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Abstract: Current clinical strategies for bladder reconstruction or substitution are associated to
serious problems. Therefore, new alternative approaches are becoming more and more necessary.
The purpose of this work is to review the state of the art of the current bioengineering advances
and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal
engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical
forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to
reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated
under control of autonomic and sensory innervations. Bioreactors play a very important role
allowing cell growth and specialization into a tissue-engineered vascular construct within a
physiological environment. Bioprinting technology is rapidly progressing, achieving the generation
of custom-made structural supports using an increasing number of different polymers as ink with
a high capacity of reproducibility. Although many promising results have been achieved, few of
them have been tested with clinical success. This lack of satisfactory applications is a good reason
to discourage researchers in this field and explains, somehow, the limited high-impact scientific
production in this area during the last decade, emphasizing that still much more progress is required
before bioengineered bladders become a commonplace in the clinical setting.
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1. Introduction

Two decades have passed, waiting to see realized the realized promise of a regenerated bladder,
while, for the last 80 years, the intestine has been used to functionally replace the bladder after
its removal. What are the advances and what are the obstacles along this long and winding road?
This review tries to answer this question.

Bladder dysfunction can be caused by several diseases or as a sequel of surgical interventions
altering the normal cellular and extracellular matrix (ECM) compartments which accomplish the role
of storage and voiding. The normal functioning urinary bladder is composed of two main parts:
a compliant muscular wall and a highly specialized urothelium, well-orchestrated under the control of
autonomic and sensory innervations. The specialized urothelium protects the upper urinary tract from
urine reflux, pressure, and infection, providing a low-pressure and high-capacity reservoir (Figure 1).
Repeated coordinated bladder contractions can be performed because of the specialized characteristics
of the bladder’s smooth muscle fibers, blood vessels, and nerves. Furthermore, these contractions do
not compromise the bladder storage capability nor the upper tract protection. Therefore, when this
organ is damaged, all these properties must be taken into account in any attempt to replace the whole
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organ or part of it, with the goal of reproducing or recreating them individually, for a global functional
recovery [1].

Figure 1. Urinary bladder histological organization in physiological conditions. (I–IV) Representative
images of a longitudinal bladder section from an adult male rat after trichromic Masson staining.
The adventitious layer (the outermost one), the urothelium (II), and the muscle bundles (IV) are stained
in dark red, and the extracellular matrix of the submucosa is stained in blue (III). The location of
the layers II, III, and IV is shown in image I by a corresponding colored frame with a dashed line;
V: The illustration on the right shows the bladder organization in layers. Starting from the lumen,
the bladder is composed of a transitional epithelium or urothelium formed by 4–5 layers of specialized
cells supported by the basal lamina and followed by the submucosa coat, a loose connective tissue
containing fibroblasts, blood vessels, and extracellular matrix and enriched in collagen I and III. Below,
consecutive layers with perpendicular orientations of smooth muscle fibers form an inner muscle layer
followed by the detrusor, characterized by smooth muscle fibers organized in circular and longitudinal
layers. The adventitious layer of adipose tissue completes the structural organization.

The urothelium, which is a transitional epithelium of endodermal origin, is necessary to prevent
the passage of hypertonic urine to the blood and the exchange of toxic metabolites. About 90% of the
urothelium is composed of basal cells, which are mitotically active cells, and 5% of the urothelium
is populated by intermediate cells and superficial cells located in the suprabasal and luminal layers,
respectively (Figure 1). In a state of homeostasis, adult urothelial cells are quiescent, with cell renewal
rates of approximately 40 weeks; however, if the urothelium is damaged by an acute lesion, exposure
to toxins, or a urinary pathology, a rapid process of exfoliation and regeneration is induced and
completed in 72 h [1].

Numerous conditions, such as infection, cancer, trauma, inflammation, or iatrogenic injury, can
cause the bladder to lose its ability to store and empty effectively. In addition, a progressive loss of
bladder function resulting in a concomitant debilitating urinary incontinence or renal impairment
can also be produced by congenital or neurologic disorders such as a spinal cord injury or spina
bifida [2]. However, the most frequent cause of bladder removal is bladder cancer that requires a
radical cystectomy. By incidence, this neoplasia is the sixth leading cancer in the European Union.
Thus, 124,000 people are diagnosed, and more than 40,000 people die from the disease each year.
Furthermore, the annual incidence is projected to increase to 219,000 by the year 2030, with two-fifths
of this number due to the ageing of the European population [3].

The standard radical cystectomy, i.e., the complete removal of the bladder, is nowadays the
standard treatment for localized muscle-invasive bladder cancer [4]. In men, this operation also
includes the removal of the prostate, seminal vesicles, distal ureters, and regional lymph nodes, and in
women, the removal of the entire urethra and adjacent vagina, uterus, distal ureters, and regional
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lymph nodes [5]. However, controversy remains regarding age, radical cystectomy, and the type of
urinary diversion [6] (see Figure 2). The selection of the primary therapy and type of urinary diversion
is influenced by the performance status (PS) and age of a patient, and the cystectomy is usually
reserved to younger patients without a concomitant disease and with a better PS. It has been reported
that comorbidity is associated with adverse pathological and survival outcomes as a consequence
of a radical cystectomy. When a conservative therapy, such as chemo- and radiotherapies, is not
effective, for example after a bladder-sparing treatment and in the case of a non-urothelial carcinoma,
salvage cystectomy is the most suitable solution. Sometimes, this clinical solution is also employed as
a relieving intervention for fistula formation, pain, or recurrent macrohaematuria [7].

Figure 2. Types of urinary diversion currently performed after radical cystectomy: (a) abdominal
diversion, such as an ureterocutaneostomy, colonic, or ileal conduit; (b) various forms of a continent
pouch created using different segments of the gastrointestinal system and a cutaneous stoma; and (c)
orthotopic urinary diversion with an intestinal segment with spherical configuration and anastomosis
to the urethra (neobladder, orthotopic bladder substitution).

Nowadays, reconstructive urology is still facing the challenging problem of the replacement of
the urinary bladder tissue with functional equivalents. The ileal conduit or neobladder generation
are the gold standard approach for urinary diversion after performing a radical cystectomy [8,9]
(Figure 2a,c). However, these techniques are associated with numerous complications, such as mucus
production, electrolyte imbalances, and increased malignant transformation potential [10–16]. Early
and late morbidity in up to 22% of the patients [17,18] and long-term complications, including diurnal
(8–10%) and nocturnal (20–30%) incontinence, ureterointestinal stenosis (3–18%), metabolic disorders,
and vitamin B12 deficiency, have been reported recently [19].

