A WD40 Repeat Protein from Camellia sinensis Regulates Anthocyanin and Proanthocyanidin Accumulation Through the Formation of MYB–bHLH–WD40 Ternary Complexes

Yajun Liu^{1,†}, Hua Hou^{1,†}, Xiaolan Jiang^{2,†}, Peiqiang Wang², Xinlong Dai², Wei Chen², Liping Gao^{1*}, and Tao Xia^{2*}

	Gene		
purpose	names	primer name	primer sequence (5'-3')
cloning	CsWD40		
		CsWD40-attB-HA-F	GGGGACAAGTTTGTACAAAAAGCAGGCTATGTACCCATACGATGT
			TCCAGATTACGCTATGGAGAATTCGAGCCAAG
		CsWD40-attB-HA-R	GGGGACCACTTTGTACAAGAAAGCTGGGTTCAAACTTTCAGAAGC
			TGC
		End-to-end F	ATGGAGAATTCGAGCCAAG
		End-to-end R	GATCTCAAACTTTCAGAAGCTGC
Real time PCR	CsWD40	qRT-PCR-F	AAACTCCGTGACCTACGACTCCCCG
		qRT-PCR-R	CTTGGTGGGAGGGTAAGGGTGTTCG
Construction of protein expression vectors	CsWD40	CsWD40-AD-F	ATGGAGGCCAGTGAATTCATGGAGAATTCGAGCCAAG
		CsWD40-AD-R	CTCGAGCTCGATGGATCCTCAAACTTTCAGAAGCTGC
		CsWD40-BD-F	GCCATGGAGGCCGAATTCATGGAGAATTCGAGCCAAG
		CsWD40-BD-R	CTGCAGGTCGACGGATCCTCAAACTTTCAGAAGCTGC
	CsMYB5a	CsMYB5a-AD-F	ATGGAGGCCAGTGAATTCATGGGGAGGAGTCCATGCTG
		CsMYB5a-AD-R	CTCGAGCTCGATGGATCCTCATGGCCAGTCCTCAGAAT
		CsMYB5a-BD-F	GCCATGGAGGCCGAATTCATGGGGAGGAGTCCATGCTG
		CsMYB5a-BD-R	CTGCAGGTCGACGGATCCTCATGGCCAGTCCTCAGAAT
	CsMYB5e	CsMYB5e-AD-F	ATGGAGGCCAGTGAATTCATGGGAAGGGCTCCTTGTTG
		CsMYB5e-AD-R	CTCGAGCTCGATGGATCCTCAGATCAACAAAGATTCAG
		CsMYB5e-BD-F	GCCATGGAGGCCGAATTCATGGGAAGGGCTCCTTGTTG
		CsMYB5e-BD-R	CTGCAGGTCGACGGATCCTCAGATCAACAAAGATTCAG
	CsAN2	CsAN2-AD-F	ATGGAGGCCAGTGAATTCATGGACATTGTTTGTTGTGTGTTC
		CsAN2-AD-R	CTGCAGGTCGACGGATCCTCATTCATCACCTAACAGATCC
		CsAN2-BD-F	GCCATGGAGGCCGAATTCATGGACATTGTTTGTTGTGTGTTC
		CsAN2-BD-R	CTGCAGGTCGACGGATCCTCATTCATCACCTAACAGATCC
	CsTT8	CsTT8-AD-F	ATGGAGGCCAGTGAATTCTCCTGGTGTTGGATTACC
		Cs TT8-AD-R	CTCGAGCTCGATGGATCCTCAGTTCTGGGGGTATTAT
		Cs TT8-BD-F	GCCATGGAGGCCGAATTCTCCTGGTGTTGGATTACC

TableS 1. The specific primers used in this study.

		Cs TT8-BD-R	CTGCAGGTCGACGGATCCTCAGTTCTGGGGGTATTAT
	CsGL3	CsGL3-AD-F	ATGGAGGCCAGTGAATTCATGTGTTGGGCAATGGCT
		CsGL3-AD-R	CTCGAGCTCGATGGATCCCTAACACTTGCCAGCAAT
		CsGL3-BD-F	GCCATGGAGGCCGAATTCATGTGTTGGGCAATGGCT
		CsGL3-BD-R	CTGCAGGTCGACGGATCCCTAACACTTGCCAGCAAT
Quantitative	NtCHS	NtCHS-qRT- F	TGCTAAGCGAATACGGGAAC
		NtCHS-qRT- R	AACAGAAACACTGCGGAGGA
	NtF3 'H	NtF3 'H-qRT- F	TTGTCCCGCAATGACTTACG
		<i>NtF3 'H</i> -qRT- R	GCATAGTAGGTAGGCGAGGTG
	NtDFR	NtDFR-qRT- F	GCGAAAGGGAGGTATATGTGCTC
		NtDFR -qRT- R	TGCTTGTCCCTCGGTACTCAGTA
	NtFLS	NtFLS-qRT- F	TGAAGGGAAAAGGGGTTGG
		NtFLS-qRT- R	ACTCCTCATTTGCTTCCCTGTAG
	NtLAR	NtLAR-qRT- F	GCAGCAGAAGACTATAGAACTGTG
		NtLAR -qRT- R	CATGTGTTAGAGCTGCAACTACAC
RT-PCR	NtANS	NtANS-qRT- F	ACTACTACCCCAAATGTCCCCAAC
		NtANS -qRT- R	CCGTTACCCACTGTCCTTCATAGA
	NtANR	NtANR-qRT- F	CTTGAAGGGTATGCAGATGTT
		NtANR-qRT- R	GCAGAGCAAACATATCGTCCAG
	NtAN2	NtAN2-qRT- F	GAAGAAAGGTGCATGGACTG
		NtAN2-qRT- R	TCTGCAGCTCTTTCTGCATC
	NtAN1a	NtAN1a-qRT- F	ACCATTCTCGAACACCGAAG
		NtAN1a-qRT- R	TGCTAGGGCACAATGTGAAG
	NtAN1b	NtAN1b-qRT- F	CTTGAACACTTCTCA AACCGA
		NtAN1b-qRT- R	TGCTAGGGCACAATGTGAAG

Figure S1. Amino acid alignment of CsWD40 proteins from tea plants and its orthologs from other plants

Figure S2. Flower pigmentations of CsWD40, CsMYB5e, and $CsWD40 \stackrel{\frown}{_{+}} CsMYB5e \stackrel{\frown}{_{-}}$ (or $CsWD40 \stackrel{\bigcirc}{_{-}} CsMYB5e \stackrel{\bigcirc}{_{+}}$) transgenic tobaccos.