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Abstract: In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were
produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular
mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study
we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A-expressing
transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904
differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated
in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and
1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed
that the ‘signal transduction mechanisms’ category was highly enriched among these DEGs
both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) annotation, DEGs associated with “ribosome”, “plant hormone signal transduction”,
photosynthesis”, “plant-pathogen interaction”, “glycolysis/gluconeogenesis” and “carbon fixation”
are hypothesized to perform major functions in drought resistance in AtDREBI1A-expressing
transgenic plants. Furthermore, the number of DEGs associated with different transcription factors
increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families.
Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and
provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in
transgenic plants.

Keywords: transcriptome; drought; AtDREB1A; Salvia miltiorrhiza; phytohormones; transcription
factors; photosynthesis

1. Introduction

RNA-sequencing (RNA-seq) is a powerful analytical tool for transcriptomic studies. It is a
well-established method that continues to develop rapidly, driving down the cost of data acquisition
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and helping to unravel complex gene expression and regulation phenomena [1-3]. This technology
has been applied recently to diverse plant species to examine the genetic responses to abiotic and biotic
stresses such as drought, high and low temperatures, salinity, sulfate starvation, nitrogen deficiency
and pathogen infection, as well as changes in gene expression occurring during development [4-13].
Garg et al. [8] performed RNA-seq analyses in salt-tolerant and drought-related chickpea genotypes
under normal and stressed conditions during vegetative and reproductive growth. Comparative
transcriptomics revealed differences in gene expression between the two genotypes during different
developmental stages. In all, 5545 and 4954 genes were regulated only in salt- and drought-tolerant
genotypes, respectively [8]. In maize, RNA-seq was performed to measure changes in the global
transcriptome before and after freezing treatment. This study identified 948 genes that showed
differential expression between highly sensitive and highly tolerant lines under freezing conditions.
Gene ontology (GO) classifications found that these differentially expressed genes (DEGs) were
significantly enriched for binding functions (metal ion binding, DNA binding and ATP binding),
peptidase activity and protein kinase activity [6]. In the RNA-seq database of developing canola
embryos, Deng et al. [7] identified 55 DEGs encoding 28 enzymatic functions related to carbon flux
through fatty acids for the storage of triacylglycerols, 122 DEGs encoding transcription factors and
41 DEGs associated with signal transduction, transport and metabolism of different phytohormones [7].

Recently, transcriptome profiling has been used as a comprehensive non-targeted approach to
examine secondary effects on gene expression resulting from the introduction of transgenes [14-20].
Transcriptomic studies indicated that overexpression of OsiSAP1 in transgenic rice affected the
expression of endogenous genes encoding membrane transporters, transcription factors, signaling
components, as well as genes involved in growth, development and metabolism. In all, 150 genes were
up-regulated in transgenic plants, of which 43 have been linked to stress responses [21]. Transgenic
alfalfa plants overexpressing MsmiR156, a precursor of microRNA156, exhibited a reduction in
internodal length, as well as increased shoot branching and trichrome density, enhanced biomass yield
and delayed flowering. A total of 160,472 transcripts were obtained after RNA sequencing on the
Illumina HiSeq2500 and 4985 significantly differentially expressed genes were identified in transgenic
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miR1560E plants. The enriched GO terms “electron transporter”, “chitin binding”, ‘sucrose-phosphate
synthase activity”, “sucrose transport”, ‘sexual reproduction”, “starch synthase activity”, “lignin
catabolism”, and “flavonoid biosynthesis” correlate well with the phenotypes of the miR1560E alfalfa
plants [3]. In birch, overexpression of the endogenous Betula platyphylla APETALA1 (BpAP1) gene
caused early flowering and 166 putative target genes of BpAP1 were predicted after combining the
RNA-seq database with birch genome information [22].

