S International Journal of

7
Molecular Sciences m\D\Py

Article

Cell-Penetrating Function of the Poly(ADP-Ribose)
(PAR)-Binding Motif Derived from the
PAR-Dependent E3 Ubiquitin Ligase Iduna

Ja-Hyun Koo 12, Heeseok Yoon 12, Won-Ju Kim 12, Donghun Cha !? and Je-Min Choi 123

1 Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea;

koojh9036@gmail.com (J.-H.K.); geumbungeo@gmail.com (H.Y.); kwj8996@gmail.com (W.-].K.);
pranksterl19@daum.net (D.C.)

Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
*  Correspondence: jeminchol@hanyang.ac.kr; Tel.: +82-2-2220-4765

2
3

Received: 8 February 2018; Accepted: 6 March 2018; Published: 8 March 2018

Abstract: Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates cellular
responses such as proteasomal degradation and DNA repair upon interaction with its substrate.
We identified a highly cationic region within the PAR-binding motif of Iduna; the region was
similar among various species and showed amino acid sequence similarity with that of known
cell-penetrating peptides (CPPs). We hypothesized that this Iduna-derived cationic sequence-rich
peptide (Iduna) could penetrate the cell membrane and deliver macromolecules into cells. To test
this hypothesis, we generated recombinant Iduna-conjugated enhanced green fluorescent protein
(Iduna-EGFP) and its tandem-repeat form (d-Iduna-EGFP). Both Iduna-EGFP and d-Iduna-EGFP
efficiently penetrated Jurkat cells, with the fluorescence signals increasing dose- and time-dependently.
Tandem-repeats of Iduna and other CPPs enhanced intracellular protein delivery efficiency.
The delivery mechanism involves lipid-raft-mediated endocytosis following heparan sulfate
interaction; d-Iduna-EGFP was localized in the nucleus as well as the cytoplasm, and its residence
time was much longer than that of other controls such as TAT and Hph-1. Moreover, following
intravenous administration to C57/BL6 mice, d-Iduna-EGFP was efficiently taken up by various
tissues, including the liver, spleen, and intestine suggesting that the cell-penetrating function
of the human Iduna-derived peptide can be utilized for experimental and therapeutic delivery
of macromolecules.
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1. Introduction

Cell-penetrating peptide (CPP) is a short amino acid sequence that enables macromolecules
such as proteins, DNA, and RNA to be transported into cells across the plasma membrane [1-3].
Until recently, the most widely used CPPs were TAT [4-6], Antp [7,8], VP22 [9], transportan [10],
and poly-arginine [11,12]. Most CPPs, including the ones mentioned here, are derived from non-human
sources, such as viruses or drosophila, or are synthesized artificially. Due to possible immunogenicity or
toxicity of those CPPs, human-originated CPPs have been identified such as Hph-1 [13,14], Sim-2 [15],
ECP3241 [16] and Oct4 [17]. We also have previously reported novel human protein-derived CPPs
including LPIN [18], 2pIL-1aNLS [19], dNP2 [20], and AP [21].

PolyADP-ribosylation (PARylation) is a post-translational modification that regulates various
cellular processes, including DNA repair and cell death, via PAR polymerase [22-24]. Iduna (also
known as RNF146) is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that can degrade
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PARylated proteins through PAR-dependent ubiquitination. In addition to proteasomal degradation,
it regulates DNA repair, and cells overexpressing Iduna showed enhanced survival following
y-irradiation [25]. In vivo, Iduna protects against glutamate-induced brain tissue damage by inhibiting
PAR polymer-induced cell death (parthanatos) [26]. The PAR-binding motif (F144 to R167) [27] of
Iduna contains a highly cationic sequence, and in this study, we investigated the cell-penetrating
ability of this sequence by generating recombinant proteins comprising the CPP conjugated with a
fluorescent protein.