Nevertheless, bladder-preserving treatments such as radio- and chemotherapy are promoted,
in the interest of the patients’ quality of life [20,21]. Conservative methods can be used to maximize
patients’ safety and quality of life in the case of mild to moderate bladder dysfunctions and include
behavioral training, clean intermittent catheterization, suprapubic catheterization, and pharmaceuticals
treatments [22].

The most conservative treatments, such as bladder retraining or anticholinergic medications,
typically do not produce a significant response in severe cases of bladder failure, seriously affecting
the patient’s quality of life. In these kind of patients, an enterocystoplasty, which is a surgical bladder
enlargement utilizing intestinal tissue, is currently performed [23]. The main aim of the surgical
reconstruction is to increase bladder capacity and compliance, improving continence and reducing the
intravesical storage pressure to protect the upper urinary tract. However, this clinical procedure fails
to restore the emptying function and is associated with numerous complications [10–16,24], as already
mentioned. Many alternative approaches [25–27] for bladder reconstruction have been attempted to
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find a practical and functional substitute material to the bowel segment and avoid the mentioned
complications. However, only limited success has been achieved so far.

Although radical cystectomy can be performed through a robotic or open route, in most patients,
urinary diversion is usually done by open surgery. The costs of this procedure differ from one country
to another. Most of the costs and post-operative complications of the cystectomy are due to the
derivation procedure that requires the implication of an intestinal segment. In the USA, the high costs
of a neobladder operation and of an ileal conduit surgery after robotic cystectomy or open cystectomy,
are compared in Table 1. In Canada, among 2759 patients, the average pre-surgery, radical cystectomy,
and post-surgery costs were estimated at C$ 2284, C$18,345 and C$ 2095 (2014 Canadian dollars),
respectively [28].

After cystectomy and urinary diversion, the hospital readmission rates are high, and the
readmission costs are important. A very significant percentage (40%) of patients were readmitted
to the hospital at least once within 90 days after robotic surgery, and 77% of the readmissions took
place within 30 days. Twenty-seven patients, which represent a percentage of 11%, required two or
more hospital readmissions. Readmissions occurred at a median of 13 days after the initial discharge.
The direct costs produced by hospital-readmitted patients were 1.42 times of those for patients who
did not require readmission. Readmissions for ileus problems contributed to the highest cost of
readmission, although pelvic abscess, ureteral stricture, and sepsis presented the highest cost per
hospitalization day [29].

Table 1. Cost comparison by procedure received and type of urinary diversion. The cost presented
include the total adjusted operating room and inpatient-related costs [30].

Type of Diversion Robotic Radical Cystectomy Cost
(US Dollars)

Open Radical Cystectomy Cost
(US Dollars)

Neobladder 19,231.26 15,311.00
Ileal Conduit 18,388.19 16,648.58

In summary, currently, bladder replacement or repair with non-native urological tissue, such as
autologous intestine, is performed as the clinical end-stage, when the primary treatment is not effective
enough [31]. However, the utilization of the bowel tissue as a urological tissue substitute exhibits
many problems [32], mainly due to the physiological functions of the intestinal epithelium, such as
mucus secretion and digestion and absorption of nutrients, electrolytes, and water, which, thus, does
not possess the suitable flexibility and impermeability to urine [33].

Therefore, new alternative strategies are needed to overcome all these problems and reduce the
high economic impact of radical cystectomy and urinary diversion clinical solutions. Thus, much effort
is currently focused on bioengineering approaches with polymers for urinary bladder regeneration,
such as tissue engineering, bioreactors, and bioprinting.

2. Tissue Engineering for Urinary Bladder Regeneration

In the last two decades, tissue engineering has been focusing on bladder tissue reconstruction,
and tremendous progress has been achieved in this field. A multidisciplinary bioengineering approach
can be based primarily on the body’s natural regeneration ability and involve the use of a porous
polymer matrix as a scaffold or of cell-seeded scaffolds, in which regeneration is even further
promoted [34]. These advanced regenerative technologies have been studied in the quest to develop
an efficient engineered bladder.

Tissue engineering for bladder substitution involves fostering cellular growth and maturation
on a matrix, constituting a temporal or definitive scaffold, to accomplish the vesical functions.
Bladder regeneration through tissue engineering offers important advantages, since it saves time
in the operation room, allows the avoidance of gastrointestinal complications, and improves the
patients’ quality of life. On the other hand, tissue engineering and regenerative medicine technologies



Int. J. Mol. Sci. 2018, 19, 1796 5 of 26

for bladder replacement represent a very promising approach to develop novel therapeutics for
other diverse lower urinary tract pathologies which do not necessarily requires complete bladder
substitution [35,36]. Thus, many different animal models have been employed to evaluate the
effectiveness of different cell-seeded scaffolds for bladder augmentation [37–40]. The idea of employing
tissue engineering therapies for urinary bladder regeneration dates back to the 1950s. However,
the necessary technologies were not ready yet for widespread clinical applications.

The scaffold is the key element supporting the vesical function. The new unspecialized bladder
will be subjected to a dynamic mechanical and chemical stimulus during filling and emptying.
The microenvironment generated by the matrix will influence the migration, invasion, proliferation,
survival, or differentiation of the regenerating cells [37].

The polymeric biomaterials employed to engineer bladder tissue must fulfill several requirements,
such as biocompatibility and adequate mechanical and chemical properties [41] in order to provide the
structural support for several distinct cell layers and avoid a premature collapse of the hollow organ.
The luminal side of the ideal biomaterial must provide a suitable surface for urothelial cell attachment
serving as a barrier to avoid urine leakage into the surrounding tissue, and the visceral side must be
capable to harbor the muscle cells, which must form unidirectional muscle tissue in defined layers and
allow for rapid innervation and vascularization [42].

One of the most important goals is to engineer a bladder that can support engraftment avoiding a
deleterious host immune response that can affect the functionality and durability of the allograft [43].
In addition, healing and vascularity [44], which are regulated by the inflammatory response, are also
critical steps for a successful organ regeneration. Besides, it has been reported that macrophages can
modify their phenotypic response to engineered foreign tissues to promote a proinflammatory or an
anti-inflammatory response [45,46].

Engineered bladder constructs need to integrate into the body supporting urine storage.
Furthermore, they need to possess contractile properties to allow physiologic voiding. Therefore,
all these complex requirements still necessitate extensive research to obtain bladder constructs
appropriate for clinical treatments.