Salvia miltiorrhiza Bunge (Lamiaceae)—also known as Chinese sage—is an important herb in
Traditional Chinese Medicine (TCM); its rhizome/roots have been widely used for the treatment of
various cardiovascular and cerebrovascular diseases [23]. Recently, the transcriptome research on
S. miltiorrhiza has been mainly focused on the analysis and regulation of the metabolic pathways of
tanshinone and salvianolic acid. Arabidopsis transcription factor DREB1A (AtDREB1A) has been
proved to be endowed with abiotic stress tolerance in many plant species, such as rice [24], tobacco [25]
and potato [26] and many downstream genes have been identified in Arabidopsis, including rd294,
kinl, cor15a and cor47 [27]. In our previous study, we engineered drought tolerance in S. miltiorrhiza by
overexpressing AtDREB1A [23]. Compared with wild-type (WT), a higher chlorophyll (Chl) content
and relative water content (RWC) and an elevated photosynthetic rate were detected in transgenic
plants after drought treatment. The MDA content was generally lower in AtDREB1A transgenic plants
but SOD, CAT and POD activities were higher following drought stress. In addition, we identified
some genes (e.g., PBS1, KIN10, bHLH122, ERF1B and LEA) regulated by AtDREB1A through the
analysis of the transcriptome of transgenic plants after drought stress [23]. However, the molecular
basis of this elevated drought tolerance and the associated metabolic regulatory pathways remain
poorly understood.
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In order to further investigate the AtDREB1A-mediated drought tolerance in S. miltiorrhiza,
we evaluated global changes in gene expression using RNA-sequencing. RNA-seq analysis was
performed in a pRD29A::AtDREB1A transgenic line and compared to WT. The results suggest that,
even without a stress stimulus, expression of genes associated with plant growth and development
was significantly altered in the transgenic line. After exposure to drought stress, the differentially
expressed genes (DEGs) related to transcription factors and plant hormone signaling increased
significantly. The main pathways regulated by AtDREB1A, based on Kyoto Encyclopedia of Genes

"o

and Genomes (KEGG) enrichment analysis, include “ribosome”, “plant hormone signal transduction”,
4 £ 7 " 7 "

“photosynthesis”, “plant—pathogen interactions”, “glycolysis/gluconeogenesis”, “carbon fixation”,
and other metabolic pathways.

2. Results

2.1. lumina Sequencing and De Novo Assembly

In an attempt to elucidate the molecular mechanisms underpinning the enhanced drought
tolerance of the AtDREB1A overexpression lines, we compared global gene expression profiles
of WT and pRD29A::AtDREB1A-31 lines following drought treatments. RNA samples from three
separate 25-day-old plants before drought treatment (BD) and 31-day-old plants after 6 days of
drought (AD) were combined and used to generate cDNA libraries, yielding 27,026,927, 23,323,827,
23,222,857 and 17,566,704 clean reads for WT (BD), pRD29A::AtDREB1A-31 (BD), WT (AD) and
pRD29A::AtDREB1A-31 (AD) cDNA libraries, respectively. The guanine+cytosine (G + C) content
in these libraries was 49.35%, 49.90%, 48.74% and 49.75%, respectively and all Q30 percentages were
>87% (Table S1). Because no reference genome is available for S. miltiorrhiza, a de novo transcriptome
assembly was constructed by combining clean reads from all four cDNA libraries. High-throughput
RNA sequencing yielded 12,030,368 contigs, 173,129 transcripts and 78,915 unigenes with N50 lengths
of 42, 2048 and 1301 nt, respectively (Table S2).

2.2. Gene Annotation and Functional Classification of the DEGs

Approximately 48% (37,979) of the assembled unigenes could be annotated by BLAST searches,
using a threshold of 1 x 107, against the COG, KOG, GO, KEGG, Swiss-Prot, Pfam and NCBI nr
public databases. Among the annotated unigenes, 13,904 (17.62%), 22,861 (28.97%), 27,694 (35.09%),
10,017 (12.69%), 26,052 (33.01%), 26,117 (33.10%) and 37,091 (47.0%) were annotated using the COG,
KOG, GO, KEGG, Swiss-Prot, Pfam and NCBI nr databases, respectively (Table S3).