We hypothesized that this sequence from Iduna could be a novel human-derived CPP capable of
transporting macromolecules across the plasma membrane. We cloned and purified a recombinant
protein of the Iduna-conjugated enhanced green fluorescent protein (Iduna-EGFP) and tandem repeat
form (d-Iduna-EGFP) to enhance delivery efficiency and nucleus localization. d-Iduna-EGFP showed
robust delivery efficiency in Jurkat T cells and HeLa cells, and the efficiency was comparable to or
better than that of TAT-EGFP. In the in vivo study in mice, d-Iduna-EGFP showed significant tissue
localization efficiency, indicating the potential experimental or therapeutic application of the sequence
for in vivo delivery of macromolecules into cells.

2. Results

2.1. CPP Candidate Sequence in Iduna Protein

To identify novel human-derived CPPs, we performed a motif scan analysis using the ScanProsite
tool (available online: http://prosite.expasy.org/scanprosite/) of human proteins by filtering for R, K,
I, L, V which are common amino acids in previously identified CPPs with a total length of 7 amino
acids as minimum length. Among the candidates, we found the highly cationic sequence (RRRKIKR)
in the PAR-binding motif (PBM) of Iduna. In addition, we utilized CPP prediction analysis (CellPPD,
available online: http://crdd.osdd.net/raghava/cellppd/) [28] to confirm the CPP candidate sequence
in Iduna. Four of the ten predicted CPP candidate sequences within Iduna that showed significantly
high SVM scores (Support vector machine, possibility as an effective CPP) contained the RRRKIKR
motif (Figure 1A). The PAR-binding motif (F143 to R168) of Iduna, including the candidate sequence,
is highly conserved among various species. (Figure 1B). To test our hypothesis that the RRRKIKR
motif from the PBM of Iduna can penetrate the plasma membrane and deliver a protein into the
cell, we generated DNA constructs encoding a conjugate of the Iduna-derived sequence with EGFP
(Iduna-EGFP), a tandem-repeat form (d-Iduna-EGFP), or controls, and cloned these in the pRSET-B
vector (Figure 1C). The recombinants were expressed in an Escherichia coli BL21 (DE3) system and
purified (Figure 1D) as previously described [19]. The 3D structure of CPPs was predicted using the
modeling tool PEP-FOLD3 (available online: http:/ /bioserv.rpbs.univ-paris-diderot.fr/services/PEP-
FOLD3/). The modeling results suggesting both monomer and tandem repeat form of TAT, Hph-1,
and Iduna form alpha helical structure (Figure 2A). The 3D structure of the EGFP-conjugated form
was predicted using SparksX (available online: http://sparks-lab.org/yueyang/server /SPARKS-X/),
and an extended alpha helical structure formed by the tandem-repeat sequences was predicted, along
with the possible location and structural features of the recombinant proteins (Figure 2B).


http://prosite.expasy.org/scanprosite/
http://crdd.osdd.net/raghava/cellppd/
http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
http://sparks-lab.org/yueyang/server/SPARKS-X/

