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Abstract: Immune-modulating therapy is a promising therapy for patients with cholangiocarcinoma
(CCA). Microsatellite instability (MSI) might be a favorable predictor for treatment response,
but comprehensive data on the prevalence of MSI in CCA are missing. The aim of the current
study was to determine the prevalence of MSI in a German tertiary care hospital. Formalin-fixed
paraffin-embedded tissue samples, obtained in the study period from 2007 to 2015 from patients
with CCA undergoing surgical resection with curative intention at Johann Wolfgang Goethe
University hospital, were examined. All samples were investigated immunohistochemically for the
presence of MSI (expression of MLH1, PMS2, MSH2, and MSH6) as well as by pentaplex polymerase
chain reaction for five quasimonomorphic mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-22,
and NR-24). In total, 102 patients were included, presenting intrahepatic (n = 35, 34.3%), perihilar
(n = 42, 41.2%), and distal CCA (n = 25, 24.5%). In the immunohistochemical analysis, no loss of
expression of DNA repair enzymes was observed. In the PCR-based analysis, one out of 102 patients
was found to be MSI-high and one out of 102 was found to be MSI-low. Thus, MSI seems to appear
rarely in CCA in Germany. This should be considered when planning immune-modulating therapy
trials for patients with CCA.
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1. Introduction

Cholangiocarcinoma (CCA) is a gastrointestinal neoplasia which derives from the biliary
epithelium or peribiliary glands within the biliary tree. It is subdivided into intrahepatic (iCCA)
and extrahepatic perihilar (pCCA) and distal cholangiocarcinoma (dCCA). The five-year survival
rates of patients with CCA remain below 20% despite surgery, and no targeted therapy regimen has
demonstrated a therapeutic benefit compared to the standard therapy of gemcitabine and cisplatin,
so far [1,2].
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In recent years, a new promising approach in cancer therapy has evolved with the emergence
of immune-modulating monoclonal antibodies. These agents focus on receptors or ligands of
effector cells as targets for cancer immunotherapy by inhibiting immune check points such as the
programmed cell death protein 1 (PD-1, CD279) and its ligand (PD-L1) or the protein receptor
CTLA4 (CD152). Objective responses in patients treated with anti-PD1 antibodies were seen in patients
with advanced unresectable melanoma and non-small-cell lung cancer or undergoing second-line
therapy for metastatic renal-cell carcinoma [3–6]. Moreover, promising results have been shown for
various other solid tumors and hematologic malignancies [7].

Notably, the treatment with an immune-modulating therapy, especially when agents are combined,
may lead to severe side effects. Furthermore, only a certain percentage of patients seems to respond
to the treatment, which highlights the importance to develop predictive biomarkers. Besides the
immunohistochemical evaluation of PD-L1 expression, microsatellite instability (MSI) seems to
be associated with an improved clinical response rate: MSI induces somatic hypermutation and
consecutively neoepitopes, which might create an immune response [8].

According to recent data, the immune-modulating therapy might be a promising alternative to
standard treatments for MSI-positive CCA [9]. Moreover, a durable response to immune checkpoint
inhibition was shown in a patient with an advanced-stage, microsatellite-unstable CCA [10]. However,
as shown in a recent review, data on MSI in CCA is very limited [11]. The study sizes were small, or only
certain groups of CCA patients, such as those affected by liver fluke-induced iCCA, which occurs
rarely in western countries, were investigated. Given the devastating prognosis currently faced by
patients with advanced CCA, further characterization of the group of patients potentially profiting
from immune-modulating therapy regimens is urgently warranted.

The aim of the current study was to determine the presence of MSI in all subclasses of CCA by
immunohistochemistry and polymerase chain reaction (PCR) in a retrospective analysis at a German
tertiary care hospital.