We analyzed unigene expression in WT and AtDREB1A-expressing plants using Bowtie and
RSEM software and normalized the values using Fragments Per Kilobase Million (FPKM). Differential
expression was assigned when (i) FDR values were <0.01; and (ii) the fold-change (FC) was >2.
DEGs expressed at higher levels in transgenic plants were defined as up-regulated and DEGs expressed
at lower levels in transgenic plants were assigned as down-regulated. To determine the number of
differentially regulated genes, log2FC values were plotted against negative log10(FDR) to generate
a volcano plot (Figure 1). The higher the value of the negative logl0(FDR), the more significant the
regulation and an 10g2FC of zero lies in the middle of the volcano, while negative log2FC values on
the left indicate a down-regulation and positive log2FC values on the right indicate an up-regulation.
A total of 3904 DEGs were identified through volcano plot and cluster analysis (Figure 2), 348 of
which were the same in the following comparisons; (1) WT (BD) versus pRD29A::AtDREB1A-31 (BD);
and (2) WT (AD) versus pRD29A::AtDREB1A-31 (AD) (Figure 3). Compared with WT, 423 unigenes
were up-regulated and 936 were down-regulated in pRD29A::AtDREB1A-31 before drought, while
1580 unigenes were up-regulated and 1313 were down-regulated in pRD29A::AtDREB1A-31 after
six days of drought treatment (Table S4).
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Figure 1. Volcano plots of differentially expressed genes (DEGs) in the comparisons of
AtDREB1A-overexpressing and wild-type (WT) plants of Salvia miltiorrhiza before and after
drought treatment. (A) WT (BD) versus pRD29A::AtDREB1A-31 (BD); (B) WT (AD) versus
pRD29A::AtDREB1A-31 (AD). WT, wild type plants of Salvia miltiorrhiza; pRD29A::AtDREB1A-31,
pRD29A::AtDREB1A transgenic line 31. BD, before drought; AD, after six days of drought treatment.

Figure 2. Cluster analysis of DEGs in WT and AtDREB1A-expressing transgenic Salvia miltiorrhiza
plants based on expression profiles measured by RNA-seq. WT, wild type; pRD29A::AtDREB1A-31,
pRD29A::AtDREB1A transgenic line 31. BD, before drought; AD, after six days of drought. The color
scale in the heat map corresponds to log2 (FPKM) values of genes in various samples.
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Figure 3. Venn diagram analysis of DEGs between two comparisons (WT (BD) versus
PRD29A::AtDREB1A-31 (BD) and WT (AD) versus pRD29A::AtDREB1A-31 (AD)). WT, wild type;
pRD29A::AtDREB1A-31, pRD29A::AtDREB1A transgenic line 31. BD, before drought; AD, after six
days of drought.

Global functional analysis of DEGs was carried out using GO annotation with Blast2GO to
derive “cellular component”, “molecular function”, and “biological process” categories (Figure 4).
In both comparisons, the most enriched terms for “cellular component” were “cell part”, ‘cell”,
and “organelle”, while the dominant categories for ‘molecular function” were “catalytic activity” and
“binding”. The “metabolic process” term was the most frequent in the “biological process” category,

followed by “cellular process” and “single-organism process” (Figure 4).
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Figure 4. Functional Gene Ontology (GO) term classifications of DEGs in the comparisons between
WT and AtDREBIA transgenic plants before and after drought treatment. (A) WT (BD) versus
pRD29A::AtDREB1A-31 (BD); (B) WT (AD) versus pRD29A::AtDREB1A-31 (AD). WT, wild type;
pRD29A::AtDREB1A-31, pRD29A::AtDREB1A transgenic line 31. BD, before drought; AD, after six
days of drought.
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2.3. COG Enrichment and KEGG Pathway Analysis of DEGs

