. Cells impaired in the utilization of
G3P accumulated higher levels of pathogen-induced G3P, and exhibited enhanced resistance [108].
The NADP-malic enzyme catalyses the oxidative decarboxylation of L-malate using NADP+ as
coenzyme, producing pyruvate, CO2, and NADPH is present as a multigene family [109]. In A. thaliana,
loss of cytosolic NADP-ME2 leads to increased susceptibility to infection by pathogens such as C.
higginsianum. The data suggest that NADP-ME2 has a function during the basal defence response,
where it may be required for ROS production after pathogen recognition [110]. Since primary
metabolism is essential for survival, associated genes are unlikely to be to be eliminated during
natural selection, in contrast to most R-genes which are only periodically important for survival
(i.e., when pathogens attack). Therefore, engineering resistance against pathogens by selection of
resistance-related genes that also have a primary metabolic function is expected to provide more
durable resistance.

5.2. Phytohormones

Genetic studies with Arabidopsis-signaling mutants have shown that SA-dependent responses are
deployed against biotrophic pathogens, whereas ethylene- or JA-dependent responses are more
important for induced resistance to necrotrophic pathogens [111], suggesting that resistance to
hemibiotrophic pathogens such as Colletotrichum may require a combination of these pathways [112].
Genome-wide studies using cDNA arrays in Arabidopsis infected with the C. higginsianum revealed that
defense reactions activate the SA-dependent signaling pathway at the early stage of the interaction
between Arabidopsis and C. higginsianum, and the subsequent defense reaction may depend on the
JA-dependent signaling pathway because the correlation with SA signaling decreased rapidly and
that of JA-signaling increased relatively [4]. Differential defense signalling crosstalk and PR gene
expression are involved in cultivar-specific resistance of kimchi cabbage plants to anthracnose, black
spot and black rot diseases, and the resistance is strongly associated with the hormone-dependent
transcriptional induction of defence genes [113].

5.3. Resistance Genes

Molecular and biochemical bases of cultivar resistance to Colletotrichum spp. have been
investigated using genetically diverse materials [114–116]. Innate disease resistance responses in
plants are triggered by a dual surveillance system composed of nucleotide binding-leucine rich repeat
(NB-LRR) proteins encoded by resistance genes and pattern recognition receptors (PRRs) [117]. The two
layers are often called MAMPs-triggered immunity (MTI) and effector triggered immunity (ETI) [118].
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By a combination of quantitative trait loci (QTL) and Mendelian mapping, a single putative
R locus RCH1 was identified, at the tip of chromosome 4, in the resistant A. thaliana ecotype
Eil-0 against C. higginsianum [119]. By using map-based cloning and natural variation analysis of
19 Arabidopsis ecotypes, another dominant resistance locus RCH2 was identified against C. higginsianum.
The locus RCH2 maps to an extensive cluster of disease-resistance loci known as MRC-J in the
Arabidopsis ecotype Ws-0. These indicate that Arabidopsis resistance to C. higginsianum is controlled by
a gene-for-gene interaction.

In A. thaliana, NB-LRR-type resistance (R) genes to Pseudomonas syringae 4 (RPS4) and to Ralstonia
solanacearum 1 (RRS1-R) were reported to also confer resistance to C. higginsianum [120,121]. RRS1-R and
RPS4 were also found as a complex that could help detect effectors which target WRKY proteins [122,
123]. Therefore, effectors in C. higginsianum that target WRKY proteins may be more likely to act as
Avr genes.

6. Future Perspectives

This review provides an overview of recent significant studies on the pathogenesis of
C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. However,
there are many issues worth investigating.

Firstly, the genome sequence of C. higginsianum has revealed a large number of putative effector
proteins, but few effector proteins have been experimentally confirmed or characterized to date.
The identification of virulence targets for the hundreds of candidate effectors predicted from genome
sequencing remains a major challenge, partly because protocols for high-throughput plant cellular
assays are lacking. Thus, establishing a reliable high-efficiency protocol for screening effectors of
C. higginsianum would facilitate future functional identification in this important model pathogen.
Moreover, previous studies showed that two effector proteins, ChELP1 and ChELP2, at the biotrophic
stage in planta may be critical for suppressing chitin-triggered immune responses, while the basal
expression levels in appressoria in vitro and in planta are required for efficient substrate penetration.
Further work is needed to elucidate how these proteins contribute to appressorial function and the
switch to invasive hyphal growth. The complete genome sequence of C. higginsianum revealed that
chromosomes 11 and 12 are also enriched in genes encoding potential effector proteins which differ
from the core genome. Lack of chromosome 11 leads to aborted infection during biotrophy, indicating
that a number of potential genes from chromosome 11 have critical functions in manipulating plant
host responses, and these can be selectively analyzed in future work to evaluate their possible function.

Secondly, comparative analyses of interactions between Arabidopsis and both non-adapted and
adapted Colletotrichum species revealed that the adapted pathogen C. higginsianum induced papillary
callose at a much lower frequency than non-adapted Colletotrichum species, indicating that this fungus
may suppress pre-penetration resistance at the cell periphery [5]. The mechanism of C. higginsianum
suppression of pre-penetration resistance remains to be elucidated by future experiments.

Finally, many genes for synthesis of secondary metabolites are up-regulated during plant infection,
and many genes are specifically expressed during the biotrophic stage in C. higginsianum, indicating
that appropriate gene expression during the biotrophic stage is a key for successful establishment of this
fungus in host plants. Thus, the C. higginsianum-Arabidopsis pathosystem has tremendous potential for
discovery of novel bioactive molecules, and identification of the corresponding biosynthetic pathways.
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