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Abstract: Progressive neurodegenerative pathologies in aged populations are an issue of major
concern worldwide. The microtubule-associated protein tau is able to self-aggregate to form
abnormal supramolecular structures that include small oligomers up to complex polymers.
Tauopathies correspond to a group of diseases that share tau pathology as a common etiological agent.
Since microglial cells play a preponderant role in innate immunity and are the main source of
proinflammatory factors in the central nervous system (CNS), the alterations in the cross-talks
between microglia and neuronal cells are the main focus of studies concerning the origins
of tauopathies. According to evidence from a series of studies, these changes generate a feedback
mechanism reactivating microglia and provoking constant cellular damage. Thus, the previously
summarized mechanisms could explain the onset and progression of different tauopathies and their
functional/behavioral effects, opening the window towards an understanding of the molecular
basis of anomalous tau interactions. Despite clinical and pathological differences, increasing
experimental evidence indicates an overlap between tauopathies and synucleinopathies, considering
that neuroinflammatory events are involved and the existence of protein misfolding. Neurofibrillary
tangles of pathological tau (NFT) and Lewy bodies appear to coexist in certain brain areas.
Thus, the co-occurrence of synucleinopathies with tauopathies is evidenced by several investigations,
in which NFT were found in the substantia nigra of patients with Parkinson’s disease, suggesting
that the pathologies share some common features at the level of neuroinflammatory events.

Keywords: tauopathies; Alzheimer’s disease; tau protein; molecular networks; molecular functions;
neuroimmunomodulation; inflammation

1. Tau Protein the Context of Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common type of brain dementia in aged populations
(over 60 years old) [1], which gradually affects learning and memory as well as mood and behavior,
displaying a constantly expanding prevalence and impact according to the World Health Organization
(WHO). This expansive and epidemic behavior is concerning to medical and public health officials
who are focusing their efforts on its prevention and treatment. In its biological context, two main
etiological effectors have been reported: (i) Neurofibrillary tangles (NFT), composed by accumulation
of the hyperphosphorylated protein tau, inside the neuron and assemblies of oligomeric structures
denominated paired helical filaments (PHF) [2–5]; (ii) Senile plaques (SP), composed of deposits of
the amyloid-β (Aβ) peptide of 39–42 aminoacidic residues, generated by the proteolytic excision
of the amyloid precursor protein (APP) by the enzymes β and γ secretases, in the extracellular
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space, both promoting loss of synaptic processes and neuronal death [1,6]. Considering that tau
protein is the major actor in the present discussion on the neuroimmune mechanisms leading to
neuronal degeneration in tauopathies and AD, it is helpful to look at the origins of the discovery of
this protein. Tau protein was discovered in two laboratories. Mark Kirschner’s group in October 1977
was the first to describe a protein, named as tau, the Greek letter to differentiate from tubulin [7].
Both proteins, tau and tubulin, showed similar electrophoretic migration in SDS gels due to similar
molecular weights. Almost three months later, in January 1978, Maccioni and Seeds (1978) reported
the same microtubule-associated protein after separating it from brain tubulin on the basis of cationic
properties of tau. Thus, the novel microtubule-associated proteins (MAPs) showed to enhance both the
rate of polymerization and the total amount of tubulin polymerized, which suggested its involvement
in both the initiation and elongation of microtubules. This finding was simultaneously corroborated
by studies on neuroblastoma cells [8].

In the context of the neuroimmunomodulation hypothesis [9–13], we proposed that the onset of
AD is mainly a consequence of the response of microglial cells to “damage signals” or tau oligomers
(Figure 1), which trigger a neuro-inflammatory response, promoting an anomalous cascade of signaling
that involves the release of the nuclear factor κB (NFκB), overproduction of pathological levels of
cytokines and chemokines, and the consequent activation of neuronal receptors. This leads to an
increase in the expression of the CDK5/p35 (cyclin-dependent kinase 5) complex, GSK3-β (glycogen
synthase kinase 3-β), tau hyperphosphorylation, and the subsequent self-aggregation linked with
neuronal degeneration [12]. Increasing evidence suggests that tau oligomers and polymers released
upon neuronal apoptosis are capable of reactivating microglial cells, thus, favoring the continuous
cascade of altered molecular signaling responsible for neuronal degeneration in tauopathies and
AD [14].
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Figure 1. The potential mechanism involved in triggering tauopathies. “Damage signals” (inset at
the upper left corner) sensitize resting microglia leading to an activated phenotype. This generates
the over-release of increasing amounts of cytokines with the consequent effects on neuronal cells.
There is activation of the protein kinase Cdk5, thus stimulating the Cdk5/p35 complex and tau
hyperphosphorylation and neuronal degeneration. As a consequence of this processes, tau oligomers
and PHFs are released to the extraneuronal environment, reactivating microglia via a positive feedback
mechanism. This mechanism is stimulated by the ApoE4 protein. The reactivated microglia continues
the cycle by increasing the levels of cytokines with the consequent effects on neuronal degeneration.
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2. Molecular and Structural Aspects of Tauopathies and AD