Annotation using the COG (Cluster of Orthologous Groups of proteins) database showed that
many DEGs in both comparisons were not annotated accurately and hence placed in the “general
function prediction only” cluster. Considering the number of annotated genes in each category,
“translation, ribosomal structure and biogenesis”, “secondary metabolites biosynthesis, transport and
catabolism”, “posttranslational modification, protein turnover, chaperones” and “signal transduction
mechanisms” were the top four categories for DEGs in the WT (BD) versus pRD29A::AtDREB1A-31
(BD) comparison using the COG database (Figure 5A), while “transcription”, ‘signal transduction
mechanisms”, “carbohydrate transport and metabolism” and “replication, recombination and repair”
were the top four categories in the WT (AD) versus pRD29A::AtDREB1A-31 (AD) comparison
(Figure 5C). These results suggest DEGs in these categories are important in drought stress responses
in transgenic S. miltiorrhiza plants expressing AtDREBIA.
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Figure 5. COG and Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of DEGs in the
comparisons of WT and AtDREB1A transgenic plants before and after drought treatment. (A,B) WT
(BD) versus pRD29A::AtDREB1A-31 (BD); (C,D) WT (AD) versus pRD29A::AtDREB1A-31 (AD). WT,
wild type; pPRD29A::AtDREB1A-31, pRD29A::AtDREB1A transgenic line 31. BD, before drought; AD,
after six days of drought.

Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers were searched to predict
biochemical pathways associated with DEGs. The top 50 enriched KEGG pathways associated
with DEGs from the WT (BD) versus pRD29A:AtDREB1A-31 (BD) and WT (AD) versus
pRD29A::AtDREB1A-31 (AD) comparisons are shown in Figure 5B,D, respectively. The pathway
with the largest numbers of DEGs was “ribosome” in both comparisons (WT (BD) versus
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pRD29A::AtDREB1A-31 (BD) and WT (AD) versus pRD29A::AtDREB1A-31 (AD)). Furthermore,
many DEGs from the WT (AD) versus pRD29A::AtDREB1A-31 (AD) comparison were enriched
in the KEGG pathways “photosynthesis-antenna proteins”, “photosynthesis” and “plant hormone
signal transduction” with relatively lower enrichment factors and higher Q-values (Figure 6).
Before drought treatment, there was only one DEG in the photosynthesis pathway in the
WT and pRD29A:AtDREB1A-31 comparison, while 30 DEGs were found in the WT (AD)
versus pRD29A::AtDREB1A-31 (AD) comparison and most of these genes were upregulated in
PRD29A::AtDREB1A-31 transgenic plants (Figure 7).
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Figure 6. Scatter plot of KEGG pathways enriched in the comparisons of WT and AtDREB1A
transgenic plants before and after drought treatment. (A) WT (BD) versus pRD29A::AtDREB1A-31 (BD);
(B) WT (AD) versus pRD29A:AtDREB1A-31 (AD). WT, wild type; pRD29A:AtDREB1A-31,
pRD29A::AtDREBIA transgenic line 31. BD, before drought; AD, after six days of drought.
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Figure 7. Analysis of DEGs related to photosynthesis in the comparisons of WT and AtDREB1A
transgenic plants before and after drought treatment. (A) WT (BD) versus pRD29A::AtDREB1A-31 (BD);
(B) WT (AD) versus pRD29A::AtDREB1A-31 (AD). Red/green indicate up- and down-regulated
DEGs, respectively. Blue indicates DEGs with mixed patterns of regulation. WT, wild-type;
pRD29A::AtDREB1A-31, pRD29A::AtDREB1A transgenic line 31. BD, before drought; AD, after
six days of drought.