Thus, many tissues and biomaterials of diverse nature, such as acellular tissues, natural polymers,
synthetic polymers, and composites, have been used as bladder tissue substitutes and urinary bladder
matrix scaffolds (see Table 2).

Table 2. Types of urinary bladder scaffolds proposed in the last decade. The year, scaffold material,
type of bladder scaffold, fabrication method, and references are indicated.

Year Scaffold Material Type Fabrication Method Reference

2017 Poly(ε-caprolactone)/poly(lactic acid) Synthetic Co-electrospinning [47]
2017 Type I collagen Natural Lyophilization [48]
2013 Polyurethane-poly-lactic-co-glycolic acid Synthetic Nanotechnology [49]
2012 Polyvinyl alcohol (PVA)-based Synthetic Not specified [50]
2011 Collagen-poly(lactic acid-co-ε-caprolactone) Composite Plastic compression [51]
2011 Spun silk-based Synthetic Gel spinning [52]
2011 Tissue-engineered pericardium (TEP) Natural None [53]
2011 Autologous vesical equivalent (VE) Natural None [54]
2011 Porcine extracellular matrix (ECM) Natural Decellularization [55]
2010 Nanofibrous poly-L-lactide (PLLA) Synthetic Leaching [56]
2010 Porcine bladder acellular matrix (BAM) Natural Decellularization [57]
2009 Porcine bladder submucosa (BSM) Natural Decellularization/Oxidation [58]
2009 Poly(ε-caprolactone) (PCL) foam Synthetic Water emulsion [59]
2008 polyglicolic acid PGA-coated TEP Composite None [60]
2008 Small intestine submucosa (SIS) Natural Commercially available [61]

2.1. Natural Bladder Scaffolds

Natural acellular tissue scaffolds have shown to be a valuable option for whole tissue and organ
regeneration, providing better functional outcomes than other tested synthetic biomaterials [62]. These
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type of polymeric scaffolds show a composition and a microstructure similar to the native tissue [63].
Furthermore, they retain chemical and biological cues, which are essential for tissue engineering
strategies, because they constitute a more physiological environment for the target cells.

2.1.1. Decellularization and Recellularization Technologies

Acellular tissue matrices can be prepared by mechanical or chemical decellularization processes,
which consist of removing all the cellular components of human or animal tissues. Since these scaffolds
for tissue and organ engineering present well-conserved and arranged structures of proteins and ECM
components, the mechanical properties of these acellular matrices are very similar to those of the
native tissue. These collagen-rich scaffolds slowly degrade after implantation while being replaced
and remodeled by ECM proteins and supporting cell growth and regeneration, without evidence of
immunogenic rejection [64].

Decellularization procedures have been applied to many types of tissues, such as dermis,
liver, bladder, blood vessels, small intestinal submucosa, pericardium, trachea, ear, heart valves,
and whole hearts [38,65–70], as well as musculoskeletal regions such as the temporomandibular
joint [71]. Multiple ex vivo methods have been reported for the development of decellularized tissue
scaffolds [72]. The main goal of the decellularization process is the complete removal of donor cells
while preserving the remaining biologically active extracellular matrix scaffold, extracellular growth
factors, and mechanical strength [73]. Common products employed for organ decellularization include
acid–base agents, zwitterionic and non-ionic detergents, ionic or lysing detergents, hypotonic or
hypertonic agents, enzymatic agents (usually trypsin and DNase), alcohols, and chelating agents.
A broad array of agents used for sterilization, including peracetic acid, antibiotics, and radiation,
and anticoagulants such as heparin sulfate are also necessary in this process. However, the ideal choice
of agents and technique (perfusion, supercritical fluid exposure, pressure gradients, and mechanical
agitation) used to apply these agents depends on the kind of organ to be decellularized and its
specific properties: tissue cellularity, density, lipid composition, and thickness [74–76]. An optimal
decellularization protocol must be composed of a combination of physical, chemical, and enzymatic
techniques [77]. For whole porcine bladder decellularization, Yang et al. defined an efficient
method which simultaneously preserved the extracellular bioactive factors and further improved the
recellularization process [78]. The intact porcine bladders were decellularized by using distention
techniques. Bladder distension can reduce the thickness of the bladder wall and thus facilitate cell
removal [79–81], being the urinary bladder a highly compliant and distensible vessel for holding and
releasing urine [82].

The first step for an efficient decellularization involved urothelium removal by an enzymatic
treatment with 0.25% trypsin/0.038% Ethylenediamine tetra-acetic acid (EDTA), applied through a
catheter fixed into the bladder neck and with continued physical agitation for 2 h at room temperature
and followed by three washes with ice-cold phosphate-buffered saline (PBS). During the subsequent
procedures, the bladder was kept distended with a washing buffer and completely immersed in the
same solution. Then, the bladder was incubated in an ice-cold hypotonic Tris buffer and, after three
washes with ice-cold PBS, it was incubated for 24 h at room temperature in hypertonic Tris buffer
containing 1.0% Triton X-100. The final goal of organ decellularization is the removal of all foreign
cells and immunogenic compounds, while optimizing and preserving the biological activities of the
matrix, like signaling for cell adhesion and induction of migration, proliferation, and differentiation to
achieve organ reconstitution and its functional remodeling [77,83].

Collagen, sulfated glycosaminoglycan, growth factors like BMP4, PDGF-BB, TGF-α, VEGF, TGFβ1,
KGF, IGF-1, HGF, KGF, bFGF, or EGF can be preserved in the decellularization process [84]. For an
appropriate preservation of the endogenous bioactive properties of the bladder acellular matrix (BAM),
critical steps have to be included in the decellularization process, like, for instance, keeping the
pH in the 7–8 range, avoiding heating, contamination, and freezing or lyophilization for long-term
storage [79,85].
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After decellularization, the complex reintroduction of cells must be achieved. This process is
usually conducted within a bioreactor, which is able to simulate the in vivo environment for optimal cell
growth, nutrition, and metabolism. However, cell type, cell number, and cell media play very important
roles in ensuring a suitable environment for cell survival and differentiation [44]. New seeding
techniques are under research to enable the replication of anatomically correct and physiologically
functional bioengineered bladders [60,86]. Much progress has been made so far in stem cell engineering
and urothelial differentiation. However, future studies will probably be focused on effective seeding
methods for the promotion of angiogenesis and neural regeneration, which are both essential to
successfully fabricate the ideal urinary reservoir [87].