In neurons, there are several kinases that phosphorylate tau protein under physiological conditions
and during AD, such as CDK5, GSK3-β, C-Jun-N-terminal kinase (JNK) that are regulated by
cytokines released by astrocytes and microglia. CDK5 is a proline-directed serine-threonine kinase
that phosphorylates serine and threonine residues, particularly serine 202 (Ser202) and threonine
205 (Thr205) residues of tau protein, also found in PHFs. CDK5 activity is regulated by p35 (and its
split product p25) and p39, which have a short mid-life and phosphorylate CDK5 at its T-loop and
translocate to the cellular membrane. This activation and translocation of CDK5 have important
biological roles in cortex layer formation, neurite outgrowth, migration, the differentiation of neurons,
synapse formation, and cognitive processes. CDK5 also regulates mitochondrial morphology and cell
survival in response to stress [15–17]. GSK3-β is also a serine-threonine kinase, which phosphorylates
tau at threonine 221 (thr221), and its kinase activity is upregulated by phosphorylation of tyrosine
216 (Tyr216) and tyrosine 279 (Tyr279) residues; meanwhile, serine-threonine kinase (Akt)-mediated
phosphorylation of Ser9 and Ser21 residues reduce its activity. GSK3-β regulates memory processes
by induction of LTD (long-term depression) and inhibition of LTP (long-term potentiation); these
effects are reversed by insulin and Wnt, which inactivate GSK3-β. Also, GSK3-β promotes the
assembly of actin to form filaments and the assembly of tubulin, leading to microtubule formation,
thus regulating the reorganization of synaptic architecture [18–20]. Finally, JNK phosphorylates tau
at serine 396 (Ser396) and threonine 221 (Thr221). This kinase has three isoforms that participate in
brain development, immune modulation, induction of LTP, neurite formation, and JNK3, in particular,
induces cell death by apoptosis [15].

At a molecular level, previous reports support the effect of AD on components that play
roles in the glutamatergic synapse. Lee et al.’s experiments (2004) detected an unregulated
overexpression of the metabotropic receptor 2 (Group 2) in patients with AD, which through
extracellular signal-regulated kinases (ERK) receptors affect the abnormal hyperphosphorylation
of tau protein observed in the disease [21]. Moreover, a recent study identified a functional role
of the truncated extracellular C-terminal tau fragment in the hippocampus, promoting neuritic
dystrophy, microtubules disorganization, a loss of mitochondria at nerve endings, and a decrease of
pre-synaptic vesicular glutamate release by reduction of associated proteins [22]. Furthermore, recent
evidence suggests that pathological tau also impairs synaptic transmission by the interaction of its
N-terminal domain with synaptic vesicles, which restricts their normal mobilization and release of
neurotransmitters, similar to the truncated extracellular C-terminal tau fragment. Disruption of the
interaction of tau with vesicles is enough to rescue the affected synapses [23]. Among the different
tau splice variants (oligomeric, fibrillary, or filamentous structures), extracellular forms have also
been associated with other negative effects [24]. Briefly, Swanson and associates [24] found that 2N4R
and 2N3R tau oligomers promote aggregation at the intracellular level, even more than monomers
and fibrils or different oligomers from other tau isoforms. The effects were associated with invasion
of tau into the somatodendritic compartment, affecting axonal fast transport through microtubule
disassembly and changes in membrane organelles.