2. Results

2.1. Clinicopathological Characteristics

In total, 102 patients (71 male, 70%) were included. The cohort consisted of intrahepatic (n = 35;
34.3%) and extrahepatic CCA (perihilar: n = 42, 41.2%; distal: n = 25, 24.5%). The majority of the
included patients had a moderate tumor stage (Union internationale contre le cancer (UICC) I and II)
at the time of resection. The mean age at diagnosis was 66 (range 38–84 years, standard deviation
(SD) 10.9). In total, 87 out of 102 patients (85%) had died by the study closure (median survival
16 months, range 0–130 months, SD 25.5). For two patients, no follow-up data were available. Of the
remaining thirteen patients who were alive, the median follow up was 37 months (range 18–122 months,
SD 31.6). The clinicopathological characteristics are provided in Table 1. Kaplan–Meier graphs are
provided in Figure 1.

Table 1. Clinicopathological characteristics of the patient cohort.

Variable Variable N %

Sex
Male 71 69.6

Female 31 30.4

Localization
iCCA 35 34.3
pCCA 42 41.2
dCCA 25 24.5

Age ≥65 61 59.8
<65 41 40.2

UICC

1 35 34.3
2 43 42.2
3 16 15.7
4 8 7.8
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Table 1. Cont.

Variable Variable N %

T

1 20 19.6
2 50 49.0
3 29 28.4
4 3 2.9

N *
0 61 59.8
1 40 39.2

L *
0 56 54.9
1 37 36.3

V *
0 14 13.7
1 79 77.5

Pn *
0 66 64.7
1 25 24.5

R
0 76 74.5
1 26 25.5

G
1 3 2.9
2 77 75.5
3 22 21.6

iCCA: intrahepatic cholangiocarcinoma, pCCA: perihilar cholangiocarcinoma, dCCA: distal cholangiocarcinoma
(dCCA), UICC staging according to the 7th edition. TNM classification: T: extent of the primary tumor, N: spread to
regional lymph nodes, L: invasion into lymphatic vessels, V: invasion into veins, Pn: perineural invasion, R: resection
boundaries free of cancer or not, G: grading; * data were not available for all patients.

Figure 1. Kaplan–Meier graphs of the study population. (A) Survival data for moderate (group 1:
UICC stadium I and II) and advanced (UICC stadium III and IV) cholangiocarcinoma (CCA) patients.
(B) Survival data according to CCA location in the biliary tree (1: intrahepatic CCA, 2: perihilar CCA,
3: distal CCA).

2.2. Immunohistochemistry

MSI was immunohistochemically evaluated by analyzing the expression of MLH1, PMS2, MSH2,
and MSH6. All 102 patients were positive for MLH1, PMS2, MSH2, and MSH6. Thus, no MSI was
detected via immunohistochemistry. Representative examples of the expression of mismatch repair
proteins are shown in Figure 2.

2.3. Microsatellite Instability Analysis via PCR

Besides immunohistochemistry, MSI was evaluated using five quasimonomorphic mononucleotide
repeats (BAT-25, BAT-26, NR-21, NR-22, and NR-24) in a pentaplex PCR, as described in Suraweera et al.
2002 [12]. Thereby, one case (Pat ID 121) was found to be MSI-low with alterations in locus NR-21,
and one case (Pat ID 105) was diagnosed as MSI-high, since all analyzed MSI biomarkers were
found to be unstable (Figure 3). However, no loss of expression of a DNA repair enzyme was found
immunohistochemically in these two cases (Figure 4).

Patient 121 (male, age at diagnosis 49 years) and patient 105 (female, age at diagnosis 75 years)
had pCCA.
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Figure 2. Extrahepatic cholangiocarcinoma staining. (A): Hematoxylin and eosin (HE) staining.
Samples immunohistochemically positive for (B): PMS2, (C): MLH1, (D): MSH6, (E): MSH2.

