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Abstract: Understanding interindividual variability in response to dietary polyphenols remains
essential to elucidate their effects on cardiometabolic disease development. A meta-analysis of
128 randomized clinical trials was conducted to investigate the effects of berries and red grapes/wine
as sources of anthocyanins and of nuts and pomegranate as sources of ellagitannins on a range
of cardiometabolic risk biomarkers. The potential influence of various demographic and lifestyle
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factors on the variability in the response to these products were explored. Both anthocyanin- and
ellagitannin-containing products reduced total-cholesterol with nuts and berries yielding more
significant effects than pomegranate and grapes. Blood pressure was significantly reduced by the
two main sources of anthocyanins, berries and red grapes/wine, whereas waist circumference,
LDL-cholesterol, triglycerides, and glucose were most significantly lowered by the ellagitannin-products,
particularly nuts. Additionally, we found an indication of a small increase in HDL-cholesterol most
significant with nuts and, in flow-mediated dilation by nuts and berries. Most of these effects
were detected in obese/overweight people but we found limited or non-evidence in normoweight
individuals or of the influence of sex or smoking status. The effects of other factors, i.e., habitual
diet, health status or country where the study was conducted, were inconsistent and require
further investigation.

Keywords: ellagitannins; anthocyanins; interindividual variability; meta-analysis; cardiometabolic
disorders; pomegranate; nuts; berries; red wine; red grapes

1. Introduction

Cardiometabolic dysfunction is diagnosed in about 8% of the global adult population and is
characterized by dyslipidemia, hypertension, obesity, glucose intolerance and insulin resistance [1].
It is well recognized that a diet rich in plant-based foods helps prevent or reduce these cardiometabolic
disorders and that increasing the intake of fruits, vegetables, cereals and nuts constitutes part of the
strategy to combat these disorders [2,3]. Plant foods provide a variety of micro- and macronutrients,
i.e., minerals, vitamins, fibers, proteins as well as a range of bioactive compounds that are beneficial
for our health [4]. Over the past few decades, a major area of research has specifically focused on
the study of the plant-derived bioactive compounds, such as polyphenols, and their cardiometabolic
protective properties in humans which is summarized by Lecour et al. [5].

A variety of fruits and nuts are good sources of different polyphenols including anthocyanins
(ANCs) and ellagitannins (ETs). In particular, berries, red grapes and red wine are important
sources of ANCs [6,7]. The main ANCs present in our diet are cyanidin, delphinidin, malvidin,
pelargonidin, peonidin, and petunidin [8,9]. Cyanidin-3-glucoside is the most frequent ANC found in
raspberries, blackberries, elderberries, purple corn or black carrots. Moreover, malvidin-3-glucoside is
the major ANC in red grapes and wines whilst pelargonidin-3-glucoside in strawberries. Blueberries,
very often used in intervention studies, contain a mixture of delphinidin, malvidin and cyanidin
derivatives [8,10]. The highest ANCs content is found in chokeberry (400 to 1500 mg/100 g fresh
weight (F.W.)), blackcurrant (100 to 500 mg/100 g F.W.), blackberries (50 to 350 mg/100 g F.W.),
blueberries (60 to 300 mg/100 g F.W.) and purple corn (≥1500 mg/100 g F.W.) [8,11]. On the other
hand, pomegranate and nuts contain important quantities of ETs (150–500 mg/100 mL pomegranate
juice; ~1600 mg/100 g walnuts) although they can also be found in berries at lower concentrations
(50–350 mg/100 g F.W. raspberry; 25–80 mg/100 g F.W. strawberry) [12–14]. The ETs most commonly
ingested by humans are punicalagin, peduncalagin and sanguiin [15].

Previous reviews and meta-analyses of randomized-controlled trials (RCTs) have explored the
evidence of the effects of the intake of berry [16–21], nut [22,23], pomegranate [24,25], and grape [26,27]
foods and (or) derived products on different cardiometabolic risk factors (i.e., serum lipids, blood
pressure, glucose). The results of these analyses have indicated inconsistencies in the overall effects
and have pointed at potential different responses between different subpopulations. Some of the
reasons for the lack of consistent results might be the insufficient number of the RCTs included in these
meta-analyses as well as their heterogeneity and inadequate description of the study population. There
are important differences between studies for a number of key factors (body mass index (BMI), sex,
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smoking habits, diet, health status) that likely influence the response of the participants to the intake
of the compounds tested. These differences can mask significant effects in specific populations [28,29].