2.1.2. Natural Porous Polymer Scaffolds

Decellularized tissue scaffolds are commonly derived from porcine organs [74]. Pig and human
bladders have anatomical and biological similarities, which render porcine-derived bladder cells an
adequate model for tissue engineering strategies [88]. Native decellularized matrices employed for
bladder substitution are typically derived from BAM [89] or from the small intestine submucosa
(SIS) [90]. These scaffolds, consisting of fibrillar collagen type I and a porous basement membrane for
recellularization, have been used either as grafts alone or seeded with urothelial cells (UCs) and smooth
muscle cells (SMCs) [37,90,91] in diverse animal models [90,92,93] with some success. However, similar
acellular tissue scaffolds failed in larger models such as pigs and dogs [91,94].

Very promising BAM porous scaffolds for urinary bladder regeneration are derived from the
bladder submucosa (BSM) (see Figure 3) and subsequently recellularized with human bladder cells.
The porosity of these scaffolds can be increased by performing a peracetic acid (PAA) treatment before
decellularization to aid cell matrix penetration and promote cell growth in vivo [58].

Figure 3. Acellular bladder submucosa scaffolds. Scanning electron micrographs (SEM) of fresh
bladder submucosa (BSM) at 1000× magnification: surface (a) and cross section (b,c). The scale bar
indicates 200 µm. Reprinted with permission from Elsevier Ltd., Liu et al. [58].

Natural porous polymer scaffolds can be produced nowadays by many different methods, such
as solvent casting, phase separation, gas-foaming techniques, electrospinning, freeze extraction,
lyophilization, 3D printing, etc., to produce porous urinary bladder scaffolds with very different
degrees of interconnected porosity and with a wide range of pore morphologies [34]. Thus,
an interconnected porous natural type I collagen scaffold with pores ranging from 50 to 100 µm
has been recently prepared by lyophilization and utilized as a strip clamped in a Bose Electroforce
Bio-Dynamic bioreactor to study the effect of a cyclic uniaxial strain on urinary bladder cells [48].
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Another important naturally occurring polymer is hyaluronic acid (HA), which has been utilized
in many bioengineering applications, such as wound healing, growth factor release, and 3D bioprinting,
among others [95]. Another renewable natural biomaterial, which is very promising for natural bladder
scaffold after modification with cell-adherent peptides [96] and has also been approved by the U.S.
Food and Drug Administration (FDA) for human wound healing [97], is alginate.

Tissue-engineered pericardium (TEP) is another promising natural scaffold biomaterial for bladder
tissue engineering. Small-sized TEP samples have shown excellent results; however, further research
must still be conducted with larger scaffolds [53].

2.1.3. Collagen and Its Properties

The natural material derived from the ECM, collagen [98], exhibits minimal inflammatory and
antigenic responses [99] and is a natural adhesive ligand that facilitates cell attachment and structural
integrity, improving tissue regeneration. Thus, collagen has been approved for many types of medical
applications, such as dermal wound and abdominal wall repair, by the FDA [100].

Even though collagen has been studied extensively in (pre)clinical bladder bioengineering because
of its mentioned favorable properties, natural matrices based on it are hampered by the poor and slow
SMC ingrowth after scaffold implantation [101].

2.2. Synthetic Bladder Scaffolds

Synthetic polymer scaffolds are also very attractive for bioengineering approaches for bladder
regeneration because they can be produced at industrial scale, and their physical and chemical
properties, such as degradation rate, compression performance, wettability, etc., can be tailored
by synthetic reactions. However, not all synthetic polymers are valid for bladder bioengineering
purposes [35]. Some synthetic polyesters, such as polyglycolic acid (PGA), polylactic acid (PLA),
and copoly(lactic/glycolic) acid (PLGA), are biodegradable, biocompatible, non-toxic, and widely
used in many diverse biomedical applications [102]. These thermoplastics have been also approved by
the FDA for diverse clinical applications, such as sutures [103], because their degradation products are
non-toxic [102]. Nowadays, synthetic PGA, PLA, and PLGA porous scaffolds can be fabricated with
the desired interconnected morphology by a wide range of methods and technologies [102,104,105].
Thus, bladder-derived cells have been successfully cultivated onto PGA biodegradable scaffolds in the
form of PGA meshes, molded into the shape of a bladder and PLGA surface-coated [37]. Nanofibrous
poly-L-lactide (PLLA) scaffolds have been shown to be potentially useful for bioengineering approaches
for bladder cancer patients requiring cystoplasty [56]. The mechanical properties of biodegradable
poly(ε-caprolactone) (PCL) foam scaffolds and cell behavior on them showed that these scaffolds may
be very suitable for bladder tissue engineering [59]. However, these biodegradable polymers lack
bioactive factors that are present in acellular matrices, and thus their chemistry must be modified.

Other biomaterials that could be very favorable for bladder scaffold manufacture are
polyanhydrides, poly (ortho-esters) [106], and silk fibroin [52]. In addition, compared to PGA and SIS,
silk fibroin exhibited significant advantages for bladder augmentation in a mouse model [52], and silk
scaffolds were shown to support primary and pluripotent cell responses pertinent to bladder tissue
engineering [107].

2.3. Composite Bladder Scaffolds

Composite biomaterials can be very useful to tailor many physical and chemical properties
required for bladder engineered scaffolds, which must be composed of diverse layers formed by
different cell types and tissue structures. Composite scaffolds are fabricated with at least two different
biomaterial systems and combine the properties of each component. Thus, for example, hybrid
matrices composed of a PLGA mesh combined with collagen have been processed to obtain a sponge
or a gel [108]. Biodegradable PGA scaffolds have also been improved in association with TEP [60]
and collagen [109,110] acellular matrices. The optimization of cell attachment and in vivo bladder
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wall construction and increased compliance and capacities can be achieved through these associations.
Other natural polymers, such as HA, can be added to the acellular matrix scaffold to render it
impermeable [111]. Poly(ε-caprolactone)/poly(lactic acid) in the form of an electrospun scaffold
(see Figure 4) recently promoted bladder regeneration in a canine model [47].

Figure 4. Morphology of a poly(ε-caprolactone (PCL)/poly-L-lactide (PLLA) scaffold and cell
distribution by SEM. Non-woven and randomly oriented fibers of PCL and PLLA at 500× (A) and
5000× (B) magnifications; (C) Urothelial cells on the scaffold surface preserving their phenotype by
creating their typical colonies; (D) Bladder smooth muscle cells expanded and proliferated on the
scaffold. Reprinted with permission from Elsevier Ltd., Shakhssalim et al. [47].