The functional effects of tau in neuronal dysfunction have been corroborated recently in mice by
using manganese-enhanced magnetic resonance imaging (MEMRI) [25]. Using similar approaches,
more evidence appears from the effects of tau in vivo. PET (positron-emission tomography) imaging
was used in patients with progressive supranuclear palsy (PSP), a human tauopathy usually lacking
amyloid-β deposits. They also showed the presence of hyperphosphorylated tau in several regions,
some previously related to consciousness, such as the striatum, thalamus, subthalamic region, midbrain,
and cerebellar white matter [26]. This allows us to suggest the possible role of tau on interconnected
conditions with AD since PSP presents behavioral and mood disorders. Furthermore, these kinds of
pathologies have been associated with AD as part of its progression [27].
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3. Neuroinflammation in Tauopathies

In the context of an integrative analysis of neuroimmune responses that affect tau in tauopathies,
it is relevant to point out that neuroinflammation appears to be a common feature of several other
degenerative disorders of the central nervous system.

As seen in Figure 1, tau filaments and PHF released from degenerating neurons can trigger
reactivation of microglial cells through a positive feedback mechanism. This allows the continuation
of a vicious cycle of release of proinflammatory cytokines, activation of protein kinases at the neuronal
level, and generation of anomalous tau polymers. These changes are also associated with the
misfolding of tau and cytoskeleton disorganization [4,9,10]. Moreover, tau is implicated in more
than 20 neurodegenerative diseases [23], and therefore, it is of interest to review at least some of them.
On the previous context, new theories attempt to explain this pathology in complementary ways; there
is enough evidence to relate behavioral disorders with the activation of neuroinflammatory processes
as a pathway in AD progression [27]. In addition to AD, we will discuss how neuroinflammation
modulates two other main tauopathies: frontotemporal dementia (FTD) and Parkinson’s disease (PD).
As seen in Figure 1, the neuroinflammation pathway leads to neuronal damage, which has been widely
observed in AD, but in addition, cumulated evidence supports its contribution to neurodegeneration in
FTD and PD. Thus, neuroinflammation is proposed as a research focus for the treatment of tauopathies.

Inflammation has been well documented in FTD. Previously, a study showed an increment in the
levels of the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) and the anti-inflammatory
cytokine transforming growth factor β (TGF-β) in patients with a non-specified type of FTD,
in comparison to normal controls. This suggests a possible role of inflammation in the pathogenesis
of disease that was promptly confirmed by Bellucci et al., 2004 who demonstrated a robust evidence
of high levels of pro-inflammatory cytokines interleukin-1 (IL-1) and cyclooxygenase-2 (COX2),
along with activated microglia rounding cells, with tau inclusions in the brainstem and spinal
cord of transgenic mice with tau mutation [28]. Moreover, this is correlated with cortex and
hippocampus samples from a human postmortem brain carrying the same P301S mutation in tau
gene [28–30]. Additionally, synaptic loss and microgliosis was observed before the NFT formation
in the hippocampus of a transgenic mouse with the human tau mutation associated with the FTD
model, thus, determining that inflammation can lead to NFT formation in FTD tauopathies [31],
in agreement with our neuroimmunomodulation theory [9,10,13] (Figure 1). The microglial activation
and inflammation process has been documented, also, in other transgenic mice with tau mutation
model of FTD, demonstrating further that these alterations were dependent on tau expression [32].
Furthermore, the neuroinflammatory process has been proposed as a potential diagnostic tool through
the in vivo evaluation of microglial activation, using DLB imaging with the translocator protein (TSPO)
ligand [11C]-PK11195 in FTD and other tauopathies [33–35].