Plant hormone regulatory pathways including the salicylic acid, jasmonic acid, brassinosteroid,
ethylene, ABA, gibberellin, cytokinin and auxin pathways, showed little change in the WT (BD) versus
pRD29A::AtDREB1A-31 (BD) comparison, in which the SAUR and PP2C genes were up-regulated
and TGA was down-regulated in the pRD29A::AtDREB1A-31 transgenic line (Figure 8A). Following
exposure to drought stress, various pathways other than the brassinosteroid pathway are likely
involved in AtDREB1A-mediated enhanced tolerance to drought in transgenic S. miltiorrhiza plants
(Figure 8B). Analysis of plant hormone signal transduction pathways showed that two DEGs in the
cytokinin pathway and four DEGs in the gibberellin pathway were all up-regulated and four DEGs in
the ethylene pathway were all down-regulated in the pRD29A::AtDREB1A-31 transgenic plants, while
the DEGs in the other pathways exhibited mixed patterns of expression (Figure 8B, Table S5).
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Figure 8. Analysis of DEGs related to plant hormone signal transduction in the comparisons of
WT and AtDREBIA transgenic plants before and after drought treatment. (A) WT (BD) versus
PRD29A::AtDREB1A-31 (BD); (B) WT (AD) versus pRD29A::AtDREB1A-31 (AD). Red/green indicate
up- and down-regulated DEGs, respectively. Blue indicates DEGs with mixed patterns of regulation.
WT, wild-type; pRD29A::AtDREB1A-31, pRD29A::AtDREB1A transgenic line 31. BD, before drought;
AD, after six days of drought.
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2.4. DEGs Related to Transcription Factors

Gene expression was elevated or diminished upon introduction of the AtDREB1A transgene
before and after drought treatment in five main stress-related transcription factor families, namely
AP2/ERF (ethylene response factor), bZIP, MYB, NAC and WRKY. We identified 37 DEGs encoding
AP2/ERF transcription factors, 11 DEGs encoding bZIP transcription factors, 23 DEGs encoding
MYB-related proteins, 17 DEGs encoding NAC domain-containing proteins and 32 DEGs encoding
WRKY transcription factors (Table S6, Sheet 1). Compared with the before-drought treatment,
the number of DEGs between WT and the pRD29A::AtDREB1A-31 transgenic line associated with
different transcription factor families increased after drought stress, especially in the AP2/EREF,
bZIP and MYB families (Table S6).

2.5. Validation of DEGs by qRT-PCR Analysis

To validate the expression profiling results, we selected for further analysis 30 and 20 genes that
were significantly up- and down-regulated in AtDREB1A-expressing transgenic plants, respectively,
both before and after drought treatment (Tables S7 and S8). Quantitative RT-PCR was performed on
20 genes (12 and 8 significantly up- and down-regulated, respectively) selected at random among genes
for which expression was altered in the transgenic line relative to WT plants before and after drought
treatment (Table S9). The acquired relative expression levels of the selected genes were comparable
between the two experimental methods (Figure S1) and a high correlation (R% > 0.93) was observed
between qRT-PCR and RNA-seq data (Figure 9), confirming the accuracy of the approach.

12 -
 Log 2 (pRD29A:AtDREB1A-31(BD) / WT(BD)) R?= 0.940

9
4 Log 2 (pRD29A:ADREB1A-31(AD) / WT(AD)) R?=0.931

A 3 A
* ¢ 74 A
I\ Al
9 J
12 J

Figure 9. Correlations in changes in gene expression between fold-change determined from RNA-seq
data (X-axis) and data obtained using qRT-PCR (Y-axis). WT, wild-type; pRD29A::AtDREB1A-31,
pRD29A::AtDREBIA transgenic line 31. BD, before drought; AD, after six days of drought.

3. Discussion

In our previous study, we found that overexpression of AtDREB1A confers drought tolerance
in transgenic S. miltiorrhiza plants. Because AtDREB1A is a transcription factor, we can predict
that drought tolerance will result from changes to the transcriptional network of the plants [23].
To confirm this hypothesis and to gain new insight into the molecular mechanisms of the enhanced
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drought tolerance, global transcriptional profiling of WT and the AtDREB1A-expressing transgenic
line was compared using RNA-sequencing (RNA-seq) technology in the present study. RNA-seq is a
high-throughput sequencing technology that enables the study of global transcriptional profiling and
has been widely used investigate molecular responses to abiotic and biotic stresses and for comparing
transcriptomes under different treatments [4,11,28-34].

In the current study, we generated 22.96 Gb of clean sequencing read data that was assembled
de novo into 78,915 unigenes (Table S2). Of these, 37,979 unigenes (~48% of assembled unigenes)
were functionally annotated against public protein databases (COG, KOG, GO, KEGG, Swiss-Prot,
Pfam and NCBI nr database). Thus, functional annotation could not be assigned for 52% of the
assembled unigenes, due either to a match with a protein of unknown function, or because no
matching homologous protein sequence was identified (Table S3). These unigenes could be of great
interest, since they may be novel transcripts or alternatively spliced variants.