Int. . Mol. Sci. 2018,19,779

30f13

A Sequence SVM score Prediction Charge
EHGRRRKIKR 0.69 CPP 5.5
GRRRKIKRDI 0.68 CPP 5
RRNEHGRRRK 0.64 CPP 55
HGRRRKIKRD 0.62 CPP 5.5
RRRKIKRDII 0.42 CPP 5
RNEHGRRRKI 0.39 CPP 4.5
NEHGRRRKIK 0.31 CPP 4.5
YRRNEHGRRR 0.28 CPP 4.5
KGASWLGKRC 0.23 CPP 3
QYRRNEHGRR 0.22 CPP 35
KRDIIDIPKK 0.17 Non-CPP 2
SVRSRRPDGQ 0.15 Non-CPP 2
RKIKRDIIDI 0.14 Non-CPP 2
B PAR binding motif
Human LIAGFLYVADLENMVQYRRNEHGRRRKIKRDIIDIPKKGVAGLRLDCDANTVN-————-—
Mouse LIAGFLYVADLENMVQYRRNEHGRRRKIKRDIIDIPKKGVAGLRLDCDTNTVN---=—---
Rat LIAGFLYVADLENMVQYRRNEHGRRRKIKRDIIDIPKKGVAGLRLDCDSNTVN--—-—-—--—
Bovine LIAGFLYVADLENMVQYRRNEHGRRRKIKRDIIDIPKKGVAGLRLDCDANTVN-==-===—
Alligator LIAGFLYVADLENMVQYRRNEHGRRRKIKRDIIDIPKKGVAGLRLDCDSNSVN-=—-—==—
Frog LIAGFLYVADLENMVQYRRNEHGRRRKIKRDIVDIPKKGVAGLRLECDAANLN---—-—--—
Salmon LIAGFLYVADLENMVQYRRNEHGRRRKIKRDVVDIPKKGVAGLRLDTEGGVQGSAA---—
Zebra fish LIAGFLYVADLENMVQYRRNEHGRRRRMKRDVVDIPKKGVAGLRLDPDPNSSAGAVPAPA
Fruit fly LVAGYVYVVDLETMVQQRONEPSRCRRVKRDLATIPKKGVAGLRIEGNTVITDSNFASQI
*:‘k*::*‘k-*’k*.‘k*‘k *:*‘k .’k *::***: ***‘k**‘k*‘k*::
C | ATG I 6x His T7 leader EGFP
Nhel BamH| Hindlll
| ATG l 6x His I TAT I EGFP —I 42 kga
Da
! + | Nlrtdlll
| ATG I 6x His i Hph-1 i EGFP Da
Nrtel Ba’mHI le?dlll
|ATG I 6x His I Iduna I EGFP 15 kDa
¥ ¥ 1
Nhel BamH| Hindlll
| ATG I ox His I \duna I \duna EGFP 1 : EGFP (30.5kDa) 4 : lduna-EGFP (29.5 kDa)
+ + 2 : TAT-EGFP (30.1 kDa) 5 : d-lIduna-EGFP (30.8 kDa)
Nhel BamHI EcoRI Hindlll

3 : Hph-1-EGFP (29.8 kDa)

Recombinant DNA is inserted in pRSET-B vector

Figure 1. Identification of cell-penetrating peptide candidate in the PAR-binding motif of Iduna and

generation of candidate sequence-conjugated recombinant protein. (A) In silico-based cell-penetrating

peptide (CPP) prediction analysis (CellPPD) of the PBM sequence from Iduna. Candidate sequence is

underlined; (B) Multiple alignment of candidate sequences from various species. Candidate sequence

is highlighted. * fully conserved; : strongly similar properties; - weakly similar properties; (C) Each

DNA was cloned in pRSET-B vector; (D) SDS-PAGE analysis of purified recombinant proteins.
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Figure 2. 3D modeling of Iduna-derived sequence and the recombinant protein conjugated with EGFP.
(A) 3D structure prediction of the Iduna-derived sequence or control CPP; (B) 3D structure prediction
of the Iduna-derived sequence or control CPP (red) conjugated with EGFP (green).