4. A Typical Tauopathy: Frontotemporal Dementia (FTD)

Frontotemporal dementia (FTD) is a heterogeneous syndrome that includes a wide spectrum
of disorders, overall affecting the zones of the frontal and temporal lobe in the human brain,
which cause language, motor, and behavioral alterations [36,37]. FTD is the second most important
“dementia” after AD, in terms of the number of people that suffer from the disease [38,39]. In general,
FTD affects men and women in similar proportions, and it starts in individuals at 45–65 year-of-age.
They have an expected range of survival of two to 20-years from the onset, with an average of eight
years [40–42]. FTD has a prevalence of 3.6–9.4 people affected per 100,000, varying according to the age
of onset [40,42,43]. Although literature shows diverse nomenclature in classifying FTD, we consider
the terminology used in the most recent updates that go deep into different FTD subtypes, which
is concordant with a previous clinical classification, establishing three main forms of FTD, namely:
(a) the behavioral variant of FTD (bvFTD), (b) the non-fluent variant (nfFTD), and (c) the semantic
variant (svFTD). The latter two are categorized as primary progressive aphasias (PPA) given that
they primarily affect language functions according to clinical diagnosis criteria. Of the three forms,
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the most common type is bvFTD, which encompasses around 60% of cases [37,42,44]. Furthermore,
other alterations in FTD categorized as “related FTD” include: motoneuron disorders FTD (MNFTD),
progressive supranuclear palsy (PSP-FTD), and corticobasal syndromes (CBS) [37,45]. Finally, there is
another distinction based on the neuropathological alterations that affect mainly the frontal and
temporal lobes, named “frontotemporal lobar degeneration” (FTLD), where specific protein aggregates
determine different types of FTD termed: FTLD-tau (tau protein), FTLD-TDP (transactive response of
DNA-binding protein), FTLD-FET (FUS, EWS, and TAF15 protein family), and FTLD-UPS (Ubiquitin
Proteasome System) [37,46,47]. These groupings are not mutually exclusive, and we will focus here
on the FTD caused by tau inclusions (FTD-tauopathies), which encompass around half of the total
FTDs and are characterised by the presence of tau aggregates in neuronal and/or glial cells [48].
These include Picks disease as a classic definition (PiD-FTD), CBS, and PSP-FTD. In addition, there
are other less common FTD-tau, known as globular glial tauopathies (GGT) and argyrophilic grain
disease (AGD), that are not framed in the previous divisions [37,47,49]. These last two, together with
CBP and PSP FTD tauopathies, are predominantly formed by 4R tau repetitions, while PiD-FTD tau is
mainly associated with 3R tau aggregate [49].

Besides the inflammatory detection in FTD, PET techniques using tau radioligands have recently
shown potential as a specific biomarker of FTD, given that [18F] AV-1451 was abnormally distributed
in patients with bvFTD caused by a specific mutation in the tau gene. This, in comparison to healthy
subjects, besides the [18F] THK-5351 and the [11C] PBB3 radioligands that showed high selectivity in
PSD-FTD, and an affinity for a wide range of tauopathies respectively, has become a promising tool of
specific diagnosis in FTD [50–52]. Additionally, cerebrospinal fluid (CSF) biomarkers established by
the specific ratio between total levels of tau and Aβ1–42, and phosphorylated tau and Aβ1–42 has been
described as a robust discriminator between FTD and AD [53,54].

Until the present time, there has been no approved treatment to cure or prevent FTD by
the FDA, but the behavioral alterations have been positively attenuated using different selective
serotonin reuptake inhibitors (SSRIs), as described below [55]. Citalopram, an antidepressant with
high selectivity against the serot1rgic system, was effective in improving disinhibition, irritability,
and depression in patients with FTD and was capable of reversing the effect over affected areas
associated with disinhibition in FTD subjects [38,56]. Moreover, Trazodone, a drug that increases
the extracellular serotonin (5-HT) levels in the frontal cortex, has shown a decrease in the irritability,
agitation, depressive symptoms, and eating disorders previously enhanced in a group of patients with
FTD [57]. The serotoninergic modulation to improve the behavioral alterations in FTD-tauopathies is in
agreement with our recently postulated hypothesis, which suggest that alterations in the dopaminergic
pathway together with serotonin depletion are implicated in the initial events of the pathogenesis of
AD, leading to late-onset depression and posterior triggering of disease [27].

On the other hand, promising advances have been obtained, focused in the tau-related process
to treat diverse tauopathies, highlighting inhibitors of tau and phosphorylated tau, stabilizers of
microtubules, and tau anti-aggregating molecules [45]. TRx037, a bioavailable inhibitor of tau
aggregation has demonstrated beneficial properties in bvFTD and recently gave auspicious results in
AD patients through diverse clinical trials [58].

5. Molecular Interactions and the Links between Tauopathies and Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s
disease (AD). It is a movement disorder whose etiopathogenesis involves a combination of genetic
and environmental factors. The precise molecular basis remains unclear. Although the initial causes
of PD are not clearly determined, factors such as aging, oligomerization of α-synuclein (α-syn),
mitochondrial dysfunction, oxidative stress, and neuroinflammation appear to play a pathogenic role in
this disease [59]. The prominent neuropathological manifestation of PD is the degeneration of neurons
containing neuromelanin in substantia nigra pars compacta, resulting in a loss of dopamine and the
presence of cytoplasmic inclusions of proteins, called Lewy Bodies (LB), composed mainly of filaments
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of α-syn [60]. α-Syn is a protein of 140 amino acids with three distinct regions. The amino-terminal
end is positively charged, the central hydrophobic segment, between residues 61–90 (also called the
non-amyloid component or NAC), and the carboxyl end, which is negatively charged. It is a lipid
binding protein that possesses four tyrosine residues, one (Tyr39) near the amino terminus and three
tyrosines (Tyr125, Tyr133, and Tyr136) near the carboxyl terminus [61].