The potential use of plastic-compressed collagen-poly(lactic acid-co-ε-caprolactone) (PLAC)
hybrids as engineered bladder scaffolds was reported and showed that human bladder smooth
muscle and urothelial cells proliferated excellently in and on the composite, with a lower inflammatory
reaction in vivo than PLAC scaffolds alone [51]. Electrospun-aligned PCL/PLLA nanofibrous scaffolds
promoted cell differentiation in human bladder tissue engineering [112]. 3D synthetic composites
have been also utilized to engineer urinary bladder smooth muscle cells from adipose stem cells [40].
Nanostructured polyurethane and PLGA composites have shown great promise to improve bladder
tissue regeneration [49].

Although bioengineering approaches for bladder tissue are in their early development, all these
studies demonstrate the rapid progress in the field during the last decades.

2.4. Stem Cells Approach

The stem cells approach is frequently employed in whole-organ regeneration because stem cells
are undifferentiated cells able to replicate and differentiate into diverse kinds of cells. Stem cells have
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been extensively tested for cellular enrichment of the urinary tracts and vesical functional regeneration.
Adult mesenchymal stem cells (MSC), can be isolated from different sources, including bone marrow
and adipose tissue (adult-derived regenerative cells, ADRC), for autologous cell transplantation,
already showing positive effects on the urethral functions in experimental animals [113,114] and
safety and feasibility in humans [115]. MSC are capable to differentiate into several cell types, such as
urothelium, fibroblasts, myoblasts, endothelial and smooth muscle cells [39,40], and even neurogenic
cells [116]. ADRC are of special concern for promoting revascularization and neuronal and mesodermal
regeneration. Thus, neural-differentiated ADRC possess glial characteristics and promote nerve
regeneration, as observed in transplanted rat models [117]. Transplanted ADRC, in addition to
providing a structural and functional support, secrete various angiogenesis-related cytokines, including
vascular endothelial growth factor and hepatocyte growth factor [118] that induce, in fact, endogenous
migration and regenerative activation. In the animal experimentation reports these cells exerted their
effect in vivo mostly through secretion of paracrine factors, rather than by significant cell replacement,
which in fact, supports a poor and short survival in vivo.

Additionally to MSC, another source of autologous cells that allows to avoid immune rejections is
represented by adult urothelial cells and smooth muscle cells have been efficiently harvested from
biopsy material, expanded extensively in culture, and reimplanted into the same host [37]. When
autologous bladder cells cannot be harvested, pluripotent stem cells may be a promising alternative for
bladder regeneration. In this respect, induced pluripotent stem cells (iPSCs) are an alternative source
of pluripotent cells artificially generated by somatic cell reprogramming [119]. Besides, iPSCs can be
generated from a wide range of somatic cell types of various species differentiated into various kinds
of cells [120]. iPSCs can efficiently be directed into endoderm-specialized cells and can be induced to
differentiate into bladder mature cells like urothelium cells, by expressing the master transcriptional
regulators IFR1 and GATA4 [121], or to smooth muscle cells [122]. Alternatively, MSCs from iPSC
were demonstrated to show less variability in cell maturation processes and in relation to the donor
and tissue types, providing a better cell quality and undergoing more homogenous and more efficient
differentiation process [107,123,124] (summarized in Table 3).

Table 3. Cell types employed for natural or synthetic bladder recellularization. The cell types seeded,
tested models, main findings, and references are indicated.

Cells Seeded Type Tested Model Main Findings Reference

Human bone marrow
mesenchymal stem cells
(BM-MSC)

Bladder augmentation with small
intestine submucosa (SIS) in rats

1. Favorable short-term outcomes
2. Organized urothelium with increased basal cell
layer staining and discrete muscle fascicles formation

[39]

Human adult derived
regenerative cells (ADRC)
differentiated into smooth
muscle cells (SMC)

Bladder augmentation with
co-poly(lactic/glycolic) acid (PLGA)
dome composites in nude rats

1. Maintenance of bladder capacity and compliance for
12 weeks [40]

Human bladder Urothelial
cells (UC) and SMC In vitro co-culture study in SIS

1. The layered coculture techniques resulted in
organized cell sorting, formation of a well-defined
pseudostratified urothelium, and multilayered smooth
muscle cells with enhanced matrix penetration

[86]

Human BM-MSC
Bladder augmentation after partial
cystectomy with bladder acellular
matrix (BAM)

1. Recovery of nearly 100% normal bladder capacity
for up to six months
2. Histological analyses demonstrated increased
muscle regeneration

[125]

Rat SMC
Bladder augmentation by
implantation of composite scaffolds
of PLGA–BAM

1. The PLGA–BAM scaffold induced cell migration
and proliferation and early revascularization [126]

Porcine SMC and UC Collagen I scaffolds in vitro
culture study

1. Mechanical stimuli did not enhance or affect the
proliferation and differentiation of urothelial cells;
however, its preconditioning stimulus improved the
proliferation and maturation of smooth muscle cells

[48]

Human induced pluripotent
stem cells (iPSC) differentiated
into UC and SMC

Silk-based scaffold coated with
collagen types I or IV or fibronectin

1. Fibronectin-coated silk scaffolds facilitated iPSC
differentiation toward both urothelial and smooth
muscle lineages in vitro

[107]
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2.5. Role of Microenvironment Elements

Cells are strongly affected by their microenvironment elements: ECM, physical stimuli, factors,
and nutrients. The main components of the ECM, which are continually changing, are structural
proteins, like elastin or fibronectin, collagens, and space-filling proteoglycans arranged in a unique
3D structure [127]. The ECM allocates bioactive components, being a reservoir of growth factors and
other nutrients directly linked to the structural protein network or embedded within the tissular fluid.
The above-mentioned bioactive molecules orchestrate a cascade of functional signals, providing a
3D natural platform to regenerate the cellular structure [128]. The composition and architecture of
the ECM produce a strong influence on the development, function, and protection against urine and
pathogens [127]. Furthermore, the ECM strongly influences tissue regeneration [34]. UCs/SMCs
co-cultures on ECMs can be achieved through a multilayered strategy to favor cell engraftment and
differentiation [51,58].

