
 International Journal of 

Molecular Sciences

Article

An Efficient ABC_DE_Based Hybrid Algorithm for
Protein–Ligand Docking

Boxin Guan, Changsheng Zhang and Yuhai Zhao *

School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China;
neuguanboxin@163.com (B.G.); zhangchangsheng@ise.neu.edu.cn (C.Z.)
* Correspondence: zhaoyuhai@ise.neu.edu.cn; Tel.: +86-158-0242-9815

Received: 14 March 2018; Accepted: 10 April 2018; Published: 13 April 2018
����������
�������

Abstract: Protein–ligand docking is a process of searching for the optimal binding conformation
between the receptor and the ligand. Automated docking plays an important role in drug design,
and an efficient search algorithm is needed to tackle the docking problem. To tackle the protein–ligand
docking problem more efficiently, An ABC_DE_based hybrid algorithm (ADHDOCK), integrating
artificial bee colony (ABC) algorithm and differential evolution (DE) algorithm, is proposed in the
article. ADHDOCK applies an adaptive population partition (APP) mechanism to reasonably allocate
the computational resources of the population in each iteration process, which helps the novel method
make better use of the advantages of ABC and DE. The experiment tested fifty protein–ligand docking
problems to compare the performance of ADHDOCK, ABC, DE, Lamarckian genetic algorithm (LGA),
running history information guided genetic algorithm (HIGA), and swarm optimization for highly
flexible protein–ligand docking (SODOCK). The results clearly exhibit the capability of ADHDOCK
toward finding the lowest energy and the smallest root-mean-square deviation (RMSD) on most of
the protein–ligand docking problems with respect to the other five algorithms.

Keywords: drug design; protein–ligand docking; artificial bee colony; differential evolution

1. Introduction

The development of new drugs is costly and inefficient, so it is urgent to apply new theoretical
methods and new technologies to improve it. Computer aided drug design (CADD) is developed
gradually under the strong impetus of this social demand [1,2]. CADD takes advantage of advanced
multidisciplinary technology, methods, and achievements, and has been a necessary basic tool for
drug design. Its application shortens the process of drug research and reduces the cost of drug
discovery. Protein–ligand docking, as an important part of CADD, is a computer simulation to
predict the binding pose when the three-dimensional structures of protein receptors and ligands are
known [3–6]. The purpose of protein–ligand docking is to find the conformation with the lowest energy
when a ligand binds the active region of a receptor. Protein–ligand docking has been widely used in
understanding molecular biological functions, predicting drug toxicity, screening virtual drugs and so
on [7–10]. For the main process of protein–ligand docking, all possible active sites of the receptor are
first detected. Then, the active site that binds to the ligand is determined, the position of the ligand
is constantly adjusted, and different conformations are obtained according to the complementary
principle of docking. The results are sorted by a specific scoring function, and the binding pose with
the lowest energy score is finally found.

A scoring function [11–16] and a search algorithm [17–19] are the necessary tools of a docking
method for solving the two goals above. The scoring function is used to evaluate the affinity
between the receptor and the ligand for each conformation [20]. Scoring functions express the
geometric complementarity and the energy strength of the interaction based on the physicochemical

Int. J. Mol. Sci. 2018, 19, 1181; doi:10.3390/ijms19041181 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/19/4/1181?type=check_update&version=1
http://www.mdpi.com/journal/ijms
http://dx.doi.org/10.3390/ijms19041181


Int. J. Mol. Sci. 2018, 19, 1181 2 of 16

characteristics of the amino acids in contact with each other [21]. In the docking process, it is necessary
to obtain the binding affinity accurately as the basis for optimization. Furthermore, the scoring function
can also effectively help the docking to explore the binding space of the ligand. The scoring function
can be directly used as the fitness function of the search algorithm.

The purpose of the search algorithm is to identify the optimal binding pose between the
receptor and the ligand. The performance of the search algorithm directly affects the efficiency
of molecular docking. The ideal search algorithm should be able to enumerate all possible binding
poses between ligands and receptors, but this is difficult to achieve because the search space involved
in molecular docking is huge. Many evolutionary computation methods have been presented for
solving protein–ligand docking problems [22–28]: for example, simulated annealing (SA) [29], genetic
algorithm (GA) [30], Lamarckian genetic algorithm (LGA) [31], running history information guided
genetic algorithm (HIGA) [32], and swarm optimization for highly flexible protein–ligand docking
(SODOCK) [33]. These methods have been applied to solve docking problems, but they have some
drawbacks. As two standard evolutionary algorithms, SA and GA are not combined with local
searches, so they can no longer search better solutions in the neighborhood of the current solution
and the diversity of solutions cannot be maintained. LGA is a hybrid of GA and local search, HIGA is
an improved algorithm based on running history information, and SODOCK is a hybrid of particle
swarm optimization (PSO) and local search. Although LGA, HIGA, and SODOCK have local searches,
their main disadvantage is the high probability of becoming trapped by local optima because of their
single search strategy. Therefore, developing a more efficient and reliable search algorithm is necessary.

To solve the protein–ligand docking problem more efficiently, an efficient ABC_DE_based
hybrid algorithm for protein–ligand docking (ADHDOCK) is proposed in the article. The novel
method is a hybrid of artificial bee colony algorithm [34] and differential evolution algorithm [35].
Artificial bee colony (ABC) and differential evolution (DE) are two practical evolutionary computation
methods, and they have been widely used in various applications. In ADHDOCK, these two
algorithms share the same population and execute in parallel. An adaptive population partition
(APP) mechanism incorporated into ADHDOCK is applied to automatically partition the population
into two subpopulations and allocate them to ABC and DE. The reasonable allocation of computing
resources makes the novel method make better use of the advantages of ABC and DE and prevents the
single use of one algorithm from falling into the local optima.

The environment and the scoring function of AutoDock 4.2.6 are used as the experimental platform
in the article [36]. AutoDock, as a free and open source molecular docking program, is one of the most
commonly used docking software, and it provides great convenience for researchers to develop new
algorithms on the existing program. AutoDock first forms a box by using the amino acid residues
around the active site of the receptor. Subsequently, the program scans with different types of atoms as
probes, calculates the energy of the grid, and searches for the ligand within the range of the box. Finally,
every complex is scored according to the different conformation, orientation, and position of the ligand.
To test the power of ADHDOCK, we performed an experiment on a set of protein–ligand complexes
from PDBbind 2017 [37]. The performance of ADHDOCK, ABC, DE, LGA, HIGA, and SODOCK
is compared in these datasets. Computer simulation results reveal that ADHDOCK is superior to
the other methods regarding obtained energy and root-mean-square deviation (RMSD), success rate,
convergence performance, data distribution, and hypothesis test.