2.2. Protein Delivery in Jurkat T Cells by the Iduna-Derived Sequence

To determine the protein delivery efficiency of the Iduna-derived sequence, we incubated Jurkat
T cells with 1-20 uM Iduna-EGEFP, d-Iduna-EGFP, or other controls for 1 h, and analyzed intracellular
EGFP fluorescence by flow cytometry. EGFP uptake by cells treated with 10 pM Iduna-EGFP was
two-times higher than that of PBS- or EGFP-treated control groups, and the protein delivery efficiency
of Iduna-EGFP was comparable to that of Hph-1-EGFP (Figure 3A,B). Moreover, d-Iduna-EGFP
showed 1.5-times higher protein delivery ability than its monomeric form or TAT-EGFP. These results
suggested that the Iduna-derived cationic sequence is a CPP that can efficiently deliver a protein into
cells and that the use of tandem repeats of the sequence significantly enhances the delivery efficiency.
In addjition, for all CPPs, the intracellular EGFP fluorescence increased dose-dependently (Figure 3C).
Next, to determine the time kinetics of intracellular delivery of Iduna-EGFP, we incubated Jurkat T
cells with 10 uM conjugates from 5 min up to 8 h and analyzed intracellular fluorescence by flow
cytometry. After incubation for just 5 min, fluorescence of the d-Iduna-EGFP-treated group was
significantly higher than that of the PBS- or EGFP-treated control groups, and the protein delivery
efficiency increased gradually and time-dependently up to 2 h and then decreased slightly thereafter
(Figure 4A). At 2 h, d-Iduna-EGFP-treated cells showed significantly higher intracellular fluorescence
intensity than TAT-, Hph-1-, and Iduna-EGFP-treated cells (Figure 4B,C). These findings suggest that
the Iduna-derived cationic peptide could deliver proteins into Jurkat T cells like other CPPs.
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Figure 3. Comparative analysis of the protein delivery efficiency of the Iduna-derived sequence.
(A,B) Jurkat cells were incubated with 10 uM Iduna-EGFP, d-Iduna-EGFP and other controls for 1 h at
37 °C. Intracellular fluorescence was analyzed by flow cytometry; (C) Jurkat cells were incubated with
0-20 uM Iduna-EGFP, d-Iduna-EGFP, and other control proteins for 1 h at 37 °C. For all experiments,
cells were washed with PBS and trypsin to remove cell membrane-bound recombinant proteins.

**p <0.005, ***p <0.001, n = 3.

600~

400+

MFI

200+

.Q .Q o P \~° N &o
t§° €$> Qégs 4§$9 v

& Hph-1-EGFP -©- Iduna-EGFP -~ d-lduna-EGFP

-k- PBS -+ EGFP 8 TAT-EGFP

2 hr

d-lduna-EGFP

Iduna-EGFP
Hph-1-EGFP

A TAT-EGFP
EGFP

PBS

e Fee P
10° 10t 10°

FITC-A

Figure 4. Cont.



Int. J. Mol. Sci. 2018, 19,779 60of 13

C k%
600~ o | |
400+

i
=
200+ | |
0=
) g g g g 3
< < < < <
oo & L P
A’ N . s
<y N RN &
R O b"b

Figure 4. Time kinetics of the cell penetration efficiency of the Iduna-derived sequence. (A) Jurkat
cells were incubated with 10 uM d-Iduna-EGFP and other control proteins for 0-8 h at 37 °C.
Intracellular fluorescence was analyzed by flow cytometry; (B,C) Jurkat cells were incubated with
10 uM d-Iduna-EGFP and other control proteins for 2 h at 37 °C. For all experiments, cells were washed
with PBS and trypsin to remove cell membrane-bound recombinant proteins. *** p < 0.001, n = 3.