Another critical issue is the test products used in those RCTs. In general, these studies have been
conducted with different types of foods or derived processed products (extracts, drinks, freeze-dried
products) with different origin, quality and composed by mixtures of diverse components often not
fully characterized. It is thus difficult to attribute the beneficial effects to a particular compound(s).
In this regard, some studies have been conducted with polyphenol-rich berry products in comparison
with nutrient-matched controls to try to associate the polyphenols intake with the response of the
individuals [30]. Also, the association between the intake of ET-containing pomegranate products and
the effects on cardiometabolic risk factors has been investigated with some evidence of a potential link
between responses and specific ET-derived metabolites, but the effects of other constituents of these
products have not been fully discarded [31,32]. At present, specific associations between pure ANCs
or ETS and cardiometabolic effects remain unproved.

As the number of RCTs published increases, it is thus important that: (i) we continue evaluating
the accumulated overall evidence that support the benefits of the plant bioactive compounds on
cardiometabolic health and (ii) we try to elucidate the contribution of the factors that determine
interindividual variability in response to the intake of these plant-derived bioactive compounds.
Eventually, we shall be able to understand and establish the true effectiveness of these compounds
against cardiometabolic disease [33]. Along these lines, the main goals of the present study were:
(i) to systematically review and appraise through meta-analysis, all available human RCTs that
have investigated the association between the intake of various foods (berries, red grapes and wine,
pomegranate and nuts) as well as of their derived products (extracts, powders, drinks), as sources of
ANCs and ETs, on 13 biomarkers of cardiometabolic risk; and (ii) to provide an in-depth evaluation of
the potential influence of a range of key factors on the interindividual variability in response to the
intake of these products.

2. Results

2.1. Description of the Selected Studies

A total of 2374 articles were initially selected through the search on the electronic databases
(Medline (PubMed) and Web of Science). After removal of duplicates, screening and application
of exclusion criteria, 241 trials were selected for data extraction. After detailed analysis of the full
text, 113 articles were rejected, due to lack of relevant outcomes, aspects of the study design, etc.
Finally, 128 human RCTs published between March 1995 and March 2016 (included) [34–160] were
incorporated in this systematic review and meta-analysis. A flow diagram with the details of the study
selection is shown in Figure 1.
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Figure 1. Flow diagram showing the study selection process. 
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The 128 RCTs included a total of 5538 participants from countries distributed over five 
continents as follows: 1500 participants from Asia, 1731 from North-America, 119 participants from 
South America (Chile), 1830 participants from Europe, 64 participants from South Africa, and 294 
participants from Oceania (Australia and New Zealand). Of all the studies, 30 RCTs (1542 total 
participants) were conducted with foods and derived products containing ETs as the main 
polyphenols, i.e., pomegranate and nuts (walnuts, almond, pistachios, peanuts, pine nuts, hazelnuts) 
and 99 RCTs (4086 total participants) were conducted with foods and food products considered rich 
sources of ANCs (berries, red grapes, red wine). The test products were provided as a liquid (drinks, 
beverages, juices) or a solid (powder or extracts in capsules, tablets, foods). Intervention doses 
ranged between 30 g and 230 g for nuts, between 100 mL and 500 mL for pomegranate juice and 
between 435 mg and 700 mg for pomegranate extracts. RCTs conducted with berries had doses 
ranging from 80 mg to 38 g for extracts and from 230 mL to 750 mL for beverages or juices. 
Regarding red wines or grapes doses ranged from 100 mg to 2 g for extracts and from 250 to 400 mL 
for drinks. The participants in these RCTs represented a mixed population of men and women 
ranging from young adults to elderly participants, and with a higher prevalence (~60%) of 
individuals with a BMI ≥ 25.0 kg/m2 (overweight and (or) obese volunteers). Only 28 and 9 RCTs 
were conducted separately with men and women, respectively. Most studies failed to report the 
smoking habits of participants; when reported, participants were typically non-smokers (~35%) or a 
mixed sample population (~50%). With regards to the health status, the sample population 
constituted of healthy individuals (1764 participants), overweight and (or) obese individuals but not 
medicated (classified as ‘at risk’; 870 participants), as well as individuals with an incipient or with a 

Figure 1. Flow diagram showing the study selection process.