2. Results

2.1. Data Preparation and Parameter Setting

Fifty X-ray crystallographic complexes are randomly chosen from PDBbind 2017 [37] to compare
the capability of the different docking methods. One rigid protein receptor and one flexible ligand are
prepared before docking. Through AutoDock’s file format, input files of both protein and ligand are
preserved. The preparation process of proteins is as below: (1) get rid of ligands, the water molecule



Int. J. Mol. Sci. 2018, 19, 1181 3 of 16

and metal ion not being included in binding sites; (2) restore the residues of missing atoms; (3) mix
hydrogen with all atoms, integrate nonpolar hydrogen atoms, and allot partial charges; and (4) assign
the parameter of solvent. The input files of the ligand are gained by the following process: (1) acquire
the ligand atom coordinates from PDB files; (2) mix hydrogen with all atoms, integrate nonpolar
hydrogen atoms, and allot the partial charge; and (3) define the torsions and a rigid root of the ligand.
The file preparation stage of a molecule is carried out through AutoDock Tools. The degrees of freedom
include three parameters denote the translation of the ligand relative to a specified center, a quaternion
represents the orientation of the ligand with four parameters, and T torsion parameters where T is the
number of rotatable bonds.

The semi-empirical free energy force field [13] is used as the scoring function in the experiment.
The force field includes six pair-wise evaluations (V) and an estimate of the conformational entropy
lost upon binding (∆Sconf):

∆G = (VL−L
bound − VL−L

unbound) + (VP−P
bound − VP−P

unbound) + (VP−L
bound − VP−L

unbound + ∆Scon f ) (1)

where L represents the ligand and P represents the protein. Each of the pair-wise energetic terms is
expressed as the sum of dispersion/repulsion in which the parameters are based on the Amber force
field, hydrogen bonding, electrostatics, and desolvation.

V = Wvdw∑
i,j

(
Aij

r12
ij
− Bij

r6
ij

)
+ Whbond∑

i,j
E(t)

(
Cij

r12
ij
− Dij

r10
ij

)
+ Welec∑

i,j

qiqj

e(rij)rij
+ Wsol∑

i,j

(
SiVj + SjVi

)
e(−r2

ij/2σ2) (2)

The docking power of six algorithms (ADHDOCK, ABC, DE, LGA, HIGA and SODOCK) is
compared. For each tested algorithm, the number of iterations was 27,000 and the number of
individuals was 100. The other parameters were set in accordance with previous studies [31–35],
and the details are shown in Table 1.

Table 1. Parameters of six tested algorithms.

ADHDOCK

Number of food sources 50
Number of limitation 100
Crossover rate 0.80
Scalar number 0.90
Initial partition rate 0.50

ABC
Number of food sources 50
Number of limitation 100

DE
Crossover rate 0.80
Scalar number 0.90

LGA
Mutation rate 0.02
Crossover rate 0.80
Maximal iterations of local search 300

HIGA
Mutation rate 0.02
Crossover rate 0.80
Maximal iterations of local search 300
Number of elitists 5
equilibrium factor 0.60

SODOCK
Number of immediate neighbors 4
Cognitive weight 2.00
Social weight 2.00
Maximal iterations of local search 300



Int. J. Mol. Sci. 2018, 19, 1181 4 of 16

2.2. Comparison of Energy and Root-Mean-Square Deviation (RMSD)

The main purpose of our experiment is to find the lowest energy because the docked energy
values are the most important criterion to evaluate the performance of the tested algorithms. RMSD
is an important index to evaluate the protein–ligand re-docking algorithms, and it is obtained by
comparing the re-docking result with the real crystallographic structure of the complex. The smaller
RMSD of a docked conformation is considered to be the more accurate solution to the docking problem
and the stronger search capability of the used algorithm. A docking can be considered successful
if the RMSD is smaller than a given threshold 2.0 Å after docking. Each method is run thirty times
independently for each protein–ligand complex. The conformation obtained from the first run is called
the first predicted conformation. The best conformation with the lowest energy value obtained during
all thirty runs under the condition of RMSD < 2.0 Å is called the best predicted conformation, and the
docking results of RMSD ≥ 2.0 Å are not counted. The success cases, the average RMSD (all cases) and
the average RMSD (RMSD < 2.0 Å) of the first predicted conformations are calculated and recorded in
Table 2. The lowest energy and RMSD of the best predicted conformation are recorded, and the results
are shown in Table 3. The bold fonts are used to highlight which algorithm wins in each complex.
The rate of the lowest energy and the smallest RMSD found by different tested algorithms is clearly
shown in Figure 1.

Table 2. root-mean-square deviation (RMSD) results of the first predicted conformations.

Algorithm Success Case Average RMSD (All Cases) Average RMSD (RMSD < 2.0 Å)

ABC 32 3.28 ± 1.32 1.84 ± 0.42
DE 35 3.21 ± 1.37 1.82 ± 0.42

LGA 34 2.55 ± 1.28 1.68 ± 0.40
HIGA 42 1.87 ± 0.99 1.36 ± 0.51

SODOCK 37 2.92 ± 1.08 1.77 ± 0.39
ADHDOCK 46 1.68 ± 0.89 1.19 ± 0.33

Figure 1. Rate of the lowest energy and the smallest root-mean-square deviation (RMSD).



Int. J. Mol. Sci. 2018, 19, 1181 5 of 16

Table 3. The lowest energy and the smallest RMSD of the best predicted conformations.

PDB Tor
ADHDOCK ABC DE LGA HIGA SODOCK

Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD

3ptb 0 −13.25 1.65 −10.95 1.97 −11.23 1.80 −11.53 1.92 −12.22 1.95 −11.57 2.00
1hdy 0 −10.40 0.80 −8.80 1.47 −8.24 1.05 −8.70 1.78 −9.17 0.98 −9.22 1.49
1aha 1 −18.20 0.82 −13.95 1.85 −15.24 1.22 −16.10 0.45 −16.15 0.90 −14.95 1.44
1dbb 1 −12.38 0.35 −11.88 0.88 −11.29 0.55 −11.00 0.72 −11.17 0.80 −11.76 0.88
1mrg 1 −8.55 0.30 −7.85 0.85 −7.48 1.25 −6.16 0.40 −7.52 0.33 −8.14 1.20
1ulb 1 −7.50 0.72 −5.36 0.80 −5.20 0.40 −6.28 0.74 −7.07 0.35 −6.75 0.50
1tnl 2 −9.49 0.36 −5.80 0.68 −6.28 0.52 −6.83 0.73 −8.08 0.62 −6.78 0.88