2.3. Intracellular Protein Delivery Mechanism of the Iduna-Derived Sequence

To determine the cell-penetrating mechanism of Iduna-EGFP, we first incubated Jurkat T cells
with d-Iduna-EGFP in serum-free or 10% serum-containing medium. Protein delivery by Iduna-EGFP
and d-Iduna-EGFP was 20% less in the presence of 10% serum (Figure 5A), suggesting competition
with other proteins for cell surface interaction sites. Next, we examined whether Iduna-EGFP and
d-Iduna-EGFP interacted with heparan sulfate, a proteoglycan present in the plasma membrane and
known to interact with CPPs [29-31]. We pre-incubated the cells with heparin (0-20 ug/mL) which
is the soluble form of heparan sulfate for 30 min and treated recombinant proteins. The delivery
efficiency of both Iduna-EGFP and d-Iduna-EGFP was 50% less in heparin-treated cells (Figure 5B),
which was consistent with the results for TAT and Hph-1. This result suggested that both Iduna-EGFP
and d-Iduna-EGFP interacted with proteoglycans on the cell surface. We further hypothesized
that Iduna-EGFP and d-Iduna-EGFP utilize endocytic pathways, the most typical mechanism for
CPP internalization [32-34]. To confirm our hypothesis, we treated the Jurkat T cells with 0-5 mM
methyl-beta-cyclodextrin (MCD), which can deplete cholesterol in the plasma membrane and inhibit
lipid-raft-mediated endocytosis, during incubation with Iduna-EGFP and d-Iduna-EGFP. Intracellular
delivery of Iduna-EGFP and d-Iduna-EGFP 40% decreased upon MBCD treatment (Figure 5C),
suggesting that Iduna-EGFP and d-Iduna-EGFP were internalized via lipid-raft-mediated endocytosis.
These results showed that, like other CPPs, the Iduna-derived sequence delivers proteins into Jurkat T
cells through lipid-raft-mediated endocytosis following heparan sulfate interaction.
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Figure 5. The Iduna derived sequence is internalized by cells via heparan sulfate, protein-protein
interaction, and lipid-raft mediated endocytosis. (A) Jurkat cells were incubated with 10 uM
d-Iduna-EGFP and other proteins for 1 h at 37 °C in 0% or 10% serum containing medium; (B) Jurkat
cells were pre-incubated with 020 pg of Heparin or (C) 0-5 mM MpBCD (methyl-p-cyclodextrin).
After 30 min, 10 uM d-Iduna-EGFP and other proteins were added and incubated for another 1 h
at 37 °C. Intracellular fluorescence was analyzed by flow cytometry. For all experiments, cells were
washed with PBS and trypsin to remove cell membrane-bound recombinant proteins. * p < 0.05,
** p <0.005, *** p <0.001, n = 3.

2.4. In Vitro Localization of the Iduna-Derived Sequence

Due to the remarkable potential of the Iduna-derived sequence to deliver proteins into Jurkat
T cells, we next examined the intracellular localization of the delivered proteins. For this, we
incubated HeLa cells with 20 uM Iduna-EGFP and d-Iduna-EGFP for various durations (from 15 min
to 40 h). After incubation, the cells were fixed and stained by Hoechst to visualize the nuclei.
d-Iduna-EGFP-treated cells have the brightest green fluorescence in both cytoplasm and nucleus
at all time points (Figure 6). Intracellular localization of TAT-EGFP was significant at 30 min and 1 h
while the signal was hardly observed at 2-40 h. The signal of Hph-1 or Iduna-EGFP-treated cells
was comparable with PBS- and EGFP-treated cells. Interestingly, although the TAT-EGFP signal in
HelLa cells increased gradually up to 1 h and decreased thereafter, the d-Iduna-EGFP signal remained
constant or increased up to 40 h. This result suggested that d-Iduna-EGFP offers sustained intracellular
protein delivery as well as EGFP protein localization to the nucleus and the cytoplasm of HeLa cells.

2.5. In Vivo Tissue and Cellular Localization of d-Iduna-EGFP in Mice

Based on the superior in vitro performance of d-Iduna-EGFP compared with TAT-EGFP, we
hypothesized that in vivo tissue or cellular localization of d-Iduna-EGFP could also be much better than
that achieved using TAT-EGFP. To examine the in vivo localization of d-Iduna-EGFP, we intravenously
injected 5 mg of d-Iduna-EGFP or other proteins into 6-8-week-old C57/BL6 mice. After 2 h, the tissues
were harvested, fixed, and sectioned. The slides were stained with Hoechst and then analyzed by
fluorescence microscopy (Figure 7). Significant tissue distribution of EGFP signal was detected in
the liver, spleen, and intestine of the d-Iduna-EGFP-treated mice. Considering autofluorescence of
the tissues in the fl-1 channel of the microscope and in vitro localization results, none of the other
examined CPPs such as Hph-1, TAT-EGFP, and Iduna-EGFP were detected at significantly levels in
the tissues. This finding suggested that d-Iduna-EGFP could deliver proteins into cells in vivo as well.
From these results, we confirmed that the tandem-repeat form of the Iduna-derived sequence can be a
novel CPP sequence for therapeutic protein delivery in vitro and in vivo.
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Iduna Hph-1 TAT EGFP PBS
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Figure 6. The Iduna-derived sequence localized to the cytosol and nucleus upon internalization by
cells. HeLa cells were incubated with 20 uM d-Iduna-EGFP and other control proteins for the indicated
time. After incubation, cells were washed twice with PBS, fixed with 4% paraformaldehyde, and nuclei
were stained using Hoechst. Intracellular fluorescence was visualized by fluorescence microscopy at
200x magnification.
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Figure 7. Localization of the Iduna-derived sequence in the intestine, liver, and spleen upon in vivo
intravenous injection into mice. Six- to eight-week-old mice were intravenously administered 5 mg
of d-Iduna-EGFP and other control proteins. Tissue fluorescence was analyzed 2 h after injection by
fluorescence microscopy at 100x magnification.