2.2. Characteristics and Quality of the Included Studies

The 128 RCTs included a total of 5538 participants from countries distributed over five continents
as follows: 1500 participants from Asia, 1731 from North-America, 119 participants from South America
(Chile), 1830 participants from Europe, 64 participants from South Africa, and 294 participants from
Oceania (Australia and New Zealand). Of all the studies, 30 RCTs (1542 total participants) were
conducted with foods and derived products containing ETs as the main polyphenols, i.e., pomegranate
and nuts (walnuts, almond, pistachios, peanuts, pine nuts, hazelnuts) and 99 RCTs (4086 total
participants) were conducted with foods and food products considered rich sources of ANCs (berries,
red grapes, red wine). The test products were provided as a liquid (drinks, beverages, juices) or a
solid (powder or extracts in capsules, tablets, foods). Intervention doses ranged between 30 g and
230 g for nuts, between 100 mL and 500 mL for pomegranate juice and between 435 mg and 700 mg for
pomegranate extracts. RCTs conducted with berries had doses ranging from 80 mg to 38 g for extracts
and from 230 mL to 750 mL for beverages or juices. Regarding red wines or grapes doses ranged
from 100 mg to 2 g for extracts and from 250 to 400 mL for drinks. The participants in these RCTs
represented a mixed population of men and women ranging from young adults to elderly participants,
and with a higher prevalence (~60%) of individuals with a BMI ≥ 25.0 kg/m2 (overweight and (or)
obese volunteers). Only 28 and 9 RCTs were conducted separately with men and women, respectively.
Most studies failed to report the smoking habits of participants; when reported, participants were
typically non-smokers (~35%) or a mixed sample population (~50%). With regards to the health status,
the sample population constituted of healthy individuals (1764 participants), overweight and (or)
obese individuals but not medicated (classified as ‘at risk’; 870 participants), as well as individuals
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with an incipient or with a reported chronic risk factor or metabolic disease (2804 participants). Among
these, some participants were taking medication, others were not medicated or medication use was not
reported. Most interventions (~80%) ranged from 1 week to 3 months during which the participants
followed either a controlled diet (~40%) or their habitual diets (~60%). RCTs conducted for more
than 3 months or acute studies represented each ~10% of the total number of interventions. Most of
the studies (~62%) were classified as studies with a moderate to low risk of bias (score ≥ 5.0 and
<8.0 or ≥8.0 and ≤10.0, respectively), while ~38% of the studies obtained a low score (<5.0) and
were considered as a high risk of bias. A list of all the studies included in this meta-analysis, their
characteristics and corresponding risk bias score is included in Supplementary Table S1.

2.3. Overall Impact of Supplementation with Foods and Derived Products Containing ETs and/or ANCs on
Biomarkers of Cardiovascular Risk

Initial analysis examined the effects of the supplementation with ET- and/or ANC-containing
foods and/or derived products on the list of selected biomarkers of cardiometabolic risk at a total
population level. A substantial number of RCTs (18 to 109 depending on the variable investigated)
including a total number of participants (n = 563 to 3991) with highly variable heterogeneity (I2 ≈ 25.0
to 93.0%) were included in the analyses. Forest plots and Funnel plots representing all the individual
studies and the overall impact of the supplementation with these products on each biomarker are
shown in Supplementary Figures S1–S39. Visual inspection of the Funnel plots showed symmetrical
shapes and absence of publication bias in most of the variables investigated, however, we detected
some asymmetry in the case of LDL-C, HDL-C, TAGs, and FMD (SDM values) and of DBP (DM
values). All these results were further confirmed by Egger’s regression. Supplementary Tables S2
and S3 display the overall results as standardized difference in means (SDM) and difference in means
(DM), respectively, using the random model. A summary listing the significant effects expressed as
SDM and DM values as well as their corresponding 95% confidence intervals and GRADE quality of
evidence is presented in Table 1.

Among the 13 cardiometabolic outcomes investigated, we observed a significant evidence of the
reduction in WC, T-C, SBP and DBP following supplementation with the ET- and/or ANC-containing
products. Additionally, we detected an increase in HDL-C further supported by a significant although
small positive relationship with the duration (days) of the supplementation (SDM random-effects
meta-regression; slope: 0.002; p-value: 0.004) (Supplementary Figure S40). FMD was also consistently
increased by the treatment with these compounds although it was only statistically significant when
the effects were calculated as DM. The quality of the evidence was evaluated as high for blood pressure,
moderate for WC, T-C, HDL-C and low for FMD due to many studies reporting serious risk of bias
across studies. We additionally detected a small reduction, although not significant, in glucose (SDM:
−0.101, p-value = 0.095) and TAGs (DM: −0.006, p-value = 0.086) whereas BMI, LDL-C, insulin, HbA1c,
and HOMA-IR were seemingly not affected by the intervention with these types of products.

We next compared the effects on all the biomarkers between those foods and/or products that
are richer sources of ETs, nuts and pomegranate (subgroup referred as to ETs) and those foods and
products that contain higher levels of ANCs, mostly berries, red grapes, red wine (subgroup referred
as to ANCs). Supplementary Table S4 includes the random effects (SDM and DM) for each separate
group and the comparison between them (ETs vs. ANCs sources) for all the investigated biomarkers.
A summary with the most significant effects is presented in Table 2.
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Table 1. Summary of the most significant global effects of foods and food products containing ETs and ANCs on biomarkers of cardiometabolic risk.