2phh 2 −9.21 0.54 −6.98 1.30 −6.95 1.15 −7.54 0.55 −8.20 0.65 −8.16 0.34
3hvt 2 −17.59 0.55 −15.95 0.68 −15.29 0.47 −17.22 0.33 −18.19 0.45 −16.78 0.58
1phg 3 −10.28 0.38 −7.95 1.67 −7.90 1.33 −8.56 0.80 −9.58 0.60 −9.15 1.34
2cht 3 −10.37 1.55 −7.87 1.24 −8.16 1.16 −8.89 0.95 −9.10 1.34 −8.77 1.33
2ctc 3 −9.25 0.78 −6.40 1.66 −6.70 1.67 −7.70 0.89 −8.90 0.80 −8.52 1.21
4cts 3 −9.98 0.55 −6.94 0.95 −6.79 0.68 −7.61 0.75 −8.64 0.48 −9.10 1.20
1abe 4 −10.10 0.39 −7.99 0.95 −8.15 1.03 −8.75 0.60 −9.44 0.75 −8.73 0.80
1hsl 4 −15.15 0.56 −11.25 1.36 −11.97 1.60 −12.10 0.56 −13.17 0.66 −12.90 1.23
2mcp 4 −10.35 1.05 −7.85 1.64 −8.10 1.10 −8.22 1.33 −9.35 1.15 −7.72 1.42
1stp 5 −16.10 0.35 −13.20 1.58 −13.13 0.92 −13.37 1.65 −13.90 0.85 −13.52 1.00
1tni 5 −9.12 0.74 −6.82 1.25 −6.79 0.67 −8.02 1.65 −8.61 0.90 −7.56 1.34
2lgs 5 −9.23 0.71 −7.25 1.10 −7.11 0.76 −7.30 0.77 −7.83 1.22 −7.18 1.50
1acm 6 −11.61 0.30 −9.95 0.33 −9.28 0.40 −10.10 0.37 −10.87 0.33 −10.11 0.45
2cgr 6 −18.80 0.70 −14.25 0.97 −14.14 0.80 −16.00 0.76 −17.80 0.75 −15.74 0.77
6rnt 6 −9.32 0.55 −8.95 1.45 −8.90 1.65 −9.13 0.70 −9.62 0.50 −9.12 1.95
1lst 7 −16.13 0.36 −12.22 0.96 −12.43 0.95 −13.75 0.55 −15.22 0.46 −14.72 0.66

2cmd 7 −15.14 0.42 −12.70 0.65 −12.42 0.62 −12.26 0.78 −14.05 0.82 −13.28 0.80
4dfr 7 −13.12 1.04 −10.21 1.97 −10.15 1.20 −11.44 1.23 −12.82 1.56 −11.74 1.67
1ett 8 −14.90 1.20 −12.75 1.65 −12.40 1.70 −13.89 1.38 −13.94 1.40 −12.08 1.54
1tka 8 −14.02 0.88 −10.33 1.17 −9.89 1.20 −10.23 0.98 −11.60 1.02 −10.25 1.15
8gch 8 −14.55 0.70 −10.85 0.82 −11.30 1.15 −11.88 1.72 −12.55 1.66 −11.29 0.98
1hri 9 −12.03 1.13 −10.13 1.67 −9.98 1.56 −10.21 1.87 −11.02 1.18 −10.31 1.68
1trk 9 −14.50 0.80 −11.25 0.65 −11.35 0.62 −11.44 0.65 −13.05 0.50 −11.49 0.60
2sim 9 −18.25 0.90 −15.93 1.10 −15.50 1.06 −15.61 0.95 −16.24 1.08 −15.05 1.06
1eap 10 −14.05 1.25 −12.85 1.21 −12.18 1.30 −13.08 1.27 −14.55 0.98 −13.77 1.10
1fkg 10 −17.51 1.13 −15.15 1.20 −15.36 1.22 −15.47 1.36 −16.26 1.35 −15.08 1.38
1hvr 10 −33.40 0.55 −28.65 0.85 −29.38 0.78 −30.85 0.62 −31.50 0.80 −29.29 0.68
1lna 10 −15.62 1.10 −13.85 1.82 −13.28 1.67 −13.50 1.75 −15.19 1.29 −13.82 1.22
1nco 11 −21.70 0.93 −20.54 0.77 −20.85 0.82 −21.20 0.65 −22.75 0.55 −20.60 0.92
4hmg 11 −10.51 1.13 −9.95 1.60 −10.00 1.28 −10.09 1.70 −10.21 1.65 −10.08 1.36
1bbp 12 −26.90 0.45 −24.48 0.65 −23.38 0.78 −23.56 0.52 −25.10 0.67 −24.15 0.72
1cdg 12 −8.95 1.05 −7.13 1.12 −7.72 1.17 −8.22 1.94 −8.90 1.65 −8.45 1.80
1rds 12 −18.11 0.75 −16.34 0.92 −15.93 0.86 −16.24 0.80 −17.95 0.77 −16.03 0.67
1htf 13 −22.77 1.02 −19.80 1.80 −20.12 1.48 −20.69 1.33 −21.17 1.20 −21.79 1.42
1glq 14 −9.83 1.15 −9.23 1.58 −8.53 1.29 −9.27 1.87 −9.65 1.25 −8.83 1.90
1hpv 14 −16.72 1.96 −15.67 1.91 −15.11 1.92 −15.48 1.88 −17.29 1.60 −15.68 1.75
1qbt 14 −26.75 0.80 −22.69 1.29 −22.93 1.27 −24.20 1.09 −25.20 0.88 −24.63 1.04
1lic 15 −12.77 0.85 −10.01 1.36 −9.80 1.54 −12.17 1.80 −13.03 0.96 −12.55 1.08

1tmn 15 −11.13 0.90 −9.58 0.65 −9.97 1.18 −10.11 1.20 −10.71 0.95 −10.62 1.95
4phv 15 −22.44 1.38 −15.62 1.44 −16.08 1.53 −19.18 1.26 −19.89 0.45 −21.78 0.90
1epo 17 −20.33 0.80 −16.07 1.77 −17.18 1.62 −16.80 1.67 −19.13 1.23 −17.65 0.93
1aaq 20 −23.10 1.10 −15.55 1.20 −16.60 1.75 −17.44 1.70 −20.66 1.05 −19.80 1.34
1hiv 23 −25.60 0.55 −15.45 1.06 −16.20 0.73 −17.95 1.73 −21.25 1.21 −19.74 1.55

2.3. Convergence Analysis

Convergence means that, after iterating for several times, the convergence curve of the target
solution is likely to be steady. Figure 2 shows the convergence diagrams of the six tested algorithms
for solving some representative complexes. The number of iterations is 3000, 6000, 9000, 12,000, 15,000,
18,000, 21,000, 24,000, 27,000 and 30,000, respectively, and the values are utilized as the horizontal axis
of the convergence diagrams. Under different times of iteration, the energy value of each algorithm
is referred to as the vertical axis. With the increase of the number of iterations, the power grows
at the early stage of each algorithm. However, the power of certain algorithms is likely to be fixed
in the later stage due to the loss of evolutionary ability and the reduction of population diversity.
This phenomenon is referred to as premature convergence.



Int. J. Mol. Sci. 2018, 19, 1181 6 of 16

Figure 2. Convergence diagrams of six tested algorithms.