At present, approximately 2% of the population over 50 years of age is affected by PD [62]. The most
common clinical signs of PD can be divided into motor, cognitive (dementia), neuropsychiatric
(depression and anxiety), and autonomic dysfunctions (hypotension and constipation). In the case
of motor alterations, the following clinical signs stand out: (i) rest tremor, (ii) bradykinesia (slow
movement, especially of complex voluntary movements), (iii) postural instability, and (iv) rigidity [63].

The loss of dopaminergic neurons in the substantia nigra produces a decrease in dopamine
levels in the striatum, generating deregulation of the circuits of the basal ganglia, which leads to the
appearance of motor symptoms. In summary, PD belongs to a group of neurodegenerative disorders
called synucleinopathies, which includes Parkinson’s disease with dementia (PDD), Lewy body
dementia (DLB), and multiple system atrophy (MSA). DLB symptomatology is characterized
by generating parkinsonism, hallucinations (mostly of visual character), and dementia [64].
These symptoms make it difficult to make a diagnosis of this disease, so there is a criterion that
allows approaching the diagnosis of DLB. This is to verify that the patient has at least two or more of
the symptoms mentioned for this disease [64].

The α-syn hyperphosphorylations lead to protein misfolding and its subsequent oligomerization.
These α-syn deposits are ubiquitous in the central nervous system, especially in the terminals of the
presynaptic neurons. This misfolding and oligomerization of α-syn is called synucleinopathy [65,66].
PD and tauopathies are certainly caused by two different types of aggregates, synuclein in the
case of PD and tau assemblies in the case of tauopathies. However, there is co-occurrence of
synucleinopathies with tauopathies and also with other diseases of protein misfolding, and they
are frequent. Both neurodegenerative diseases suggest interactions of pathological proteins that
enter common pathogenic pathways, although the etiology of most of these processes remains
elusive [67–69].

Despite clinical, pathological, and genetic differences, increasing experimental evidence indicates
an overlap between tauopathies and synucleinopathies. NFT and LB neurons often coexist in the
brain or even within the same cell [70,71]. This co-occurrence of synucleinopathies with tauopathies
is evidenced by findings of several investigations, including those of Schneider et al., 2006, in which
NFT were found in the substantia nigra of patients with PD associated with displacement damage [72].
In turn, Joachim et al., 1987, through immunolabeling, found the presence of NFT in the substantia
nigra of patients with AD, Down Syndrome, and PD associated with AD [73]. Phosphorylated
tau has also been seen in dopaminergic neurons of individuals with PD and PDD [74]. In turn, in
studies performed on a transgenic model that overexpressed human α-syn, phosphorylated tau was
also found in striatal neurons [75]. Other authors observed that by suppressing α-syn expression,
no phosphorylation of GSK-3β occurs [76]. Thus, the mechanism that relates tau to α-syn can be
explained as follows: when an increase in α-syn expression, and consequently, an increase of this
protein in the brain is generated, phosphorylation of GSK-3β occurs that allows this protein kinase
to phosphorylate to tau [77]. Once tau phosphorylation is potentiated, NFT begins to form in the
individual. LB has been observed in approximately 60% of AD patients, both in familial and sporadic
forms [70,78]. This overlapping of tauopathies and synucleinopathies is associated with a more
aggressive progression of the disease and an accelerated cognitive dysfunction [79–81]. This may
suggest that Aβ, tau, α-syn, and activated GSK-3β would interact synergistically, promoting their
oligomerization and accumulation among themselves [82,83].