SDM (p-Value) 95% CI n NT I2 (%) GRADE 1 DM (p-Value) 95% CI n NT I2 (%) GRADE

WC −0.30 (0.008) (−0.52, −0.08) 23 1023 63.4 Moderate 2 WC (cm) −1.22 (0.005) (−2.07, −0.36) 22 972 37.5 Moderate 2

T-C −0.17 (0.001) (−0.27, −0.07) 109 3991 54.5 Moderate 2 T-C (mmol/L) −0.10 (0.013) (−0.18, −0.02) 103 3673 70.6 Moderate 2

SBP −0.20 (0.000) (−0.28, −0.12) 95 3539 25.0 High SBP (mm Hg) −1.56 (0.000) (−2.13, −0.99) 83 3175 0.00 High
DBP −0.19 (0.000) (−0.26, −0.11) 99 3790 27.9 High DBP (mm Hg) −1.42 (0.000) (−2.08, −0.76) 90 3473 41.6 Moderate 2

HDL-C +0.11 (0.034) (0.01, 0.21) 99 3581 53.1 Low 2,3 HDL-C (mmol/L) +0.03 (0.062) (0.00, 0.05) 92 3239 61.6 Moderate 2

FMD +0.20 (NS) (−0.17, 0.57) 22 563 73.8 Low 2,3 FMD (%) +0.64 (0.027) (0.07, 1.20) 21 547 82.2 Low 2,3

Significant: p-value 0.05; Marginally Significant (0.05 ≤ p-value 0.1). SDM: standardized difference in means; DM: Difference in means; CI: confidence intervals; n: total number of studies;
NT: total number of participants; I2: Heterogeneity Index; WC: Waist Circumference; T-C: Total Cholesterol; HDL-C: High Density Lipoprotein Cholesterol; SBP: Systolic Blood Pressure;
DBP: Diastolic Blood Pressure; FMD: Flow Mediated Dilation. 1 GRADE quality of evidence downgraded from high to moderate or low in the presence of serious risk of bias across studies
and (or) serious risk of reporting bias; 2 serious risk of bias across studies: more than 50% of the studies had unclear allocation concealment, no double-blind studies and unclear reporting
of dropouts; 3 serious risk of reporting bias: Eggert p-value 0.05 and more than 50% of small studies with limited number of participants.

Table 2. Summary of the most significant effects of the foods and food products containing ETs (pomegranate and nuts) and those containing ANCs (berries, red
grapes and red wine) on biomarkers of cardiometabolic risk.

ET-Containing Products (Pomegranate, Nuts) ANC-Containing Products (Berries, Red Grapes, Red Wine)

SDM (p-Value) n DM (p-Value) n SDM (p-Value) n DM (p-Value) n

WC −0.70 (0.025) 7 WC (cm) −1.53 (0.031) 6 WC −0.12 (NS) 16 WC (cm) −0.75 (NS) 16
T-C −0.18 (0.006) 28 T-C (mmol/L) −0.09 (0.000) 26 T-C −0.17 (0.008) 81 T-C (mmol/L) −0.10 (0.094) 77

HDL-C +0.10 (NS) 23 HDL-C (mmol/L) +0.03 (NS) 21 HDL-C +0.12 (NS) 76 HDL-C (mmol/L) +0.03 (NS) 71
LDL-C −0.19 (0.031) 26 LDL-C (mmol/L) −0.11 (0.000) 24 LDL-C 0.05 (NS) 71 LDL-C (mmol/L) −0.03 (NS) 68
TAGs −0.24 (0.025) 26 TAGS (mmol/L) −0.11 (0.000) 24 TAGs +0.004 (NS) 71 TAGS (mmol/L) +0.02 (NS) 64
SBP −0.11 (NS) 21 SBP (mm Hg) −1.89 (NS) 15 SBP −0.23 (0.000) 74 SBP (mm Hg) −2.19 (0.000) 68
DBP −0.14 (NS) 20 DBP (mm Hg) −1.28 (NS) 18 DBP −0.20 (0.000) 79 DBP (mm Hg) −1.58 (0.000) 72
FMD +0.62 (0.014) 3 FMD (%) +0.39 (NS) 3 FMD +0.12 (NS) 19 FMD (%) +0.53 (NS) 18

Glucose −0.24 (0.052) 16 Glucose (mmol/L) −0.12 (0.01) 15 Glucose −0.05 (NS) 22 Glucose (mmol/L) +0.001 (NS) 45