2.4. Data Distribution Analysis

The data distribution can reflect the algorithm stability and the data concentration. We calculate
the median, the first quartile, the third quartile, the minimum, and the maximum of the energy values
of each complex, and then we apply the five statistical quantities to obtain the box plots (Figure 3).
The median is suitable as a centralized trend value and not impacted by the extreme data. The median
is an important measure of whether the distribution of data is dispersed or concentrated. Moreover,
the first quartile is the upper boundary of the box and the third quartile is the lower boundary and the



Int. J. Mol. Sci. 2018, 19, 1181 7 of 16

size of the box also reflects the concentration of the data. The dots outside the minimum value and
maximum value are called outliers, and these outliers have a negative result on data distribution.

Figure 3. Box plots of six tested algorithms.



Int. J. Mol. Sci. 2018, 19, 1181 8 of 16

2.5. Hypothesis Test

To demonstrate whether the algorithm is more applicable to solve the protein–ligand problem,
we adopt the hypothesis test with the confidence level of 0.05 in the section. Comparing Algorithm
1 with Algorithm 2, when the p-value between them is less than 0.05, it shows that Algorithm 1
is significantly better than Algorithm 2. For every complex, ten best values solved by each tested
algorithm are taken out as experimental data. The results of the comparison of ADHDOCK with ABC,
DE, LGA, HIGA and SODOCK are shown in Table 4.

Table 4. The lowest energy and the smallest RMSD of the best predicted conformations.