3. Discussion

Iduna is PAR-dependent E3 ubiquitin ligase that regulates cellular responses such as proteasomal
degradation and DNA repair [25]. These responses are mediated by the interaction between PAR
and the PBM of Iduna. In this study, we found a highly cationic sequence in the PBM of Iduna and
determined its cell penetrating function in vitro and in vivo.



Int. J. Mol. Sci. 2018, 19,779 90f13

A CPP is a short peptide that can penetrate the plasma membrane and deliver macromolecules
such as proteins and nucleic acids into the cell [1-3]. CPPs have been used to deliver various therapeutic
cargo into cells to regulate cellular responses [35]. However, most previously reported CPPs, including
TAT [4-6], Antp [7,8], VP22 [9], transportan [10], and poly-arginine [11], have a non-human origin
with potential toxicity or immunogenicity, which limits their use in human trial [36]. Due to these
limitations, human-derived CPPs are required for therapeutic application of CPPs in humans. In our
previous studies, we performed a TAT-homology search in human protein databases and identified
novel human-derived CPPs, including LPIN from phosphatase LPIN3 [18], 2pIL-1«NLS from cytokine
IL-1oc [19], NP2 from novel LZAP-binding protein [20], and AP from neuronal adhesion protein
astrotactin 1 [21]. Here, we used the motif scan method, web-based approach, in combination with
CPP candidate search to identify a novel human protein-derived CPP. We utilized the ScanProsite tool
in UniProtKB and the CellPPD tool for in silico screening of human-derived CPPs.

The mechanism through which CPPs are internalized by cells has not been resolved, but various
studies have reported that endocytosis via heparin sulfate interaction is the main route [29-31].
Consistent with these report, the Iduna-derived sequence was internalized via heparan sulfate
interaction and lipid-raft mediated endocytosis. Our modeling analysis revealed that the Iduna-derived
sequence forms an alpha helical structure, and d-Iduna was predicted to have a more stable and longer
alpha helical structure than single Iduna or TAT, which was an optimal structure for molecular
interaction on cell surface.

Previously, we found the cell-penetrating ability of the CPP was increased in the tandem-repeat
form, which was consistent with the results for Hph-1 and HHph-1 and for NP2 and dNP2. Hhph-1
showed higher Foxp3 delivery into the nucleus compared with Hph-1 for converting CD4" T cells
to suppressor cells to inhibit autoimmune diseases in mice [37]. 2pIL-1«NLS is the tandem-repeat
form of pIL-1&xNLS, which is derived from the NLS of human IL-la. 2pIL-1«NLS also showed
enhanced nuclear localization compared with pIL-1a&NLS [19]. More recently, dNP2 found to perform
significantly better than NP2 in crossing the blood-brain barrier and delivering proteins to T cells
in the central nervous system [20]. We also attempted to compare the delivery efficiency between
single form (TAT, Hph-1 and Iduna) and tandem repeated form (d-TAT, HHph-1 and d-Iduna) of each
CPP and the results showed that delivery efficiency of tandem-repeated double forms significantly
enhanced intracellular protein delivery (Supplementary Figure S1A-C). Interestingly, TAT-EGFP signal
was not detected in the cells of tissues in vivo while d-TAT-EGFP signal was significantly observed in
spleen, liver, and intestine which is similar to that of d-Iduna-EGFP treated group (Supplementary
Figure S2). Importantly, 100 uM of d-TAT-EGFP treatment into HeLa cells in vitro showed significant
cytotoxicity with 35% reduced viability after 24 h incubation suggesting there is a significant toxicity
by d-TAT. However, cell viability was not affected by equal amount of d-Iduna-EGFP treatment
(Supplementary Figure S3). Our previous studies and present results for d-Iduna indicate that the
tandem-repeat form of CPPs increase their protein delivery efficiency in vivo, and this could be a
promising optimization strategy in CPP-based drug development and d-Iduna has an advantage of
safety or stability compare to d-TAT.