Figure 3. Typical allelic profiles of BAT-25, BAT-26, NR-21, NR-22, and NR-24. Only the range from 92
to 142 bp of the electropherograms comprising the region of interest is shown. The red line indicates
the GeneScan 350 ROXTM dye Size Standard labeled with ROX displaying the 100 bp and 139 bp peak.
The first column shows all traces, the second column shows the fluorescein (FAM)-labeled products
(BAT-25, NR-21, and NR-22) depicted in blue. In the third column, the ATTO55O-labeled BAT-26 is
separately displayed in black. HEX-labeled NR-24 is shown separately in green in column 4, and the
fifth column shows the size standard in red. The expected sizes for the products NR-21, BAT-25, BAT-26,
NR-24, and NR-22 were 99, 123, 124, 128, and 139 bp, respectively. The top panel shows the normal
germline alleles with typical stutter bands. In the lower panels, the electropherograms of the only
microsatellite instability (MSI)-high tumor sample (ID 105), the only MSI-low tumor sample (ID 121),
and one MSI-stable tumor sample (ID 63) is shown. The arrows indicate the presence of shifted alleles.
The asterisk depicts artifacts coming from bleed-trough from the FAM signal into the other signals,
identifiable by peaks in the other colors occurring at the exact same size as the FAM peaks.
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Figure 4. Representative stainings of the patients with MSI-low CCA (Pat ID 121, A–D) and MSI-high
CCA (Pat ID 105, F–H). In both patients, no loss of expression was found for PMS2 (A,E), MLH2 (B,F),
MLH1 (C,G), and MSH6 (D,H). Magnification: 40×, scale bar: 75 µm.

3. Discussion

The prognosis of patients with advanced CCA is poor, and new treatment options are
warranted. Recent data suggested that patients with microsatellite-unstable CCA might profit from
immune-modulating therapy. In the current study, we provide data on prevalence of MSI in the so
far largest cohort of western patients including all subtypes of CCA. We thereby observed a very low
prevalence of MSI, with 1% of MSI-high and 1% of MSI-low tumors.

Because of the emerging role of MSI in personalized cancer therapy, MSI prevalence was
increasingly investigated in recent years. In a study based on exome data of The Cancer Genome
Atlas (TCGA), MSI was analyzed in 18 cancer types, and MSI-positive tumors were found in
14 of 18 entities [13]. The proportion of MSI positivity ranged from nearly 30% in uterine corpus
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endometrial carcinoma, to about 20% in colon adenocarcinoma and stomach adenocarcinoma,
to below 5% in kidney renal clear cell carcinoma, rectal adenocarcinoma, prostate adenocarcinoma,
ovarian serous cystadenocarcinoma, glioblastoma multiforme lung adenocarcinoma, head and
neck squamous cell carcinoma, hepatocellular carcinoma (HCC), lung squamous cell carcinoma,
bladder urothelial carcinoma, and lower grade brain glioma. No MSI was observed in breast
invasive carcinoma, skin cutaneous melanoma, kidney renal papillary cell carcinoma, and thyroid
carcinoma. Two of 338 HCC (0.6%) were MSI-high, which, combined with the data of the present study,
indicates a rare occurrence of MSI in hepatobiliary tract cancer. This should be kept in mind when
considering implementing MSI testing in diagnostic routines to select patients potentially profiting
from immune-modulating therapy.

The low positivity of MSI in CCA revealed in our study seems consistent with earlier data.
For example, a study including 37 patients with liver fluke-induced iCCA as well as a study including
38 patients with extrahepatic CCA (eCCA) observed no patient (0%) with MSI-high tumors [14,15].
Notably, some studies found higher rates of MSI-high tumors as well. For instance, MSI-high
iCCA were found in 14% and 18% in two studies including 22 patients each [16,17]. Likewise,
a study including 28 patients with eCCA from 2002 found two patients (7%) to be MSI-high [18].
Of note, all these studies included Asian patients. Since the etiology might vary in different countries,
a comparison of our study and former data is impeded. Because of the retrospective structure of the
current study, ethnicity and country of origin could not be assessed. Despite that, the majority of
patients usually treated at University hospital Frankfurt consists of Caucasians, and we hypothesize
that the results of the current study indicate a very low prevalence of MSI in CCA in western countries.