PDB ABC DE LGA HIGA SODOCK

3ptb 4.49 × 10−8 3.17 × 10−4 2.15 × 10−3 7.12 × 10−3 3.32 × 10−4

1hdy 1.18 × 10−4 2.39 × 10−9 3.04 × 10−6 2.50 × 10−3 1.02 × 10−3

1aha 6.41 × 10−11 4.13 × 10−7 5.14 × 10−5 3.76 × 10−4 4.31 × 10−10

1dbb 2.27 × 10−3 1.03 × 10−3 4.15 × 10−4 3.25 × 10−4 1.43 × 10−3

1mrg 2.19 × 10−4 6.37 × 10−5 2.43 × 10−8 4.57 × 10−4 1.42 × 10−1

1ulb 3.91 × 10−7 2.31 × 10−8 8.15 × 10−4 4.35 × 10−3 2.82 × 10−4

1tnl 4.93 × 10−10 3.86 × 10−9 2.62 × 10−8 2.14 × 10−5 5.90 × 10−8

2phh 1.76 × 10−5 2.59 × 10−5 3.98 × 10−4 1.45 × 10−3 2.08 × 10−3

3hvt 8.99 × 10−6 7.34 × 10−7 4.12 × 10−2 9.98 × 10−1 3.06 × 10−8

1phg 3.77 × 10−6 6.33 × 10−6 3.37 × 10−4 1.51 × 10−1 9.12 × 10−2

2cht 1.74 × 10−8 2.78 × 10−7 4.09 × 10−5 2.74 × 10−4 6.32 × 10−5

2ctc 4.86 × 10−8 3.96 × 10−8 9.25 × 10−4 7.46 × 10−3 3.74 × 10−4

4cts 3.14 × 10−8 1.19 × 10−9 3.82 × 10−6 2.39 × 10−4 7.22 × 10−3

1abe 3.38 × 10−12 4.31 × 10−10 2.35 × 10−6 3.55 × 10−3 2.04 × 10−6

1hsl 1.19 × 10−10 3.08 × 10−8 1.05 × 10−6 5.32 × 10−4 3.91 × 10−5

2mcp 4.15 × 10−9 9.30 × 10−6 3.21 × 10−6 2.86 × 10−4 8.82 × 10−9

1stp 2.42 × 10−7 1.11 × 10−7 8.25 × 10−6 3.32 × 10−5 3.45 × 10−6

1tni 3.14 × 10−8 1.43 × 10−8 3.71 × 10−5 8.46 × 10−3 1.58 × 10−5

2lgs 2.37 × 10−5 1.33 × 10−9 2.54 × 10−8 4.52 × 10−5 2.28 × 10−4

1acm 1.42 × 10−8 2.12 × 10−9 5.18 × 10−4 3.15 × 10−2 4.12 × 10−4

2cgr 3.39 × 10−7 1.07 × 10−9 3.95 × 10−4 2.14 × 10−2 7.38 × 10−4

6rnt 3.51 × 10−4 4.52 × 10−4 2.49 × 10−1 9.82 × 10−1 1.01 × 10−1

1lst 1.78 × 10−10 2.91 × 10−8 3.53 × 10−5 5.54 × 10−3 2.32 × 10−4

2cmd 4.58 × 10−7 9.12 × 10−7 2.38 × 10−8 1.13 × 10−3 3.35 × 10−5

4dfr 1.26 × 10−8 1.09 × 10−9 7.74 × 10−4 2.52 × 10−3 1.34 × 10−4

1ett 2.29 × 10−6 8.17 × 10−7 1.16 × 10−4 7.70 × 10−3 1.02 × 10−8

1tka 4.75 × 10−8 3.92 × 10−10 2.97 × 10−7 3.63 × 10−5 2.18 × 10−7

8gch 2.48 × 10−6 8.19 × 10−5 4.08 × 10−5 1.40 × 10−4 9.03 × 10−5

1hri 4.12 × 10−4 3.88 × 10−5 6.11 × 10−2 2.54 × 10−1 8.42 × 10−2

1trk 1.61 × 10−8 5.30 × 10−7 3.76 × 10−7 2.96 × 10−3 1.18 × 10−7

2sim 3.29 × 10−5 3.97 × 10−5 1.05 × 10−6 4.52 × 10−2 7.12 × 10−6

1eap 1.54 × 10−4 2.98 × 10−6 3.67 × 10−3 8.56 × 10−1 1.52 × 10−1

1fkg 4.92 × 10−5 3.73 × 10−5 9.13 × 10−4 1.19 × 10−4 9.62 × 10−6

1hvr 1.01 × 10−7 2.92 × 10−5 1.93 × 10−4 8.52 × 10−3 8.32 × 10−5

1lna 2.29 × 10−5 5.37 × 10−6 9.10 × 10−5 6.13 × 10−3 3.40 × 10−5

1nco 1.02 × 10−2 6.13 × 10−2 2.24 × 10−1 8.12 × 10−1 5.46 × 10−2

4hmg 6.15 × 10−6 2.23 × 10−5 8.75 × 10−4 1.40 × 10−4 1.07 × 10−5

1bbp 1.07 × 10−5 8.13 × 10−7 2.82 × 10−7 4.94 × 10−3 2.85 × 10−5

1cdg 8.32 × 10−6 1.02 × 10−6 7.21 × 10−4 7.16 × 10−2 1.14 × 10−4

1rds 3.91 × 10−4 4.27 × 10−7 6.15 × 10−4 6.26 × 10−2 1.08 × 10−5

1htf 2.24 × 10−7 6.27 × 10−6 1.80 × 10−6 3.42 × 10−4 1.17 × 10−4

1glq 7.59 × 10−5 8.18 × 10−8 2.60 × 10−5 1.51 × 10−4 3.58 × 10−7

1hpv 7.12 × 10−2 3.92 × 10−4 6.15 × 10−2 8.15 × 10−1 9.33 × 10−2

1qbt 8.04 × 10−9 2.71 × 10−9 1.16 × 10−6 2.12 × 10−4 5.72 × 10−4

1lic 2.43 × 10−7 6.39 × 10−7 8.18 × 10−3 6.88 × 10−1 5.89 × 10−2

1tmn 2.06 × 10−7 6.18 × 10−7 2.93 × 10−6 3.52 × 10−4 9.86 × 10−4

4phv 1.35 × 10−11 5.13 × 10−9 4.75 × 10−6 6.56 × 10−6 1.12 × 10−4

1epo 7.87 × 10−10 1.03 × 10−6 3.42 × 10−8 1.04 × 10−3 2.77 × 10−6

1aaq 1.02 × 10−10 5.52 × 10−8 1.24 × 10−7 3.18 × 10−5 6.19 × 10−7

1hiv 8.91 × 10−9 4.43 × 10−8 6.88 × 10−7 2.86 × 10−4 1.58 × 10−6



Int. J. Mol. Sci. 2018, 19, 1181 9 of 16

3. Discussion

In this study, we demonstrated the superiority of ADHDOCK by many experiments. The number
of success cases and the average RMSDs are recorded in Table 1. ADHDOCK finds forty-four success
cases in the fifty complexes for the first predicted conformation, and the success rate of the algorithm is
higher than that of ABC, DE, LGA, HIGA and SODOCK. In addition, the average RMSD (all cases) and
the average RMSD (RMSD < 2.0 Å) with their respective standard deviations of ADHDOCK are the
smallest compared with the other tested algorithms. It can be seen in Table 2 that ADHDOCK is well
capable of finding the lowest energy values on forty-four out of fifty complexes. HIGA searches for the
lowest values on six out of fifty complexes. For the smallest RMSD of the fifty complexes, ADHDOCK
finds thirty-five smallest values, HIGA finds eight smallest values, LGA finds three smallest values,
SODOCK finds two smallest values, and ABC and DE find one smallest value each. The experimental
results indicate that ADHDOCK can solve protein–ligand docking problems more effectively and
accurately than the five other comparative algorithms.

For the convergence analysis, ABC is prematurely convergent after iterating 18,000 times in
3tpb. DE is prematurely convergent after iterating 21,000 times in 1aha. The figure shows that,
when compared with other algorithms on preventing premature convergence and enhancing solution
quality, ADHDOCK is better. Moreover, for this case, as shown in 1aha and 1stp, it is obvious that
the convergent trajectory of ADHDOCK is far away from others. For 3ptb and 4dfr, the convergent
trajectories of ADHDOCK and HIGA are similar, but ADHDOCK is better than HIGA with the iteration
of the optimization process. For 1hri, 4hmg, 1htf and 1tmn, ADHDOCK does not show the advantage
in the early iteration, but the method gets better solutions than the other algorithms in the late iteration.
From the above analyses, we can arrive at a conclusion that ADHDOCK significantly outperforms the
other five comparative algorithms.

It is apparent in the box plots shown in Figure 3 that the median energy of ADHDOCK is lower
than that of the other tested algorithms. The size of the boxes of ADHDOCK is the shortest in most
complexes. It is evident that ADHDOCK has the most concentrated data distribution among the six
test algorithms. For the outliers, ADHDOCK has no outliers, which indicates that the algorithm can
reduce the randomness of the evolutionary process. It can be concluded from the above analysis that
ADHDOCK is stable for protein–ligand docking.

As shown in Table 3, ADHDOCK is significantly better than other tested algorithms in thirty-nine
out of fifty complexes. In 1mrg, 3hvt, 1cdg, and 1rds, ADHDOCK is significantly better than four tested
algorithms. In 1phg, 1eap, and 1lic, ADHDOCK is significantly better than three tested algorithms.
In 6rnt and 1hri, ADHDOCK is significantly better than two tested algorithms. In 1nco and 1hpv,
ADHDOCK is significantly better than one tested algorithm. We can conclude from the results of the
hypothesis tests that the performance of ADHDOCK is the best.

4. Materials and Methods

4.1. Framework of ADHDOCK

ADHDOCK is a hybrid search algorithm based on ABC [34] and DE [35], and it is designed
for protein–ligand docking. The block diagram of ADHDOCK is shown in Figure 4. ADHDOCK
consists of three main modules. (1) ABC module: The population in the module is evolved according
to ABC algorithm. (2) DE module: The population in the module is evolved by using DE algorithm.
(3) Adaptive population partition (APP) module: The population is partitioned based on the partition
rate. In the following sections, the three main parts are described in detail.



Int. J. Mol. Sci. 2018, 19, 1181 10 of 16

Figure 4. Block diagram of ADHDOCK.

4.2. ABC Module

ABC [34] is an optimization method that simulates the foraging behavior of the bee colony. The
method consists of three kinds of bees: employed bees, onlooker bees and scout bees. The solution
to the problem to be optimized is considered the food source, and the richer the food, the better the
quality of the solution. The employed bees correspond to the food source they collect, and they store
the information about the food source and share it with other bees at a certain probability. The number
of employed bees is equal to the number of food sources, as one employed bee is related to only one
food source. The onlooker bees observe the dance of the employed bees in the hive to determine
which food source to choose. The scout bees randomly search for new food sources near the hive. The
basic structure of the ABC algorithm can be split into employed bee stage, onlooker bee stage and
scout stage.

At the employed bee stage, each employed bee hunts for a new food source near the existing food
source xi by

vi(t + 1) = xi(t) + ϕ(xi(t)− xk(t)) (3)

where xk is a randomly selected food source; t is the iteration number; and ϕ is a random real number.
The fitness between the new food source and the existing food source is compared, and the one with
greater fitness is retained. The selection can be defined as

xi(t + 1) =

{
vi(t + 1) i f f it(vi(t + 1)) ≤ f it(xi(t))
xi(t) otherwise

(4)

where f it() is the fitness function.
At the onlooker bee stage, each onlooker bee makes a selection according to the information of

the food source. The probability that an onlooker bee chooses a food source can be calculated by

pi =
f it(xi(t))

∑M
i=1 f it(xi(t))

(5)

It is clear from Equation (5) that the solution with a greater fitness has a higher probability of
being chosen by an onlooker bee. If the onlooker bee has selected a food source, it generates a new
solution by Equation (3) and evaluates the fitness by Equation (4).

At the scout bee stage, if the employed bee fails to improve the quality of the solution after a
given number of attempts limit are achieved, the employed bee becomes a scout bee and the solution it



Int. J. Mol. Sci. 2018, 19, 1181 11 of 16

owns is abandoned. The number of employed bees and the number of onlooker bees each account for
half of the population size, and the number of scout bees is selected as one.

