Next Article in Journal
Loneliness and Diurnal Salivary Cortisol in Emerging Adults
Previous Article in Journal
Correction: Cizkova, D., et al. Localized Intrathecal Delivery of Mesenchymal Stromal Cells Conditioned Media Improves Functional Recovery in A Rat Model of Contusive Spinal Cord Injury. Int. J. Mol. Sci. 2018, 19, 870
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2018, 19(7), 1943; https://doi.org/10.3390/ijms19071943

Transcriptional Activation of Human GD3 Synthase (hST8Sia I) Gene in Curcumin-Induced Autophagy in A549 Human Lung Carcinoma Cells

1
Department of Medicinal Biotechnology, College of Health Sciences, Dong-A university, Busan 604-714, Korea
2
Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seobu-Ro, Jangan, Suwon, Gyeonggi-Do 16419, Korea
*
Authors to whom correspondence should be addressed.
Received: 25 May 2018 / Revised: 19 June 2018 / Accepted: 30 June 2018 / Published: 2 July 2018
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Full-Text   |   PDF [2121 KB, uploaded 2 July 2018]   |  

Abstract

Curcumin, a natural polyphenolic compound isolated from the plant Curcuma longa, is known to induce autophagy in various cancer cells, including lung cancer. In the present study, we also confirmed by LC3 immunofluorescence and immunoblotting analyses that curcumin triggers autophagy in the human lung adenocarcinoma A549 cell line. In parallel with autophagy induction, the gene expression of human GD3 synthase (hST8Sia I) responsible for ganglioside GD3 synthesis was markedly elevated in response to curcumin in the A549 cells. To investigate the transcriptional activation of hST8Sia I associated with the autophagy formation in curcumin-treated A549 cells, functional characterization of the 5′-flanking region of the hST8Sia I gene was carried out using the luciferase reporter assay system. Deletion analysis demonstrated that the -1146 to -646 region, which includes the putative c-Ets-1, CREB, AP-1, and NF-κB binding sites, functions as the curcumin-responsive promoter of hST8Sia I in A549 cells. The site-directed mutagenesis and chromatin immunoprecipitation assay demonstrated that the NF-κB binding site at -731 to -722 was indispensable for the curcumin-induced hST8Sia I gene expression in A549 cells. Moreover, the transcriptional activation of hST8Sia I by the curcumin A549 cells was strongly inhibited by compound C, an inhibitor of AMP-activated protein kinase (AMPK). These results suggest that curcumin controls hST8Sia I gene expression via AMPK signal pathway in A549 cells. View Full-Text
Keywords: autophagic cell death; curcumin; human GD3 synthase (hST8Sia I); A549 cells; transcriptional regulation autophagic cell death; curcumin; human GD3 synthase (hST8Sia I); A549 cells; transcriptional regulation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Lee, M.; Kim, K.-S.; Fukushi, A.; Kim, D.-H.; Kim, C.-H.; Lee, Y.-C. Transcriptional Activation of Human GD3 Synthase (hST8Sia I) Gene in Curcumin-Induced Autophagy in A549 Human Lung Carcinoma Cells. Int. J. Mol. Sci. 2018, 19, 1943.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top