Besides the geographical differences, the methodological approach of different studies should be
considered as well when comparing different studies investigating MSI. In the present study, we used
the commonly used detection of MSI via immunohistochemistry (MLH1, PMS2, MSH2, and MSH6)
and, in addition, a well-tested method including five quasimonomorphic mononucleotide repeats
performing equally to the Bethesda panel in terms of sensitivity and specificity in the detection of MSI
in colorectal cancer [12]. Discordant results of immunohistochemistry and PCR-based techniques were
observed in this study. Notably, it has been described that in some cases MSI can be detected via a PCR
approach without concurrent loss of expression of any of the four mismatch repair proteins, as these
have lost their function as a result of mutations [19–21]. Thus, discrepancies between the two methods
have been described for other entities such as colorectal cancer, indicating to view these techniques as
complimentary. We therefore recommend using both methods to investigate the MSI status in CCA
in future studies. In other studies on CCA, the number of the MSI markers evaluated by PCR varied
between five and more than 10 [15,16]. Besides, Hause et al. included over 200,000 loci and used an
exome-based classifier to identify MSI-high tumors [13]. By analyzing MSI on a whole-exome basis,
they observed a variation of microsatellite instable loci across cancer types, indicating that loci being
inherently stable in one cancer type might be frequently mutated in another. On the basis of these
observations, a comprehensive whole exome-based analysis of MSI in cholangiocarcinoma is of
great interest.

In conclusion, the data of the current study indicate that MSI occurs rarely in western CCA patients.
This should be kept in mind in the planning of future therapy trials including patients with
MSI-high CCA.

4. Materials and Methods

4.1. Patients

Formalin-fixed, paraffin-embedded tissue samples from patients with CCA undergoing surgical
resection in the period from 2007 to 2015 were obtained from the archive of the Senckenberg Institute
of Pathology, University Hospital Frankfurt. The clinical data (date of birth, gender, tumor stage,
tumor size, and follow-up data) were retrieved from electronic medical records. Only patients



Int. J. Mol. Sci. 2018, 19, 1421 7 of 10

without prior treatment who underwent surgery with curative intention were included. Pathologic
tumor-node-metastasis stages were assessed with the international system for staging biliary tract
cancer adopted by the American Joint Committee on Cancer and the UICC (Union Internationale
Contre le Cancer), 7th edition [22]. The clinical data and biomaterial were obtained from the tumor
documentation and the biobank of the Universitäre Centrum für Tumorerkrankungen (UCT) Frankfurt
(University Cancer Center, Frankfurt, Germany). Written informed consent was available from
all patients. The study was approved by the institutional Review Boards of the UCT and the Ethics
Committee at the University Hospital Frankfurt (Approval No. SGI-07-2016, date 23 February 2017).

4.2. Immunohistochemistry

Freshly cut paraffin sections, 4-µm-thick, were stained for MLH1, MSH6, PMS2, and MSH2.
The antibodies used are described in Table 2. The immunohistochemical stainings were judged
by two pathologists (Ria Winkelmann, Sylvia Hartmann) independently, and the assessment was
performed without awareness of the MSI status of each case. CCA were staged as negative if none
of the tumor cells were stained. In case of disagreement, the slides were reviewed again, and a
consensus was reached. Lymphocytes, stromal cells, and non-neoplastic epithelium served as internal
positive controls.

Table 2. Antibodies.

Antibody Supplier Clone Dilution Pretreatment

MLH1 BD PharmingenTM (Franklin Lakes, NJ, USA) G168-728 1:750 Microwave 15’, EDTA, pH 8
MSH2 Calbiochem® (Darmstadt, Germany) GB12 1:50 Microwave 15’, EDTA, pH 8
MSH6 DCS (Hamburg, Germany) SP93 RTU Water bath, Trilogy 30’, pH 8
PMS2 BD PharmingenTM A16-4 1:40 Water bath 60’, pH 9

RTU: ready to use.