Subsequently, the evolutionary rate of ABC module is calculated, and the equation is given below:

v =
N

∑
i=1

f it(xi(t))− f it(xi(t − 1))
f it(xi(t))

(6)

where f it(xi) is the fitness of an individual xi at iteration t. f it(xi(t))-f it((t-1)) represents the difference
between the fitness of the current iteration and that of the previous iteration, and the difference is
called evolution velocity. An iteration with a higher evolutionary rate is considered to be more accurate
in the search direction of the algorithm. The accuracy of the search direction affects the possibility of
finding a better solution in subsequent iterations. Figure 5 gives the pseudocode of ABC module.

Figure 5. Pseudocode of ABC module.

4.3. DE Module

DE [35] is an efficient global optimization algorithm that simulates biological evolution.
Each individual in a population corresponds to a possible solution, and the swarm intelligence
generated by mutual cooperation and competition between individuals guides the direction of
optimization search. The algorithm starts with a random initial population and gets the optimal
solution by iterative mutation, crossover and selection.

A mutated individual is generated by

vi(t + 1) = xr1(t) + F(xr2(t)− xr3(t)) (7)



Int. J. Mol. Sci. 2018, 19, 1181 12 of 16

where xr1, xr2, and xr3 are three individuals randomly selected from the previous generation; t denotes
the iteration number; and F is the scalar number. The vector difference between xr1 and xr2 is calculated,
and then the vector difference is multiplied by F and added to the individual xr3 to be mutated.

A test individual is obtained by crossing the mutant individual and the predetermined target
individual. The crossover operation is described as

ui(t + 1) =

{
vi(t + 1) i f rand(0, 1) < CR
xi(t) otherwise

(8)

where rand(0,1) generates a random number from 0 to 1; and CR is the probability of crossover, and it
is a constant between 0 and 1.

The next generation of individuals is selected by

xi(t + 1) =

{
ui(t + 1) i f f it(ui(t + 1)) ≤ f it(xi(t))
xi(t) otherwise

(9)

where f it() is the fitness function, which generally takes the objective function to be optimized as the
fitness function. If the fitness of the test individual is better than that of the current individual, the old
individual is replaced by the new individual in the next iteration, otherwise the old individual is still
preserved. After executing the three basic operations of DE, the evolution rate is calculated according
to Equation (6). The pseudocode of DE module is shown in Figure 6.

Figure 6. Pseudocode of DE module.

4.4. APP Module

The population is randomly divided into two different subpopulations. The number of individuals
in Subpopulation 1 P1 and Subpopulation 2 P2 is M1 = M × PR and M2 = M − M1, where M is the total
number of the population; and PR is the proportion of individuals in Subpopulation 1 called partition



Int. J. Mol. Sci. 2018, 19, 1181 13 of 16

rate, which is set to 0.5 as the initial value. After the partition, the individuals of Subpopulation 1 evolve
according to ABC module and the individuals of Subpopulation 2 evolve according to DE module.

When an evolution is completed, the emergence probability of new elite individuals in
each subpopulation is called elite probability, and the elite probability is expressed according to
Equation (10).

OZ =

EZ
∑

j=1
ej(t)

MZ
∑

i=1
xi(t)

(10)

where Mz is the size of a subpopulation; xi is an individual belongs to the subpopulation at iteration t;
Ez is the number of elite individuals in the subpopulation; and ej is an elite individual belonging to
the subpopulation at current iteration. z is 1 or 2 and represents Subpopulation 1 and Subpopulation
2, respectively. The total size of the population M = M1 + M2. The total size of the elite individuals
E = E1 + E2. The E elite individuals are found at the same time as fitness evaluation, and E is typically
set to 20% of M. The elite probability can reflect the search capability of ABC module and DE module.
The more elite individuals there are in this iteration, the greater the probability of continuing to
reproduce elite individuals in the next iteration.

Then, the subpopulations are combined and the partition rate PR is calculated by Equation (11).

PR =
o1 × v1

o1 × v1 + o2 × v2
(11)

The above partition strategy is called APP. APP adaptively partitions the population and allocates
ABC module and DE module in each iteration according to the search situations of these two modules.
If the elite probability is simply taken as the basis of the population partition, there will be a situation
in which one module accounts for the majority or all of the population and the other module evolves
slowly or ceases to evolve because of the lack of individual resources. This is because elite individuals
are more likely to reproduce elite individuals. The introduction of the evolutionary rate is a good
solution to the situation. The evolutionary rate determines the evolutionary direction of the entire
population rather than elite individuals. The evolutionary rate of a module is reduced if the individuals
of the module have little impact on the entire population, which can prevent unreasonable partition.
The process of partitioning the population is continuously carried out with the iteration of the
algorithm until the algorithm reaches a specific terminating condition. Figure 7 gives the pseudocode
of APP module.

Figure 7. Pseudocode of APP module.



Int. J. Mol. Sci. 2018, 19, 1181 14 of 16

4.5. Hybrid Search of ADHDOCK

ADHDOCK is a hybrid algorithm consisting of ABC module, DE module, and APP module for
solving protein–ligand docking problems. In ABC module, the population in the module is evolved
according to ABC algorithm. ABC is a specific application of swarm intelligence, and it has a faster
convergence rate. Through the local optimization behavior of each artificial bee, the global optimal
solution is eventually revealed in the population. In DE module, the population in the module
is evolved according to DE algorithm. DE simulates the process of biological evolution, and the
individuals who adapt to the environment are preserved after repeated iterations. Compared with GA,
the global search strategy based on population is the same, but the complexity of genetic operation
of DE is reduced by the simple mutation operation based on difference and the survival strategy
of one-to-one competition. ABC and DE have applications in the fields of function optimization,
data mining, pattern recognition and so on. The main drawback of these two algorithms is the high
probability of falling into local optima, which leads to premature convergence of the algorithms and
the high energy values obtained for protein–ligand docking. The reason for the shortcoming is that
each algorithm uses a single search strategy.

ADHDOCK applies APP module to combine ABC module and DE module effectively.
APP module can reasonably allocate the computational resources of the population in each iteration
process. In the initialization of ADHDOCK, the population is partitioned into two subpopulations
with the same number of individuals, and the two subpopulations are allocated to ABC module
and DE module. After an iterative process of ABC and DE, the two subpopulations are combined.
The combined population is repartitioned and then reallocated according to APP module. If one
module performs well in this iteration, the module will get more individuals than the other module.
The specific usage of APP module is described in the previous chapters. The above process is repeated
until a predefined termination condition is reached. If the number of individuals in one module is
increasing with the iteration of the algorithm, it can be considered that the module does not fall into
local optima. ADHDOCK adopts the search strategies of ABC and DE, and the double search strategy
of the novel algorithm can reduce the probability of falling into local optima.