Significant: p-value 0.05; Marginally Significant (0.05 ≤ p-value 0.1). WC: Waist Circumference; T-C: Total Cholesterol; LDL-C: Low Density Lipoprotein Cholesterol; HDL-C: High Density
Lipoprotein Cholesterol; TAGs: Triglycerides; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; FMD: Flow Mediated Dilation; n: total number of studies included in the
analysis; SDM: standardized difference in means; DM: Difference in means.
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Overall, there was a higher number of clinical trials looking at the cardiometabolic regulatory
effects of ANC-rich berries, grapes and wine (n = 99) than studies carried out with pomegranate
or nuts (n = 30). Regardless of the number of studies per subgroup, stratification into these two
types of products did not alter the significant effect on T-C levels. However, the analysis of the
separate subgroups highlighted some dissimilarity between the supplementation with the two types
of products, with the ET-containing pomegranate and nuts being more effective (i.e., greater effect size
and more significant results) than the ANCs subgroup at reducing WC (subgroups comparison (SDM):
Q statistic = 6.70, p-value = 0.01), LDL-C, TAGs (subgroups comparison (SDM): Q statistic = 4.06,
p-value = 0.044) and glucose. On the other hand, the ANC-rich products were significantly effective at
lowering both SBP and DBP, whereas this was not the case in the ETs subgroup. We cannot ignore,
however, that this may be due to the smaller number of studies carried out with the ETs-containing
products. Also, probably due to the smaller number of studies per subgroup, the initially observed
significant increase in HDL-C (all products together) was not significant in each separate subgroup.
In addition, we found a significant increase in FMD (SDM) in the ETs subgroup, though these results
should be interpreted cautiously since the number of trials was very small (n = 3). Given some of
the differences found between the ETs and ANCs subgroups, we next carried out the rest of the
stratification analyses in each separate subgroup.

2.4. Comparative Analysis of the Potential Factors Influencing Interindividual Variability in the Responses to
the Consumption of Foods and Food Products Containing ETs and ANCs

2.4.1. Stratification by the Individuals’ Baseline BMI, Sex, Smoking Habits and Background Diet

Stratification by baseline BMI values: <25.0 Kg/m2 (normal individuals) vs. ≥25.0 Kg/m2

(overweight and obese individuals) (Supplementary Table S5) evidenced a general absence or a small
number of studies carried out in normal individuals in the ETs subgroup (≤3) and in the ANCs
subgroup (between 5 and 13) for most of the biomarkers investigated. Neither ETs nor ANCs had any
effect on the biomarkers investigated in the normoweight subpopulation. The most noteworthy effects
of the ETs- and ANCs-containing products in overweight and obese individuals are summarized in
Table 3.

The reduction of T-C by these two types of products remained significant in the individuals
with a baseline BMI ≥ 25.0 Kg/m2 although the extent of the reduction appeared to be smaller
in the ETs subgroup. The reduction of WC, LDL-C, TAGs and glucose by the ETs-containing
pomegranate and nuts in the total population (Table 2) was still seen in the overweight/obese subgroup.
For FMD, we found that the 3 studies included in the analysis of the ETs subgroup were all carried
out in overweight/obese individuals and thus the results are the same as in Table 2. Regarding
blood pressure, the ANC-containing products were also effective at lowering SBP and DBP in the
overweight/obese people. Of note, the ET-products which did not significantly affect blood pressure
in the overall population group (Table 2) became effective and significant at lowering the SBP in the
overweight/obese people.

Regarding sex stratification, there were also few studies specifically carried out with either only
men (n = 1–24) or women (n = 1–9) depending on the product and biomarker and thus, the evidence
for the effect of sex in the response to ETs or ANCs was limited and most results were not significant
(Supplementary Table S6). We found, however, that the reduction of DBP in men by ANCs was still
significant (SDM: −0.19, p-value = 0.017, n = 24; DM: −1.70 mm Hg, p-value = 0.012, n = 22) whereas
in women the results did not reach significance (SDM: −0.19, p-value = 0.092, n = 8; DM: −1.81 mm Hg,
p-value = 0.087, n = 8), possibly due to the small number of studies in the women subgroup.
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Table 3. Summary of the most significant effects of the foods and food products containing ETs (pomegranate and nuts) and those containing ANCs (berries, red
grapes and red wine) on biomarkers of cardiometabolic risk in overweight and (or) obese individuals (baseline BMI: ≥ 25.0 Kg/m2).