2.6. Functionality

Although the formation of a bioengineered tissue with a morphology similar to that of the native
bladder tissue has already been accomplished, the restoration of physiologic voiding using these
constructs has not been achieved so far [42]. To solve this complex limitation, the development of
correct muscle alignment, proper innervation, and vascularization is necessary, involving at the end a
high specialization and maturation of all cell types and their interactions. Innervation is greatly affected
by different neurotrophic factors and cellular and topographic features. Rapid neo-vascularization
is critical in tissue-bioengineered constructs to ensure an adequate oxygen and nutrients supply
for cell survival, proliferation [129], and adequate removal of harmful metabolites [130,131] and to
achieve a complete restoration of organ structure and functionality. Useful methods that support
early vascularization in bioengineered tissue include the application of angiogenic agents, such as
VEGFs [132] and bFGF, and the implantation of vascular endothelial cells combined with SMCs
and UCs in an engineered construct. Another important multifunctional factor is bFGF, which
produced a significant angiogenesis improvement and inhibited graft shrinkage in a rat bladder
augmentation model [133], promoting mitogenic activity of fibroblasts and endothelial cells and
displaying neurotrophic and angiogenic properties.

The vascularization of bioengineered organs can be achieved by ex vivo approaches, such as cell
sheet engineering, spheroid coculture, scaffold functionalization, modular assembly, and bioprinting
or addressed in vivo by arteriovenous loops, polysurgery, and genetic manipulations [130]. Scaffold
survival is profoundly dependent on the formation of a new vascular bed, and this process becomes
more difficult with the increase of the construct size [48]. We believe that the lack of functionality
of the engineered bladder tissue is a good reason to discourage researchers and explains somehow
the low high-impact scientific production in this scientific area during the last decade (see Table 4).
However, we firmly believe that bladder tissue bioengineered scaffolds with perfectly controlled
morphology and capability to deliver multiple neural and angiogenetic factors will become a real
option for physiologically functioning bladder constructs in the near future, although preclinical
research on large animal models with defective bladders is necessary to optimize the methods of
bioengineering bladder reconstruction in humans [134].

Congenital disorders, trauma, cancer, inflammation, infection, iatrogenic injuries, or any other
condition of the genitourinary system can produce bladder damage, requiring often eventual
reconstructive procedures. To try to solve this imperative need, the translation of extracellular
matrix-based scaffolds into the clinic provides chances and challenges. Nevertheless, a thorough
understanding of the cellular and molecular mechanisms underlying tissue regeneration is necessary,
together with an increased knowledge of the extracellular matrix itself and as a potential carrier
for the improvement of endogenous regeneration. In this respect, the interactions within the ECM,
between the ECM and the ectopic integrated cells, and between these cells and the endogenous hosted
tissue remain elusive, allowing us to explore a wide variety of alternatives. Bladder recellularization
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and urodynamic functional recovery have been successfully tested in small animals [135]. However,
the translation into humans requires more efficient procedures ex vivo and a better understanding of
the role played by the ectopic transplanted cells.

2.7. Animal Models for Translational Research

Despite the functional and structural regeneration of the bioengineered neobladders described in
several preclinical studies in rodents [87,136], limited and so far non efficient clinical translation has
been reported. First, porous matrices composed of a diverse range of biomaterials alone or forming
a composite of natural and synthetic nature were used for urinary bladder regeneration, with a
wide range of outcomes in several clinical trials, and failed to meet their expectations in most cases
(reviewed in [134]). Additional investigation on translational models, increasing our knowledge of
the mechanisms of cellular and functional regeneration in in vitro engineered bladders, should be
expanded before further clinical applications on large animal models with defective bladders.

Recently, Gevaert et al. showed in detail the highly similar organization of the interstitial network
in the upper and deep lamina propria and the detrusor muscle in human, rat, and mouse bladders [137].
Despite these extensive similarities of the interstitial phenotypes, several obvious interspecies
differences exist, like a predominantly myoid phenotype and contractile micro-filament-enriched
lamina propria in the human bladder in comparison with the predominantly fibroblast-like phenotypes
found in rat and mouse bladders, which would affect in turn the functional regeneration process.
Illustrative of this hypothesis is the results of the recently reported data of a clinical phase II trial
for bladder augmentation, using a biodegradable scaffold previously seeded with autologous cells.
All patients showed improved compliance, although not earlier than one year after transplantation
and with no clinical or statistical improvements in bladder capacity and cellular reconstitution
during the three years of the study. Indeed, adverse events occurred in all patients [31]. Additional
experimentation has been conducted in the last decades for a better translation of the regenerative
approaches in large animals. The side effects and complications of the xerograph tissue implantation
were analyzed in a canine model in which porcine SIS was seeded with autologous smooth muscle
cells, leading to an improved integration and quality of the transplanted tissue in the presence of the
autologous transplanted cells [138].

3. Urinary Bladder Bioreactors

Bioreactors are sophisticated engineering simulation biosystems which can control environmental
factors such as pH, temperature, and oxygen concentration and can be utilized to improve tissue
regeneration by subjecting the blood vessels [139], cartilage [140] and ligaments [141] growing in
a tissue to a variety of forces and stimuli: stress–strain, compression, pulsatile flow, shear stresses,
and electrical stimulation. In the field of bladder tissue engineering, the simulation of the normal
physiological functions of filling and emptying with an in vitro bioreactor may provide the additional
mechanical performance required to enhance the functional outcome after implantation [41,61,142,143]
and may accelerate tissue organization and maturation. In vivo bioreactors, which are the in vivo
and ex situ system where the bioengineered construct is placed prior to implantation into the target
location, constitute another promising bioengineering approach in the field of bladder regeneration.
This in vivo preconditioning may further support tissue development, improve vascularization of the
bioengineered tissue, and prevent fibrosis and contractility loss [42].

Thus, a very extensive search of the literature was conducted in order to find the most relevant
publications and patents in the field of in vitro and in vivo bladder bioreactors during the last decade
(see Table 4). It is remarkable that the scientific contribution to this field has been very poor. Thus,
not even a Q1 paper has been published from 2012, and a recent book chapter from Elsevier [144]
mentions only a bladder bioreactor developed in 2011 [55].



Int. J. Mol. Sci. 2018, 19, 1796 13 of 26

Table 4. Publications and patents related to in vivo and in vitro bladder bioreactors in the last decade.
The year, type of bioreactor, material support, cells used, journal name or patent code, last journal
Impact Factor (IF), Quartile, and reference are indicated.