5. Conclusions

Protein–ligand docking method has a pivotal part in the field of drug research and provides an
effective tool for the discovery and optimization of leading compounds. Studying the interaction
between small molecules and protein macromolecules and identifying the target of small molecules
in the organisms can help to find a new breakthrough for the development of new drugs. The article
presents ADHDOCK, which combines ABC module, ED module, and APP module to solve the
protein–ligand docking problem. APP module is responsible for partitioning the population so
that computer resources can be used more reasonably. ABC module and ED module execute in
parallel under the guidance of APP module, their search capability is maximized. To demonstrate the
advantages of ADHDOCK, we also compared the performance of the novel algorithm with that of ABC,
DE, LGA, HIGA and SODOCK. Our results indicate that ADHDOCK is superior to the other tested
algorithms for the docking problem, in terms of docked energy and RMSD, success rate, convergence
performance, data distribution, and hypothesis test.

Acknowledgments: This work was supported by the National Natural Science Foundation Program of China
(61772124), the State Key Program of National Natural Science of China (61332014), the Fundamental Research
Funds for the Central Universities under Grant 150402002 and Grant 150404008, and the Peak Discipline
Construction of Computer Science and Technology under Grant 02190021821001.

Author Contributions: Boxin Guan and Changsheng Zhang conceived and designed the experiments; Boxin Guan,
Changsheng Zhang, and Yuhai Zhao performed the experiments; Boxin Guan and Changsheng Zhang analyzed
the data; Boxin Guan and Yuhai Zhao wrote the manuscript; and Boxin Guan revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2018, 19, 1181 15 of 16

Abbreviations

ADHDOCK an efficient ABC_DE_based hybrid algorithm for protein–ligand docking
ABC artificial bee colony
DE differential evolution
HIGA running history information guided genetic algorithm
PSO particle swarm optimization
SODOCK swarm optimization for highly flexible protein–ligand docking
APP adaptive population partition
CADD computer aided drug design
SA simulated annealing
GA genetic algorithm
LGA Lamarckian genetic algorithm
RMSD Root-mean-square deviation

References

1. Bohlooli, F.; Sepehri, S.; Razzaghi-AsI, N. Response surface methodology in drug design: A case study on
docking analysis of a potent antifungal fluconazole. Comput. Biol. Chem. 2017, 67, 158–173. [CrossRef]
[PubMed]

2. Antón, P.R.L.; Francisco, C.; Alejandro, P.; Belén, P.P.A. Deep Artificial Neural Networks and Neuromorphic
Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications. Int. J. Mol. Sci. 2016, 17,
1313–1338.

3. Allen, S.E.; Dokholyan, N.V.; Bowers, A.A. Dynamic docking of conformationally constrained macrocycles:
Methods and applications. ACS Chem. Biol. 2016, 11, 10–24. [CrossRef] [PubMed]

4. Zou, Q.; Li, J.J.; Song, L.; Zeng, X.X.; Wang, G.H. Similarity computation strategies in the microRNA-disease
network: A Survey. Brief. Funct. Genom. 2016, 15, 55–64. [CrossRef] [PubMed]

5. Bjerrum, E.J. Machine learning optimization of cross docking accuracy. Comput. Biol. Chem. 2016, 62, 133–144.
[CrossRef] [PubMed]

6. Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor-ligand molecular docking. Biophys. Rev. 2014, 6,
75–87. [CrossRef] [PubMed]

7. Atkovska, K.; Samsonov, S.A.; Paszkowskirogacz, M.; Pisabarro, M.T. Multipose Binding in Molecular
Docking. Int. J. Mol. Sci. 2014, 15, 2622–2645. [CrossRef] [PubMed]

8. Feinstein, W.P.; Brylinski, M. Calculating an optimal box size for ligand docking and virtual screening against
experimental and predicted binding pockets. J. Cheminform. 2015, 7, 18. [CrossRef] [PubMed]

9. Zeng, X.X.; Liao, Y.L.; Liu, Y.S.; Zou, Q. Prediction and validation of disease genes using HeteSim Scores.
IEEE ACM Trans. Comput. Biol. Bioinform. 2017, 14, 687–695. [CrossRef] [PubMed]

10. Zhao, Y.H.; Wang, G.R.; Zhang, X.; Yu, J.X.; Wang, Z.H. Learning Phenotype Structure Using Sequence
Model. IEEE Trans. Knowl. Data Eng. 2014, 26, 667–681. [CrossRef]

11. Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, J.; Gorbeil, C.R. Towards the development of universal,
fast and highly accurate docking/scoring methods: A long way to go. Br. J. Pharmacol. 2008, 153, 7–26.
[CrossRef] [PubMed]

12. Hu, X.; Balaz, S.; Shelver, W.H. A practical approach to docking of zinc metalloproteinase inhibitors. J. Mol.
Graph. Model. 2004, 22, 293–307. [CrossRef] [PubMed]

13. Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. Software news and update a semiempirical free energy
force field with charge−based desolvation. J. Comput. Chem. 2006, 10, 1145–1152.

14. Jain, A.N. Scoring functions for protein−ligand docking. Curr. Protein Pept. Sci. 2006, 7, 407–420. [PubMed]
15. Muryshev, A.E.; Tarasov, D.N.; Butygin, A.V.; Butygina, O.V.; Aleksandrov, A.B.; Nikitin, S.M. A novel

scoring function for molecular docking. J. Comput. Aided Mol. Des. 2003, 17, 597–605. [CrossRef] [PubMed]
16. Ain, Q.U.; Aleksandrova, A.; Roessler, F.D.; Ballester, P.J. Machine−learning scoring functions to improve

structure-based binding affinity prediction and virtual screening. Wiley. Interdiscip. Rev. Comput. Mol. Sci.
2015, 5, 405–424. [CrossRef] [PubMed]

17. Jug, G.; Anderluh, M.; Tomašič, T. Comparative evaluation of several docking tools for docking small
molecule ligands to DC-SIGN. J. Mol. Model. 2015, 21, 164–178. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compbiolchem.2017.01.005
http://www.ncbi.nlm.nih.gov/pubmed/28129567
http://dx.doi.org/10.1021/acschembio.5b00663
http://www.ncbi.nlm.nih.gov/pubmed/26575401
http://dx.doi.org/10.1093/bfgp/elv024
http://www.ncbi.nlm.nih.gov/pubmed/26134276
http://dx.doi.org/10.1016/j.compbiolchem.2016.04.005
http://www.ncbi.nlm.nih.gov/pubmed/27179709
http://dx.doi.org/10.1007/s12551-013-0130-2
http://www.ncbi.nlm.nih.gov/pubmed/28509958
http://dx.doi.org/10.3390/ijms15022622
http://www.ncbi.nlm.nih.gov/pubmed/24534807
http://dx.doi.org/10.1186/s13321-015-0067-5
http://www.ncbi.nlm.nih.gov/pubmed/26082804
http://dx.doi.org/10.1109/TCBB.2016.2520947
http://www.ncbi.nlm.nih.gov/pubmed/26890920
http://dx.doi.org/10.1109/TKDE.2013.31
http://dx.doi.org/10.1038/sj.bjp.0707515
http://www.ncbi.nlm.nih.gov/pubmed/18037925
http://dx.doi.org/10.1016/j.jmgm.2003.11.002
http://www.ncbi.nlm.nih.gov/pubmed/15177081
http://www.ncbi.nlm.nih.gov/pubmed/17073693
http://dx.doi.org/10.1023/B:JCAM.0000005766.95985.7e
http://www.ncbi.nlm.nih.gov/pubmed/14713191
http://dx.doi.org/10.1002/wcms.1225
http://www.ncbi.nlm.nih.gov/pubmed/27110292
http://dx.doi.org/10.1007/s00894-015-2713-2
http://www.ncbi.nlm.nih.gov/pubmed/26040678