BMI ≥ 25.0 kg/m2 ET-Containing Products (Pomegranate, Nuts) ANC-Containing Products (Berries, Red Grapes, Red Wine)

SDM (p-Value) n DM (p-Value) n SDM (p-Value) n DM (p-Value) n

WC −0.70 (NS) 4 WC (cm) −1.71 (0.047) 3 WC −0.11 (NS) 10 WC (cm) −0.70 (NS) 10
T-C −0.12 (NS) 20 T-C (mmol/L) −0.08 (0.000) 18 T-C −0.34 (0.003) 35 T-C (mmol/L) −0.23 (0.009) 35

LDL-C −0.15 (NS) 20 LDL-C (mmol/L) −0.11, (0.000) 18 LDL-C −0.13 (NS) 30 LDL-C (mmol/L) −0.11 (NS) 29
TAGs −0.21 (NS) 19 TAGs (mmol/L) −0.11 (0.000) 17 TAGs −0.05 (NS) 28 TAGs (mmol/L) −0.05 (NS) 27
SBP −0.26 (0.012) 14 SBP (mm Hg) −3.10 (0.033) 11 SBP −0.25 (0.000) 43 SBP (mm Hg) −1.54 (0.000) 38
DBP −0.08 (NS) 15 DBP (mm Hg) −0.55 (NS) 14 DBP −0.22 (0.002) 30 DBP (mm Hg) −1.62 (0.000) 29
FMD +0.62 (0.014) 3 FMD (%) +0.39 (NS) 3 FMD −0.20 (NS) 6 FMD (%) −0.65 (NS) 6

Glucose −0.19 (0.058) 14 Glucose (mmol/L) −0.18 (0.017) 13 Glucose −0.13 (NS) 22 Glucose (mmol/L) −0.02 (NS) 20

Significant: p-value 0.05; Marginally Significant (0.05 ≤ p-value 0.1). WC: Waist Circumference; T-C: Total Cholesterol; LDL-C: Low Density Lipoprotein Cholesterol; TAGs: Triglycerides;
SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; FMD: Flow Mediated Dilation; n: total number of studies included in the analysis; SDM: standardized difference in means;
DM: Difference in means.
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We did not find any study carried out specifically with smokers in the ETs subgroup and only
very few studies (n = 1–3) in the ANCs subgroup (Supplementary Table S7). Most studies were
conducted with non-smokers or in a mix population. The ET-containing products reduced WC
(DM = −1.72, p-value = 0.047, n = 3), DBP (SDM: −0.27, p-value = 0.035, n = 9), and glucose (DM = −0.11,
p-value = 0.000, n = 5) in the non-smokers subgroup. In the ANCs subgroup, the reduction of both
SBP and DBP remained significant for non-smoker individuals. FMD was significantly reduced by the
ANC-containing products in smokers (SDM = −1.61, p-value = 0.000; DM = −3.53%, p-value = 0.000).
Statistical comparison between smokers vs. non-smokers confirmed the difference in the effect between
the two subgroups ((SDM): Q statistic = 5.93, p-value = 0.015; (DM): Q statistic = 4.84, p-value = 0.028).
These results should be interpreted with caution due to the small number of studies included.

Studies were also stratified according to the type of background diet (controlled vs. usual)
followed during the supplementation period with the ET- or the ANC-containing products
(Supplementary Table S8). In most cases, the results of the analyses were not significant with
independence of the type of diet followed during the intervention. The reduction of T-C by the
products containing ETs were significant both in trials carried out with the usual diet, as well as those
carried out with controlled diet whereas the levels of TAGs and the WC were most significantly reduced
only in the subgroup that followed a controlled diet (subgroups comparison (SDM): Q statistic = −4.66,
p-value = 0.031 for TAGs; (SDM): Q statistic = 19.52, p-value < 0.001 and (DM): Q statistic = 20.32,
p-value < 0.001 for WC). Additionally, we found some indication of the increase of FMD in studies
carried out with the usual diet (SDM: +0.62, p-value = 0.014, n = 3) and of the decrease of LDL-C
(DM: −0.11 mmol/L, p-value = 0.000, n = 9) and glucose (DM: −0.15, p-value = 0.038, n = 8) under a
controlled diet.

Regarding supplementation with ANCs, the reduction of SBP and DBP by these compounds was
significant both in interventions maintaining the usual diet and in those carried out with controlled
diets. We additionally detected a significant decrease in the LDL-C levels but only in the subgroup that
followed the usual diet (SDM: −0.31, p-value = 0.027; DM: −0.22 mmol/L, p-value = 0.016, n = 16–17).

2.4.2. Stratification by the Health Status of the Participants

As for the previous factors examined, stratification of the studies by reported health status of the
participants reduced considerably the number of studies in many of the resulting subgroups, as well
as the significance of the results (Supplementary Table S9a,b).