Year Bioreactor Support Cells Journal/Patent IF 2016 Quartile Reference

2017 In vitro Type I collagen scaffold Porcine UCs
and SMCs

World Journal
of Urology 2.743 Q2 [48]

2015 In vitro Silicone membrane
Human bladder
smooth muscle
cells (HBSMCs)

World Journal
of Urology 2.743 Q2 [145]

2012 In vitro PVA-based scaffolds HBSMCs Journal of Urology 5.517 Q1 [50]

2012 In vivo Pericardium biofilm
and PGA scaffolds UCs and SMCs Tissue engineering

Part A 3.485 Q2 [60]

2011 In vivo Pericardium Autologous SMCs Journal of
Pediatrics Urology 1.611 Q2/Q3 [53]

2011 In vitro Autologous vesical
equivalent

Fibroblasts and
porcine UCs

Journal of
Pediatrics Urology 1.611 Q2/Q3 [54]

2011 In vitro Porcine ECM scaffolds Human UCs Urology 2.309 Q2 [55]

2010 In vitro Porcine BAM L929 fibroblasts Artificial Organs 2.403 Q2/Q3 [57]

2008 In vitro Porcine BAM and
SIS scaffolds UCs and SMCs Tissue Engineering

Par A 3.485 Q2 [61]

2008 In vivo Myofibroblast-rich
tissue capsules Myofibroblast J Tissue Eng and

Regen Med 3.989 Q1/Q2 [146]

2007 In vitro Porcine BAM and
SIS scaffolds UCs and SMCs CA2613945-A1

US2009233361-A1 - - -

2007 In vivo Porcine sphere-shaped
SIS patches

Autologous UCs
and SMCs European Urology 16.265 Q1 [147]

3.1. In Vitro Bladder Bioreactors

In the last decade, enormous progress has been achieved in the bioreactor technology field in
order to devise bioreactors able to grow tissue-engineered vascular constructs in a physiological
environment similar to that of the body, while maintaining an aseptic environment [41]. These studies
have demonstrated that mechanical stresses can create a beneficial effect and can be even essential for
growing tissue-engineered vascular constructs. However, many problems need still to be addressed.
Thus, some studies on shear stress have shown that a high shear stress inhibits endothelial and
smooth muscle cell proliferation [148]. In addition, the bioengineered tissues present different stages
of development in vivo, and each stage requires different mechanical conditioning regimes, owing to
the increased accumulation of ECM and to the developing structural organization [149].

The advantages of the in vitro bioreactor systems are their high experimental reliability
and reproducibility, which are based on the excellent control and regulation of the cell culture
parameters [150]. Besides, the bioreactors provide a versatile environment to study cell–scaffold
interactions under different pressure conditions, which cannot be achieved by utilizing static cultures
in plates or flasks [97,151].

One of the most important objectives of this research field is the improvement of the process
of bladder tissue building, obtaining an impermeable epithelial surface to obtain well-differentiated
UCs and SMCs and a suitable mechanically resilient and compliant ECM. Therefore, the first step
usually consists in developing a urinary bladder bioreactor with an efficient process monitoring
that recapitulates the in vivo bladder function in a reliable and reproducible way. Bioreactor design
criteria must include the possibility of mechanical and nutrient environments control to promote cell
proliferation, differentiation, and favorable matrix deposition [41].

One of the first bladder bioreactors was patented in 2007 (Patents CA2613945-A1 and
US2009233361-A1) and consisted of two polycarbonate chambers separated by two interlocking
rings [61]. This bioengineering system was devised to simulate normal urinary bladder dynamics in a
tissue-engineered construct located between the two chambers. The results of this study suggested that
gene expression could be mechanically simulated in a short period of time (e.g., collagens, caldesmon,
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uroplakin II), and that by this bioreactor was suitable for simulating the normal physiological bladder
cycling ex vivo. This study demonstrates that bioengineering approaches with bladder bioreactors
might enhance cell viability and proliferation by preconditioning cell-seeded scaffolds in a simulated
physiologic environment [61].

Normal urinary bladder dynamics simulation applying cyclical pressure differences over the
developing tissue constructs have been also performed with a pulsatile hydrostatic pressure bioreactor,
using a porcine urinary bladder membrane (UBM) scaffold containing L929 fibroblasts [57]. The results
of this study demonstrated L929 growth, adhesion, viability, morphological changes, and mitochondrial
activity on the UBM.

Another bladder bioreactor developed in 2011 was constructed to replicate physiological bladder
dynamics with a cyclical low-delivery pressure regulator in order to simulate the filling pressures of
the human bladder [55]. In this work, significantly greater human UCs growth occurred on the porcine
ECM scaffolds cultured in the bioreactor compared with conventional static laboratory conditions after
three days. This bioreactor design permits also a cell-seeded scaffold to be positioned between two
closed chambers filled with culture medium and be mechanically stimulated by manually adjusting
the pressure conditions to replicate the cyclical bladder filling and emptying, within a period of hours
and seconds, respectively.

Another study presented a bioreactor that mimicked the dynamic of bladder filling and emptying,
delivering in this case a cyclic pressure increase up to 15 cm H2O, using fibroblasts and urothelial
cells to obtain a reconstructed vesical equivalent (VE) [54]. The dynamic culture led to an urothelium
profile like that of the native bladder, and the permeability analysis displayed a profile comparable
to the native bladder. On the other hand, the first report of the use of cyclic hydrodynamic pressure
stimulating the proliferation of human bladder SMCs cultured in scaffolds was published in 2012 [50].
Four pressures (0, 100, 200, and 300 cm H2O), controlled by a BOSE BioDynamic® bioreactor, were
applied to the cell-seeded constructs for 24 h (see Figure 5).

Figure 5. In vitro bioreactor: a computer senses the pressure in pressure chamber (B) by feedback via
a pressure transducer (E). A computer interface establishes and maintains a specific hydrodynamic
pressure by controlling a pump (A) output. A pressure valve (C) is almost completely closed to simulate
bladder outlet obstruction. Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum was
used. The arrows indicate the flow direction. (D) Fluid reservoir. Reprinted with permission from
Elsevier Ltd., Chen et al. [50].
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The purpose of a more recent study was to produce an optimum physiological stretch during
the bladder cycle on a modified BOSE BioDynamic® bioreactor, using human bladder smooth muscle
cells (HBSMCs) seeded onto a silicone membrane, and demonstrated that the mechanical stretch can
promote a magnitude-dependent morphological, proliferative, and contractile modulation of this type
of cells in vitro [145].

Finally, one of the most recent contributions to the in vitro bladder bioreactor field studied the
effect of a cyclic uniaxial strain on urinary bladder cells seeded on type I collagen scaffold strips [48],
utilizing a BOSE Electroforce BioDynamic® bioreactor. The dynamic stimulation of the SMC-seeded
constructs resulted in cell alignment, enhanced proliferation rate, and differentiation of the SMCs to a
more mature phenotype. However, the proliferation and differentiation of UCs were not improved by
the mechanical stimuli. Therefore, despite the great advances achieved so far in this in vitro bioreactor
research area for bladder tissue engineering, much more work has still to be conducted in order to find
new strategies and designs to overcome all these problems.