In vitro studies have shown binding of α-syn to tau, inducing their phosphorylations [84].
The α-syn induces tau fibrillary formation, and the coincubation of both proteins synergistically
promotes the mutual formation of pathological filaments [82]. In vivo evidence of an interaction
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between α-syn and tau has been observed in mice that overexpress Ala53Thr synuclein α (A53T
SNCA), demonstrating positive inclusions for both markers [82]. In turn, Muntane and colleagues [85]
found phosphorylated tau in the amino acid residue Ser396 in the fractions enriched in PD cortex
synapses [85], whereas phosphorylated tau (at Ser202 and Ser396/404) was observed in the brainstem
of mice overexpressing A-309P α-syn [86]. Further evidence of direct tau and α-syn involvement
in these pathologies is supported by the induction of α-syn as related to tau hyperphosphorylation,
in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism in mice [77] and
co-localization of phosphorylated tau and α-syn in both NFT and LBs [87]. α-syn oxidatively modified
by the proteasome promotes the recruitment of tau to protein inclusions in oligodendroglial cells in
synucleinopathies [88]. Moreover, an in vitro study showed that α-syn promotes phosphorylation of
tau in the amino acid residues Ser262 and Ser356 by protein kinase A (PKA) [84]. It is noteworthy that
PKA does not phosphorylate tau residues Ser396 and Ser404, whereas GSK3-β does not phosphorylate
tau residue Ser262, which could suggest that both kinases have a synergistic role in the induction of a
α-syn-mediated tauopathy. Other studies found that GSK3-β was activated in an α-syn dependent
manner, which hyperphosphorylates tau at residues Thr181, Ser396 and Ser404 [77,89–91]. This effect
appears to be the result of both an increase in the activity of GSK3-β [89,92] and the formation of a
tripartite complex between GSK3-β, α-syn, and tau. However, GSK3-β is not the only kinase that
binds to α-syn and to hyperphosphorylated tau. In fact, activation of ERK and JNK, which also
phosphorylate tau in Ser396 and Ser404, correlate with the presence of phosphorylated tau in mouse
transgenic models, which overexpress α-syn [86,93,94]. Interestingly, by using fluorescence intensity
distribution analysis (FIDA), Nübling and his collaborators [95] have shown that tau and α-syn can
form co-oligomers, and that coaggregation occurs even at nanomolar concentrations but only in
the presence of cationic aggregation inducers such as Al3+ and Fe3+ or DMSO [95]. On the other
hand, tau phosphorylation by GSK3-β strongly increased the formation of mixed oligomers [95].
These observations demonstrate that tau accelerates α-syn polymerization, and that α-syn can act as
an inducer of tau polymerization through its hydrophobic NAC region. In this perspective, a major
difference between tau and α-syn is that α-syn is prone to self-aggregate, whereas tau cannot aggregate
by itself and requires an inducing agent [96].

6. Conclusions

Neuroimmune mechanisms directly involved in AD are also part of several disorders of tau
protein or tauopathies. According to our neuroimmunomodulation theory, alterations in the cross-talks
between glial cells and neurons as a consequence of the activity of damage signals, e.g., iron overload,
vitamin B deficiencies, Aβ peptide, and also tau oligomers released to extracellular media, [14] trigger
the production of proinflammatory cytokines that finally affect neurons by activating the protein
kinases CDK5 and GSK3-β, with the consequent tau hyperphosphorylations and aggregation into
pathological PHFs and NFTs (Figure 1). A relationship between tau modifications and protein
misfolding with synucleinopathies involved in PD and LBD has also been postulated. On the other
hand, mood and behavioral disorders seem to be prodromal manifestations prior to neuroinflammatory
signaling at the level of the hippocampus. The stages of consciousness in relation to tauopathies
involving alterations in the frontal lobe and sub-cortical regions, including the thalamus, seem to be
affected as the inflammatory damage spreads. These phenomena can give us insights into different
disorders that could be related to the progression of these neurodegenerative disorders.
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PiD Picks disease
GGT Globular glial tauopathies
AGD Argyrophilic grain disease
C9ORF72 Chromosome 9 open reading frame 72
TNF-α Tumor necrosis factor α
TGF-β Transforming growth factor β
IL Interleukin
COX2 Cyclooxygenase-2
TSPO Translocator protein
CSF Cerebrospinal fluid
5-HT Serotonin
SSRIs Selective serotonin reuptake inhibitors
PD Parkinson’s disease
α-syn α-Synuclein
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LB Lewy Bodies
NAC Non-amyloid component
PDD Parkinson’s disease with dementia
DLB Lewy body dementia
MSA Multiple system atrophy
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
A53T SNCA Ala53Thr synuclein α

PKA Protein Kinase A
FIDA Fluorescence intensity distribution analysis
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