In the subgroup containing studies with healthy participants, the evidence of the effects of
the ET-containing pomegranate and nuts was limited to a significant reduction of T-C (SDM:
−0.21, p-value = 0.021; DM: −0.15 mmol/L, p-value = 0.028, n = 10) and of glucose (SDM: −0.62,
p-value = 0.023; DM: −0.23 mmol/L, p-value = 0.016, n = 5) (Supplementary Table S9a). In those
studies carried out with volunteers ‘at risk’, the ET-containing products reduced LDL-C (SDM: −0.55,
p-value = 0.030; DM: −0.11 mmol/L, p-value = 0.000, n = 4) and SBP (SDM: −0.40, p-value = 0.004; DM:
−1.15 mm Hg, p-value = 0.003, n = 4). There was also a small reduction in T-C (DM: −0.08 mmol/L,
p-value = 0.000, n = 4) and in TAGs (DM: −0.11 mmol/L, p-value = 0.000, n = 4) and an increase in
HDL-C (SDM: +0.35, p-value = 0.030, n = 6). In the reported disease subgroup, we only detected a small
reduction in WC (SDM: −0.57, p-value = 0.065; DM: −0.71 cm, p-value = 0.029) and an increase in FMD
(SDM: +0.66, p-value = 0.037). Subgroups comparison also highlighted that the ET-containing products
were more effective at reducing glucose in healthy volunteers than in participants with some disease
((SDM): Q statistic = 5.99, p-value = 0.014 and (DM): Q statistic = 3.91, p-value = 0.048). All these results
were based on a very small number of studies and should be taken with caution.

Regarding the ANC-containing products, the most clear and consistent evidence was that
supplementation with these products significantly reduced blood pressure independent of the health
status of the participants and thus, they similarly lowered SBP and DBP in healthy non-medicated
individuals, in participants ‘at risk’ (also non medicated), as well as in those patients with some
diagnosed cardiovascular disease and under medication (Supplementary Table S9b). Also, the ANCs
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significanlty reduced WC only in the subgroup of ‘at risk’ participants (SDM: −0.24, p-value = 0.017;
DM: −1.72 cm, p-value = 0.064, n = 7) whereas T-C was downregulated in the healthy subgroup (DM:
−0.15 mmol/L, p-value = 0.003, n = 32) and in the disease subgroup (SDM: −0.24, p-value = 0.042,
n = 36).

We did not find significant evidence in any particular subgroup (healthy, ‘at risk’, disease) in
which the supplementation with ANC-containing products caused a change in BMI, LDL-C, HDL-C,
TAGs, glucose, insulin, and HOMA-IR. Instead, we detected a significant increase in FMD in the
healthy subgroup (DM: +0.92%, p-value = 0.049, n = 10).

2.4.3. Stratification by the Country Where the Study Was Carried Out

In the absence of proper characterization of the ethnicity of the participants (most studies did not
report this information), we explored the potential influence of the country of recruitment or country
where the study was carried out. Once more and despite the reduction of the number of studies per
subgroup and the limited significance of most results, we were able to find some significant data with
sufficient number of studies for some of the outcomes examined (Supplementary Table S10a–c).

There were very few studies (n = 1–4) carried out with ET-containing pomegranate or nuts in East
Asian countries. In this subgroup, we only found a significant reduction of T-C (DM: −0.19 mmol/L,
p-value = 0.050, n = 4). In the subgroup constituted by all-the-other-countries except the East Asian
ones, the reduction of T-C was also significant, as well as that of WC, LDL-C, TAGs and glucose
(Supplementary Table S10a). The subgroup of studies carried out in North America (Supplementary
Table S10b) also gave some significant evidence of the reduction of WC, T-C, LDL-C, TAGs, and of
insulin levels even though the number of studies included was not very big (n = 4–11). Subgroup
comparions between studies conducted in North America and those carried out in Europe detected a
significant difference in the effects of these products on insuline which was increased in the European
studies ((DM): Q statistic = 5.79, p-value = 0.016). In addition, a small but significant increase in FMD
was seen in the North American countries but only with two studies included. Overall, the studies
conducted in European countries with ET-containing products show limited evidence of the reduction
of T-C, LDL-C, glucose and insulin. Of note, the DBP was reduced by this type of product in European
countries (DM: −5.21 mm Hg, p-value = 0.048, n = 5). Further stratification into Mediterraean or
non-Mediterranean European countries (Supplementary Table S10c) reduced the number of studies per
subgroup to 1 or 2 for most of the biomarkers investigated and the results were mostly not significant.
Nevertheless, in the Non-Mediterranean countries there was a tendency towards the reduction of T-C,
LDL-C, DBP, and glucose by the intake of ET-products. Insulin was significantly augmented in this
subgroup (DM: +3.04 mIU/mL, p-value = 0.027) in the limited studies reported (n = 2).