4.3. DNA Extraction from Formalin-Fixed, Paraffin-Embedded (FFPE) Tissue Samples

After macrodissection, DNA was extracted with the Maxwell 16 FFPE tissue LEV DNA
purification kit (Promega, Madison, WI, USA) from FFPE material according to the manufacturer’s
recommendations. DNA yield was quantified with Quantus Fluorometer (Promega).

4.4. PCR and Microsatellite Instability (MSI) Analysis

MSI analysis was adapted from Suraweera et al. 2002 [12]. In brief, five quasimonomorphic
monocleotide markers (BAT-25, BAT-26, NR-21, NR-22, and NR-24) were amplified in a single
multiplex PCR reaction. The primer sequences and fluorescence labeling of one primer of each
primer pair is given in Table 3. PCR was performed with the Taq PCR Mastermix from Qiagen
(Hilden, Germany), according to the manufacturer’s directions. All primers were used at a final
concentration of 240 pmol/L, except for the primers for BAT-25, which were used at the concentration
of 1 µmol/L. Ten to 50 ng of DNA was used as input material. The following PCR conditions were
applied: denaturation at 95 ◦C for 5 min, 35 cycles of denaturation for 30 s, annealing at 55 ◦C for
30 s and extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 10 min. The PCR products were
analyzed on a 3130xl Genetic Analyzer (ThermoFisher Scientific, Darmstadt, Germany) with the 3130
Series Data Collection Software v.3.0. A 50 cm capillary array and the Fragment Analysis 50_POP7
settings were used. For size estimation, the GeneScan 350 ROXTM dye Size Standard (ThermoFisher
Scientific) was added to each sample. The final evaluation of the fragment length was done with the
GeneMapper Software 5.0 (ThermoFisher Scientific). A sample was considered MSI-high or MSI-low if
more than three or one–two markers represented shifted alleles, respectively.
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Table 3. Primer for MSI analysis.

Name Fluorescent Marker Sequence (5‘→3‘) Expected PCR Product Size (bp)

NR-21_For
FAM

TAAATGTATGTCTCCCCTGG
99NR-21_Rev ATTCCTACTCCGCATTCACA

BAT-26_For
ATTO0550

TGACTACTTTTGACTTCAGCC
124BAT-26_Rev AACCATTCAACATTTTTAACCC

BAT-25_For
FAM

TCGCCTCCAAGAATGTAAGT
123BAT-25_Rev TCTGCATTTTAACTATGGCTC

NR-24_For
HEX

CCATTGCTGAATTTTACCTC
128NR-24_Rev ATTGTGCCATTGCATTCCAA

NR-22_For
FAM

GAGGCTTGTCAAGGACATAA
139NR-22_Rev AATTCTGATGCCATCCAGTT

4.5. Statistics

Descriptive statistics, such as the calculation of mean value, range, and standard deviation,
as well as the calculation of Kaplan–Meier graphs, were determined using BiAS (version 11.01,
BiAS for Windows; Epsilon-Verlag, Frankfurt, Germany). The overall survival was calculated as time
from surgery to date of death (event) or date of the last follow-up (censored).
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Abbreviations

CCA Cholangiocarcinoma
dCCA Distal CCA
eCCA Extrahepatic CCA
FAM Fluorescein
FFPE Formalin-Fixed, Paraffin-Embedded
HCC Hepatocellular carcinoma
HE Hematoxylin and eosin
iCCA Intrahepatic CCA
MSI Microsatellite instability
pCCA Perihilar CCA
RTU Ready to use
SD Standard deviation
TCGA The Cancer Genome Atlas
UCT Universitäre Centrum für Tumorerkrankungen
UICC Union internationale contre le cancer
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