Supplementary Materials

Group	Compound	Formula	Quantification	Confirmation Ions <i>m/z</i>		Calibration Standard
			Ion m/z			
PAHs	phenanthrene	$C_{14}H_{10}$	178	152	89	phenanthrene
	anthracene	$C_{14}H_{10}$	178	152	89	anthracene
	methyl-phenanthrene/anthracene (A–E)	C15H12	192	191	165	2-methylanthracene
	fluoranthene	C16H10	202	106	92	fluoranthene
	pyrene	C16H10	202	174	101	pyrene
	methyl-fluoranthene/pyrene (A–G)	C17H12	216	215	190	1-methylpyrene
	benzo[a]anthracene	C18H12	228	114	101	chrysene
	chrysene	C18H12	228	114	101	chrysene
	benzo[b]fluoranthene	C20H12	252	126	113	benzo[b]fluoranthene
	benzo[a]pyrene	C20H12	252	126	113	benzo[a]pyrene
Oxy-PAHs	9-fluorenone	$C_{13}H_8O$	180	152	126	9-fluorenone
	xanthone	$C_{13}H_8O_2$	196	168	139	xanthone
	anthrone (A–E)	$C_{14}H_{10}O$	194	165	139	anthrone
Hydroxy-PAHs	2-hydroxybiphenyl	$C_{12}H_{10}O$	242	227	211	2-hydroxybiphenyl
	3-hydroxybiphenyl	$C_{12}H_{10}O$	242	227	211	4-hydroxybiphenyl
	4-hydroxybiphenyl	$C_{12}H_{10}O$	242	227	211	4-hydroxybiphenyl
	2-hydroxy-9-fluorenone	$C_{13}H_8O_2$	268	195		2-hydroxy-9-fluorenone
	9-phenanthrol	$C_{14}H_{10}O$	266	251	235	9-phenanthrol
	1-hydroxypyrene	$C_{16}H_{10}O$	290	275	250	1-hydroxypyrene
Nitro-PAHs	1-nitropyrene	$C_{16}H_9NO_2$	247	231	215	1-nitropyrene

Table S1. GC–MS quantified PAHs with corresponding MS ions and calibration standards.

Table S2. GC-MS quantified alkanes with corresponding MS ions and calibration standards.

Alkanes	Formula	Quantification	Confirmation Ions <i>m/z</i>		Calibration Standard
	Tonnulu	Ion m/z			Currentian Standard
tetradecane	$C_{14}H_{30}$	57	85	198	tetradecane
pentadecane	C15H32	57	85	212	tetradecane
hexadecane	C16H34	57	85	226	tetradecane
heptadecane	C17H36	57	85	240	tetradecane
octadecane	C18H38	57	85	254	tetradecane
nonadecane	C19H40	57	85	268	tetradecane
eicosane	C20H42	57	85	282	eicosane
henicosane	C21H44	57	85	296	eicosane
docosane	C22H46	57	85	310	eicosane
tricosane	C23H48	57	85	324	eicosane
tetracosane	C24H50	57	85	338	eicosane
pentacosane	C25H52	57	85	352	eicosane
hexacosane	C26H54	57	85	366	eicosane
heptacosane	C27H56	57	85	380	eicosane
octacosane	C28H58	57	85	394	eicosane

Figure S1. The amount of volatile/semi-volatile compounds extracted decreased according to polarity of the solvents. Organic carbon speciation using thermal optical analyzer (TOA) for different polarity solvent fractions obtained by DEP extraction shown as (**A**) overlaid thermograms and (**B**) processed data (ratios of peak areas converted to μ g). The temperatures shown are the steps used for thermal desorption and pyrolytic evolution of carbonaceous species within TOA analysis. The results are based on EOM from 10 mg of the original DEP. The figure has previously been published elsewhere [16].

Figure S2. Effect of 2-APB on $[Ca^{2+}]_i$ triggered by DCM-EOM. Cells were incubated in buffer with or without the STIM1/TRPC inhibitor 2-APB (50 µM) 30 min prior to exposure. Three minutes after measurements were started, the cells were exposed to DCM-EOM at concentrations corresponding to 5 µg/mL of the original DEP or vehicle control (DMSO). $[Ca^{2+}]_i$ levels measured by normalized ratio of the Fura2-AM probe during exposure is presented as graph and the area under the curve (AUC) 0–45 min, as mean and mean ± SEM (n = 3). * Significantly different from no inhibitor.

Figure S3. Basic expression of calcium conductance channels in HMEC-1. Unexposed cells were harvested, mRNA isolated and gene expression measured with qPCR (n = 1). Expression is relative to the average of all seven genes.