3.2. In Vivo Bladder Bioreactors

In vitro bioreactors have demonstrated to produce better tissue engineering constructs than the
conventional static culture. However, the microvasculature of mature tissues cannot be simulated [147]
in these systems, and, thus, fibrosis can easily occur in any type of constructs, likely due to ischemic
damage during the transfer from the bioreactor system to the surgical location [152]. The idea of
using omentum, which has a rich vasculature, as an in vivo bioreactor is probably the most important
achievement in the field of bladder bioreactors during the last decade. In this work, published in
European Urology in 2007 (see Table 4), scaffolds of small intestinal submucosa seeded with UCs and
SMCs were transferred into the omentum of a porcine model (Figure 6) after three weeks of cell culture
and were harvested three weeks later, showing that the scaffolds exhibited a multilayered urothelium
and organized outer layers composed of SMCs and fibroblasts, with areas of dense vascularization [147].
Therefore, in vivo bioreactors have the advantage of inducing a rich vascularization, so that the scaffold
can be transferred to the bladder replacement site without compromising the blood supply.

Figure 6. In vivo bioreactor: seeded scaffold preparation (A–C) and implantation (D) in the omentum.
Reprinted with permission from Elsevier Ltd., Baumert et al. [147].
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Another approach with many benefits over the conventional and current bladder tissue
engineering strategies consisted in using the peritoneal cavity as an in vivo bioreactor [146]. In this
work, bladder grafts showed 100% patency after 14 months and had developed a structure similar to
that of the normal bladder. On the other hand, the potential of TEP, which is a collagen-rich matrix
that promotes in vivo and in vitro tissue regeneration, as a source for the in vivo formation of bladder
muscular wall grafts has also been evaluated [53]. This study, in which the bladder wall was used as an
in situ bioreactor to mimic the natural environment supporting cell growth and differentiation, showed
that utilization of the autologous bladder SMC seeding technique can improve the regeneration of the
bladder wall. A more recent study investigated the potential of different scaffolds, using single- or
multiple-layer biofilm scaffolds, TEP and PGA scaffolds, for in vivo bladder muscular and urothelial
wall construction [60]. These different kinds of scaffold were placed in an in vivo bioreactor composed
of two parts: the bladder mucosa and the seromuscular layer. The results of this study performed in this
natural bioreactor showed that the PGA-coated TEP scaffold is a very promising porous biomaterial
for muscular and urothelial fragment-seeding for bladder wall regeneration.

Scaffolds for tissue engineering are usually confined to small flat patches. However, large hollow
urinary bladder organs made of a collagen-based scaffold with sites for ureters and urethra have been
recently developed by a simple casting method [153]. Using the body as a bioreactor, in this study,
porcine and also human bladder UCs and SMCs were capable to attach to the porous collagen-based
matrix and maintain their phenotype.

Therefore, in vivo bioreactors demonstrate to be a long-sought alternative to traditional
transplantation and provide a better replacement, congruent with the host immune system. However,
this bioengineering strategy entails a two-stage procedure, and its advantages over the current
tissue engineering approaches need to be further investigated before they can be translated into
clinical practice.

4. Urinary Bladder Bioprinting

3D bioprinting is currently under intensive research to replicate functional transplantable organs
with the great advantage of avoiding the deleterious host immune response. Besides, this sophisticated
technology ideally renders possible to produce personalized organs in a perfectly controlled form.
Clinical successes in this bioengineering field have only been achieved so far in more functionally
simple organs, such as trachea, bronchi [67,154], blood vessels [155–157], and bladder [35,158–160].
Technical challenges related to the sensitivities of the living cells and tissue construction have to
be addressed by integrating the multidisciplinary knowledge of a work team composed of experts
in bioengineering, material science, biology, chemistry, physics, and medicine [161,162]. The main
technologies employed for the deposition and patterning of biological materials are laser-induced
forward transfer, inkjet printing, and robotic dispensing [163] (see Figure 7).

Figure 7. Bioprinting technologies: components of laser-induced forward transfer (a), inkjet printing
(b) and robotic dispensing (c). Adapted from John Wiley and Sons, Malda et al. [163].
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In 3D bioprinting research, the living cells are subjected to stress and biomechanical forces, which
should be seriously considered because of their effects on cell vitality and differentiation [164]. It is
very important to preserve cell vitality during the 3D bioprinting production process. Therefore,
parameters such as production shape, speed, durability, or resolution of the bioprinted organ should be
perfectly adjusted [165,166]. Despite these complex problems, much progress, regarding the utilization
of natural hydrogels, such as collagen, alginate, and gelatin, as inks [167,168] and the integration of
the sophisticated optical coherence tomography imaging technique [169] in the bioprinters, has been
achieved so far. Therefore, we are confident that, step by step, bioprinting will be finally able to
provide a real solution to the shortage of donors of bladders and other organs for transplantation in
the near future.
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Abbreviations

3D Tridimensional
ADRC Adult-derived regenerative cells
BAM Bladder acellular matrix
bFGF Basic fibroblast growth factor
BM-MSC Bone marrow mesenchymal stem cells
BMP4 Bone phosphogenic protein 4
BSM Bladder submucosa
ECM Extracellular matrix
EDTA Ethylenediamine tetra-acetic acid
EGF Epithermal growth factor
FDA Food and Drug Administration
GATA4 GATA4 binding protein
HA Hyaluronic acid
HBSMCs Human bladder smooth muscle cells
HGF Hepatic growth factor
IFR1 Interferon regulatory factor 1
IGF-1 Insulin growth factor 1
iPSCs Induced pluripotent stem cells
KGF Keratin growth factor
M Million
MSC Mesenchymal stem cells
PCL Poly(ε-caprolactone)
PDGF Platelet derived growth factor
PGA Polyglicolic acid
PLA Polylactic acid
PLAC Collagen-Poly(lactic acid-co-ε-caprolactone)
PLGA Co-poly(lactic/glycolic) acid
PLLA Poly-L-Lactic
PS Performance status
Q1 First quartile
SEM Scanning electron microscopy
SIS Small intestine submucosa
SMCs Smooth muscle cells
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TEP Tissue-engineered pericardium
TGF Transforming growth factor alpha
UBM Urinary bladder membrane
UCs Urothelial cells
VE Vesical equivalent
VEGF Vascular endothelial growth factor
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