Analysis of RNA-seq data revealed that the global gene expression profile of S. miltiorrhiza
plants overexpressing AtDREBI1A differed from that of control plants. Compared with WT, before
drought, 1359 genes showed significantly different levels of expression in the pRD29A::AtDREB1A
transgenic line, of which 423 were up-regulated and 936 were down-regulated. After six days
of drought treatment, the number of DEGs increased to 2893, with 1580 up-regulated and
1313 down-regulated in the pRD29A::AtDREB1A transgenic plants, which indicated that AtDREB1A
may mediate drought tolerance by modulating the expression of many stress-related genes.
Interestingly, only 348 DEGs were shared between the before- and after-drought comparisons (Figure 3).
This could be due to variations in the expression levels of the AtDREB1A transcription factor before
and after drought stress, resulting in different genetic regulatory patterns in transgenic plants.

The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in
all organisms [35]. Some ribosomal proteins are known to play other important roles in plants.
The multifunctional ribosomal protein S3 is a structural and functional component of the ribosome
and DNA repair enzyme in the DNA base excision repair pathway [36]. The wheat ribosomal
protein L5 gene has been shown to be dramatically induced by salt, freezing and drought stresses,
suggesting that this gene may contribute to salt tolerance [37]. In this study, the “ribosome”
pathway ranked first among the top 50 KEGG pathways of DEGs identified in the WT versus
PRD29A::AtDREB1A-31 comparison both before and after drought stress (Figure 5), indicating that the
AtDREBI1A transcription factor can respond to drought stress by regulating the ribosome pathway in
transgenic S. miltiorrhiza plants.

Transcription factors and phytohormones play an important role in the plant stress
response [38—41]. Transcription factors are known to interact with cis-transcriptional regulatory
elements such as promoters, silencers, enhancers, insulators and LCR regions that are situated adjacent
to the genes that they regulate and they consequently regulate the expression of numerous downstream
genes to control diverse biological processes [1,42,43]. A slight alteration in the relative abundance of
transcription factor mRNAs can trigger reaction cascades that influence many physiological processes,
resulting in major changes in downstream gene expression [44]. Several families of transcription
factors including the AP2/ERF, bZIP, MYB, NAC and WRKY families are critical components of the
plant adaptive response to abiotic stress [39,45,46]. In the current study, genes encoding members of
the AP2/ERF, NAC and WRKY families were either significantly induced or suppressed in transgenic
S. miltiorrhiza plants expressing AtDREB1A before drought stress; moreover, the number of DEGs
classified in all five transcription factor families increased after drought stress (Table S6, Sheet 1).

Plant hormones are critical for allowing plants to adapt to environmental changes by mediating
growth, development, nutrient allocation and source/sink transitions [40,47-50]. Although ABA is
the most actively studied stress-responsive hormone, other phytohormones such as CK, ethylene,
SA and JA in the response to environmental stresses are beginning to be better understood [49,51,52].
Recent evidence suggests plant hormones are involved in multiple processes and crosstalk between
disparate plant hormone signaling pathways leads to synergetic and/or antagonistic interactions
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crucial for abiotic stress responses [53-55]. Based on our RNA-seq data, various pathways other than
the brassinosteroid pathway are presumably involved in AtDREB1A-mediated enhanced drought
tolerance in transgenic S. miltiorrhiza plants (Figure 8B). Additionally, many studies have shown that
transcription factors and plant hormone signal transduction pathways interact cooperatively in the
response to biotic and abiotic stresses [45,56]. Plant hormones such as SA, JA and ethylene regulate the
expression of genes in the NAC and ERF transcription factor families that regulate various disease
resistance pathways [1,57,58]. DREB proteins and DRE/CRT elements reportedly function in the
ABA-dependent pathway [56] and specific ERF proteins, such as TSRF1, act as molecular nodes for the
integration ABA and ethylene signaling pathways [59].