PARylation is a post-translational modification that regulates cellular processes such as DNA
repair, chromatin reorganization, and cell death [22-24]. PARP is the enzyme that catalyzes PARylation
of a target region. When single-strand break (55B) of DNA is detected by PARP, it catalyzes PARylation
of the SSB region, which leads to the recruitment of DNA repair enzymes containing PBMs [38,39].
Iduna is a PAR-dependent E3 ubiquitin ligase that also possesses a PBM, and its enzyme activity is
dependent on this motif [25]. In this study, we identified the cell penetrating function of a human
Iduna-derived sequence and demonstrated its ability to deliver macromolecules into cells in vitro and
in vivo. Because the Iduna-derived CPP is derived from the PBM and previous reports have suggested
that lysine is critical for interaction of the PBM with PAR, our future work would involve determining
whether the Iduna-derived CPP interacts directly with PAR after internalization into cells and inhibits
the interaction of other PBM-containing proteins.



Int. ]. Mol. Sci. 2018, 19,779 10 0of 13

4. Materials and Methods

4.1. Recombinant Protein Purification

Iduna and other control CPP-conjugated EGFP were expressed and purified using a bacterial
system. The gene encoding CPP-EGFP was cloned in pRSET-B plasmids, which were then used to
transform E. coli BL21 (DE3) pLysS. Colonies of transformants were inoculated in 50 mL of Luria-Bertani
(LB) medium and incubated at 37 °C with shaking at 200 rpm. After 6 h, the culture was transferred
into 500 mL of LB medium and incubated for 1-2 h. When the optical density of the culture at
600 nm reached 0.3-0.5, recombinant proteins were induced by overnight incubation with 0.1 mM
isopropyl-b-D-thiogalactopyranoside at 20 °C, with shaking at 150 rpm. After induction, the culture
was centrifuged, and the pellet was suspended in native condition lysis buffer (50 mM NaH;POy,
300 mM NaCl, 20 mM Imidazole, pH 8.0). The suspended pellets were sonicated to disrupt the bacterial
membrane, and the soluble fraction was harvested by centrifugation and filtered with a 0.45 pum filter
(Sartorious, Gottingen, Germany). 6His-tagged proteins were incubated with Ni-NTA agarose (Qiagen,
Hilden, Germany) for 1 h on the rocker. The proteins were applied into Poly-prep column (Bio-Rad,
Hercules, CA, USA) and washed with native condition wash buffer (50 mM NaH,POy, 300 mM NaCl,
50 mM Imidazole, pH 8.0) and eluted with native condition elution buffer (50 mM NaH,;PO,, 300 mM
NaCl, 250 mM Imidazole, pH 8.0). Eluted proteins were desalted using a PD-10 Sephadex G-25 column
(GE Healthcare, Little Chalfont, UK) and quantified with Bradford assay (Bio-Rad) [19].

4.2. 3D Structure Modeling

The 3D structures of the Iduna-derived peptide and control CPPs were analyzed by PEP-FOLD3
(Available online: http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/) and that of
recombinant Iduna-derived sequences conjugated with EGFP was analyzed by SparksX (Available
online: http:/ /sparks-lab.org/yueyang/server/SPARKS-X/).