Int. J. Mol. Sci. 2018, 19, 1181 16 of 16

18. Castro-Alvarez, A.; Costa, A.M.; Vilarrasa, J. The Performance of Several Docking Programs at Reproducing
Protein-Macrolide-Like Crystal Structures. Molecules 2017, 22, 136. [CrossRef] [PubMed]

19. Guo, L.Y.; Yan, Z.Q.; Zheng, X.L.; Hu, L.; Yang, Y.L.; Wang, J. A comparison of various optimization
algorithms of protein-ligand docking programs by fitness accuracy. J. Mol. Model. 2014, 20. [CrossRef]
[PubMed]

20. Bharatham, N.; Bharatham, K.; Shelat, A.A.; Bashford, D. Ligand binding more prediction by docking:
mdm2/mdmx inhibitors as a case study. J. Chem. Inf. Model. 2014, 54, 648–659. [CrossRef] [PubMed]

21. Bernauer, J.; Azé, J.; Janin, J.; Poupon, A. A new protein–protein docking scoring function based on interface
residue properties. Bioinformatics 2007, 23, 555–562. [CrossRef] [PubMed]

22. Li, Z.F.; Gu, J.F.; Zhuan, H.Y.; Kang, L.; Zhao, X.Y.; Guo, Q. Adaptive molecular docking method baesd on
information entropy genetic algorithm. Appl. Soft Comput. 2015, 26, 299–302. [CrossRef]

23. Zhao, Y.H.; Yu, J.X.; Wang, G.R.; Chen, L.; Wang, B.; Yu, G. Maximal Subspace Coregulated Gene Clustering.
IEEE Trans. Knowl. Data Eng. 2008, 20, 83–98. [CrossRef]

24. Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. Hybrid mataheuristics in combinatorial optimization: A survey.
Appl. Soft Comput. 2011, 11, 4135–4151. [CrossRef]

25. López-Camacho, E.; Godoy, M.J.; Garcỉa-Nieto, J.; Nebro, A.J.; Aldana-Montes, J.F. Solving molecular
flexible docking problems with mataheuristics: A comparative study. Appl. Soft Comput. 2015, 28, 379–393.
[CrossRef]

26. Thomsen, R. Flexible ligand docking using evolutionary algorithms: Investigating the effects of variation
operators and local search hybrids. Biosystems 2003, 72, 57–73. [CrossRef]

27. Ng, M.C.; Fong, S.; Siu, S.W. PSOVina: The hybrid particle swarm optimization algorithm for protein–ligand
docking. J. Bioinform. Comput. Biol. 2015, 13. [CrossRef] [PubMed]

28. Uehara, S.; Fujimoto, K.J.; Tanaka, S. Protein-ligand docking using fitness learning-based artificial bee colony
with proximity stimuli. Phys. Chem. Chem. Phys. 2015, 17, 16412–16417. [CrossRef] [PubMed]

29. Goodsell, D.S.; Olson, A.J. Automated docking of substrates to proteins by simulated annealing.
Proteins Struct. Funct. Genet. 1990, 8, 195–202. [CrossRef] [PubMed]

30. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm
for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [CrossRef] [PubMed]

31. Fuhrmann, J.; Rurainsk, A.; Lenhof, H.P.; Neumann, D. A new Lamarckian genetic algorithm for flexible
ligang-receptor docking. J. Comput. Chem. 2010, 31, 1911–1918. [PubMed]

32. Guan, B.; Zhang, C.; Zhao, Y. HIGA: A Running History Information Guided Genetic Algorithm for
Protein–Ligand Docking. Molecules 2017, 22, 2233. [CrossRef] [PubMed]

33. Chen, H.M.; Liu, B.F.; Huang, H.L.; Hwang, S.F.; Ho, S.Y. SODOCK: Swarm optimization for highly flexible
protein–ligand docking. J. Comput. Chem. 2007, 28, 612–623. [CrossRef] [PubMed]

34. KKaraboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial
bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

35. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

36. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4
and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30,
2785–2791. [CrossRef] [PubMed]

37. Wang, R.X.; Fang, X.L.; Lu, Y.P.; Yang, C.Y.; Wang, S.M. The PDBbind database: Methodologies and updates.
J. Med. Chem. 2005, 48, 4111–4119. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/molecules22010136
http://www.ncbi.nlm.nih.gov/pubmed/28106755
http://dx.doi.org/10.1007/s00894-014-2251-3
http://www.ncbi.nlm.nih.gov/pubmed/24935106
http://dx.doi.org/10.1021/ci4004656
http://www.ncbi.nlm.nih.gov/pubmed/24358984
http://dx.doi.org/10.1093/bioinformatics/btl654
http://www.ncbi.nlm.nih.gov/pubmed/17237048
http://dx.doi.org/10.1016/j.asoc.2014.10.008
http://dx.doi.org/10.1109/TKDE.2007.190670
http://dx.doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1016/j.asoc.2014.10.049
http://dx.doi.org/10.1016/S0303-2647(03)00135-7
http://dx.doi.org/10.1142/S0219720015410073
http://www.ncbi.nlm.nih.gov/pubmed/25800162
http://dx.doi.org/10.1039/C5CP01394A
http://www.ncbi.nlm.nih.gov/pubmed/26050878
http://dx.doi.org/10.1002/prot.340080302
http://www.ncbi.nlm.nih.gov/pubmed/2281083
http://dx.doi.org/10.1006/jmbi.1996.0897
http://www.ncbi.nlm.nih.gov/pubmed/9126849
http://www.ncbi.nlm.nih.gov/pubmed/20082382
http://dx.doi.org/10.3390/molecules22122233
http://www.ncbi.nlm.nih.gov/pubmed/29244750
http://dx.doi.org/10.1002/jcc.20542
http://www.ncbi.nlm.nih.gov/pubmed/17186483
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pubmed/19399780
http://dx.doi.org/10.1021/jm048957q
http://www.ncbi.nlm.nih.gov/pubmed/15943484
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Data Preparation and Parameter Setting 
	Comparison of Energy and Root-Mean-Square Deviation (RMSD) 
	Convergence Analysis 
	Data Distribution Analysis 
	Hypothesis Test 

	Discussion 
	Materials and Methods 
	Framework of ADHDOCK 
	ABC Module 
	DE Module 
	APP Module 
	Hybrid Search of ADHDOCK 

	Conclusions 
	References