Photosynthesis in chloroplasts is particularly sensitive to stress and is a major source of cellular
reactive oxygen species (ROS) [60]. ROS can irreversibly damage photosynthetic components,
for instance by inhibiting restoration of the PSII complex by suppressing synthesis of the D1 protein.
Thus, the increased capacity of transgenic lines to recover from drought-enhanced photoinhibition may
be due to reduced accumulation of ROS [61]. Our previous studies showed that AtDREB1A-expressing
transgenic S. miltiorrhiza plants displayed higher SOD, CAT and POD activities than WT plants,
coupled with lower MDA levels and achieved a higher photosynthetic rate following drought stress,
which confirmed this hypothesis [23]. In the present study, RNA-seq data revealed that expression
of 29 photosynthesis-related genes was significantly up-regulated in transgenic versus WT plants
following drought stress (Figure 7), suggesting AtDREB1A improved the photosynthetic capacity by
regulating the expression of genes involved in this function. Furthermore, many genes that encode
specific types of proteins, such as the late embryogenesis abundant protein (LEA), aquaporin and
proline-rich proteins, were significantly up-regulated in transgenic plants [23], suggesting AtDREB1A
may effectively regulate multiple genes in stress response pathways.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

WT Salvia miltiorrhiza plants (Zhongjiang, Sichuan) and the transgenic S. miltiorrhiza line
pRD29A::AtDREB1A-31 (line 31) expressing the AtDREBIA gene under the control of the
stress-induced RD29A promoter—which was obtained from our previous study [23]—were used
in this experiment. To probe drought tolerance, WT and transgenic S. miltiorrhiza plants in sterile tubes
on solid MS medium were removed and placed in sterile soil with appropriate nutrients and cultured
at 25 £ 2 °C in a growth chamber with a photoperiod of 16 h:8 h (light intensity = 50 umol m~2s71).
Prior to drought stress, pots of drought-stressed and well-watered plants were saturated with water
and placed overnight to drain. Plants at uniform stages of development were then selected for stress
treatments [23]. On day 25 (before drought) and day 31 (after six days of drought), three individual
plants of transgenic S. miltiorrhiza line pRD29A::AtDREB1A-31 and wild type were collected for
RNA extraction.

4.2. RNA Isolation, Library Construction and RNA Sequencing

Total RNA was extracted from mixed samples consisting of three separate plants by using
a modified CTAB method [23]. Residual genomic DNA was eliminated using RNase-Free
DNase I (New England BioLabs, Beverly, MA, USA). After characterization of RNA purity using
a Nanodrop1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) and following
the measurement of RNA concentration using a Qubit 2.0 Fluorimeter (Life Technologies, Carlsbad,
CA, USA), the integrity of RNA was investigated using an Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA). The library was constructed using RNA samples with an integrity
number > 7.0 and Biomarker Technologies Corporation (Beijing, China) performed Illumina RNA
sequencing following procedures similar to those described previously by Zhang et al. [62]. After
enrichment and purification with oligo (dT) paramagnetic beads, mRNAs were sheared into short
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fragments that were subsequently used as templates for first- and second-strand cDNA synthesis.
AMPure XP beads were employed for purifying double-stranded cDNA, 3’ ends were enzymatically
repaired, polyadenylated and ligated to adapters to select templates of different sizes and the four
resulting cDNA libraries were subjected to PCR amplification and sequenced using an Illumina
HiSeq2500 RNA sequencing instrument.

4.3. De novo Transcriptome Assembly and Functional Annotation

After removing low quality RNA-seq reads, reads consisting only of adaptors and reads with
>5% unknown nucleotides (Ns), clean reads were filtered from raw reads [63]. De novo assembly was
carried out using a Trinity assembler, and group pair and K-mer distances were set at 300 and 25,
respectively, and default values were used for all other parameters. Longer contigs were assembled
from short reads based on overlapping regions and clustered and further assembled into unigenes by
considering paired-end information [62].