4.3. Cell Lines and Cell Culture

Jurkat (human leukemia) cells were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA) and maintained in RPMI 1640 medium (Corning, Corning, NY, USA).
HeLa (human cervix epithelial carcinoma) cells and NIH/3T3 cells were purchased from ATCC and
maintained in DMEM (Corning). Media were supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin. The cells were cultured at 37 °C in a 5% CO, incubator.

4.4. In Vitro Delivery Efficiency

Jurkat cells (2.5 x 10° per well) were seeded into 96-well plates and incubated with CPP-EGFP
at the indicated concentration for the time. All of the delivery experiments were tested in 10% fetal
bovine serum and 1% penicillin/streptomycin containing complete medium. After incubation, cells
were harvested and washed once with PBS. To remove cell membrane-bound recombinant proteins,
the cells were trypsinized at 37 °C for 10 min. After trypsinization, the cells were washed again with
PBS, and intracellular fluorescence was analyzed using fluorescence-activated cell sorting (FACS)
Canto II flow cytometer. Data were analyzed using FlowJo software (ver 10.1 Tree Star, Inc., Ashland,
OR, USA).

4.5. Mechanism of Internalization

In serum dependent experiment, Jurkat cells were incubated in 96-well plates in serum free or
10% contained medium with 10 uM of CPP-EGEFP for 1 h. In MBCD or heparin experiment, Jurkat cells
(2.5 x 10° per well) were incubated in 96-well plates and pre-treated with MBCD (0-5 mM), heparin
(0-20 pg) at 37 °C for 30 min. After the pre-incubation, CPP-EGFP was added to the medium and
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incubated for 1 h at 37 °C. All experiments were washed and trypsinized after incubation. Intracellular
fluorescence was analyzed by flow cytometry as described above.

4.6. Intracellular Localization

HeLa cells were seeded at a density of 1 x 10° per well on cover glass placed in 6-well plates
and incubated at 37 °C for 24 h for attachment. Next, 20 uM of recombinant proteins were added and
incubated for the indicated time. After incubation, the cells were washed two times with PBS and
fixed with 4% paraformaldehyde for 10 min, and the nuclei were stained with 0.01% Hoechst 33342
in PBS for 10 min and cells were washed twice with PBS. Intracellular fluorescence was analyzed by
fluorescence microscopy (Leica DMi8, Wetzlar, Germany).

4.7. Mice

We purchased 6-8 weeks old mice from Orient Bio (Seongnam, Korea) and housed them in
a specific pathogen-free facility at Hanyang University. Next, 5 mg of CPP-EGFP was injected
intravenously to the mice. After 2 h, the mice were sacrificed, and blood vessels were perfused
with PBS to eliminate remained blood in tissues. The tissues were harvested, washed, and fixed
by 4% Paraformaldehyde Fixed tissues were frozen in optimal cutting temperature compound.
Frozen tissues were sliced with 8 pm thickness and nuclei were stained using 0.01% Hoechst 33342
in PBS for 10 min. Fluorescence in tissues was analyzed by fluorescence microscopy. All mouse
experimental procedures were approved by the Animal Care and Use Committees of Hanyang
University (2017-0149A, permission date (7 August 2017).

4.8. Cytotoxicity Assay

5 x 10% HeLa cells were seeded on a 96-well plate and incubated 37 °C for 12 h. After attachment,
20, 50 and 100 pM of recombinant proteins were incubated at 37 °C in medium. After 24 h incubation,
medium was removed and 10% cell counting kit-8 (CCK-8) reagent (Dojindo, Kumamoto, Japan)
contained medium was added to each well. Cell viability was analyzed by measuring absorbance at
450 nm by microplate leader (iMark, Bio-Rad).

4.9. Statistics

The data were statistically analyzed using two-tailed Student’s ¢-test. p-Values less than 0.05 were
considered statistically significant.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1422-0067/19/3/
779/s1.
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