The predicted unigene protein sequences were aligned to selected protein databases using BLASTx
(E-value < 1075); these included the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.
genome.ad.jp/kegg/), the National Center for Biotechnology Information (NCBI) non-redundant (nr)
protein database (ftp:/ /ftp.ncbinih.gov/blast/db) and Clusters of Orthologous Groups (COGs, http://
www.ncbi.nlm.nih.gov/COG). Gene Ontology (GO, http:/ /www.geneontology.org) terms describing
molecular functions, biological processes and cellular components were assigned to predicted genes
using Blast2GO based on the outputs from Nr BLASTp searches [2]. Functional classification of COG
and GO terms was performed for all genes using in-house Perl scripts [1].

4.4. Identification of DEGs

Clean reads were mapped to the unigene library with Bowtie and the read count of each gene was
derived by mapping the results using RSEM. Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) values for each unigene were calculated to determine expression profiles and differences
in gene expression between WT and transgenic plants were analyzed using DESeq, by employing the
Benjamini and Hochberg False Discovery Rate (FDR) method. DEGs were identified using FDR < 0.01
and Fold-Change (FC) > 2 as thresholds and cluster analysis was carried out based on differential
expression of unigenes across samples [62].

4.5. Validation of DEGs by qRT-PCR

In order to confirm the accuracy of expression profiles derived from the RNA-seq experiments,
40 genes were selected for confirmation by quantitative RT-PCR (qRT-PCR) assays. RNA (2 nug) from
each sample was treated with RNase-Free DNase I (New England BioLabs) and a High Capacity
cDNA Reverse Transcription Kit (Takara) was used for cDNA synthesis following the manufacturer’s
instructions. All cDNA samples were quantified on a Nanodrop1000 spectrophotometer [64].

The qRT-PCR assays were performed on an iQ5.0 instrument (Bio-Rad, Hercules, CA, USA) in
combination with a SYBR Green qPCR kit (Roche, Basel, Switzerland) by heating at 95 °C for 3 min,
followed by 40 cycles at 95 °C for 30 s and 60 °C for 30 s. Dissociation curves at the end of each run
were used for monitoring amplicon specificity with amplification reactions (20 pL) consisting of 10 L
2xSYBR Green Mix, 1 uL cDNA and 0.25 uM forward and reverse primers. Relative gene expression
levels were determined by employing the 2~44¢t method and normalized against GAPDH and Actin.
All assays were performed in triplicate under identical conditions and correlations between gRT-PCR
and RNA-seq data were evaluated using Pearson correlation coefficients [23].

5. Conclusions

Based on our previous and current results, we can propose a simple model to explain the increased
drought tolerance of AtDREB1A-overexpressing plants of S. miltiorrhiza (Figure 10): (1) drought
stress induces the expression of AtDREB1A; (2) The activated AtDREB1A protein then binds to
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DRE/CRT sequence motifs to regulate the expression of its target genes; (3) These genes directly or
indirectly activate transcription factors and plant hormone signal transduction pathways, which result
in the activation of different downstream pathways; (4) Thereafter, genes with significantly altered
expression,—such as those encoding SODs, PODs, PsbX and LEA—trigger physiological changes
including reduced ROS accumulation, enhanced photosynthetic capacity and elevated LEA levels,
which ultimately result in improved drought stress tolerance in transgenic plants.

Drought

|

AtDREB1A

|

DRE/CRT

Transcription factors «~—— Plant hormone signal

J, transduction pathways
Improving Enhancing Synthesis of Other stress
ROS-scavenging —. photosynthetic specific proteins  related metabolic
capability capacity like LEA pathways
Drought tolerance

Figure 10. Proposed model for AtDREB1A function during drought stress.
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ABA abscisic acid

CAT catalase

CK cytokinin

CTAB cetyltrimethyl ammonium bromide
DRE dehydration response element

FC fold change

JA jasmonic acid

LEA late embryogenesis abundant protein
MDA malondialdehyde

POD peroxidase

ROS reactive oxygen species

RWC relative water content

SA salicylic acid

SOD superoxide dismutase
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