In the all-other-countries-but-not-East-Asian subgroup, the ANC-containing products had no
apparent effect on LDL-C, HDL-C or FMD whereas in the studies conducted only in East Asian
countries, the ANCs significantly reduced LDL-C (SDM: −0.45, p-value = 0.003, DM: −0.30 mmol/L,
p-value = 0.000, n = 6), and increased HDL-C (SDM: +0.57, p-value = 0.000, DM: +0.15 mmol/L,
p-value = 0.000, n = 6) and FMD (DM: +2.19%, p-value = 0.000, n = 2) (Supplementary Table S10a).
Subgroup comparisons between studies conducted in East Asian countries and those carried out
in the rest of the world confirmed a significant effectiveness in the upregulatory effects of the
ANC-containing products in the Asian countries for HDL-C ((SDM): Q statistic = 5.21, p-value = 0.022;
(DM): Q statistic = 5.51, p-value = 0.019) and for FMD ((SDM): Q statistic = 4.09, p-value = 0.043;
(DM): Q statistic = 4.28, p-value = 0.038). For T-C and DBP, the evidence of a reduction by the
ANC-containing products was stronger in the all-other-countries subgroup than in the East Asian
ones. These results give some preliminary evidence of a potential influence of the East Asian countries
associated characteristics on the effect of the ANC-containing products. On the other hand, the
effects on SBP remained significant in both subgroups reinforcing a general effectivity of these type of
compounds at regulating blood pressure. In support of this statement, when we classified the studies
into those carried out in North America and those conducted in Europe (Supplementary Table S10b),
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the ANCs still significantly reduced SBP and DBP in both subgroups. We additionally detected a
significant reduction of T-C only in the European countries (SDM: −0.18, p-value = 0.017, n = 33;
DM: −0.17 mmol/L, p-value = 0.000, n = 31) and some differences between the two subgroups at
regulating the levels of insulin, with an apparent increase in North America studies and a reduction
in European studies. Finally, stratification of the European countries into the Mediterranean and
the Non-Mediterranean ones also shows some differences between the two areas, i.e., a significant
reduction of LDL-C by the ANCs only in the Mediterranean countries (SDM: −0.35, p-value = 0.002,
n = 14; DM: −0.19 mmol/L, p-value = 0.003, n = 14) or a significant increase in FMD only in the
Non-Mediterranean area (SDM: +0.54, p-value = 0.006, n = 13; DM: +1.21%, p-value = 0.002, n = 13)
(Supplementary Table S10c). SBP and DBP were downregulated in both areas of Europe.

2.4.4. Stratification by Specific Sources of ETs and ANCs.

Examination for specific differences between the main sources of compounds was investigated:
pomegranate and nuts for ETs, and berries and red grapes/wine for ANCs. The complete results of
this analysis can be seen in Supplementary Table S11. A summary with the most significant results
and differences are listed in Table 4.

Comparison of studies by sources of ETs into pomegranate and nuts (Table 4a) demonstrated
that nuts reduced significantly WC, T-C, LDL-C and TAGs. They also showed a tendency to reduce
glucose levels. Further, nuts had a small but significant increase in HDL-C and a marginally significant
increase in FMD. None of these effects were seen in the group of studies carried out with pomegranate.
In addition, a very significant difference in the regulation of DBP was detected between these two
types of products with studies conducted with pomegranate reporting that DBP was significantly
reduced whereas nuts reported a small but significant increase in DBP (subgroups comparison (SDM):
Q statistic = 12.95, p-value < 0.001; (DM): Q statistic = 17.32, p-value < 0.001).

Both sources of ANCs, berries and red wine/grapes, caused a significant reduction in blood
pressure (Table 4b) but some differences were also detected between the two types of products.
The berries reduced T-C and increased FMD whereas grapes and wine did not. In addition, the
glycated hemoglobin was significantly reduced by the berries as opposed to the grapes/wine which
increased the values of this biomarker (subgroups comparison (SDM): Q statistic = 8.59, p-value = 0.003;
(DM): Q statistic = 9.41, p-value = 0.002).
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Table 4. Comparative summary of the most significant effects on biomarkers of cardiometabolic risk of: (a) the ET-containing products after separation into the two
main sources examined: pomegranate vs. nuts; (b) the ANC-containing products after stratification by the source of bioactive compounds: berries vs. red wine and
red grapes.

(a) ET-Containing Products

Source Pomegranate Nuts

SDM (p-Value) n DM (p-Value) n SDM (p-Value) n DM (p-Value) n Comparison between Subgroups (Q Statistic, p-Value)

WC (cm) −0.20 (NS) 1 −3.90 (NS) 1 −0.78 (0.027) 6 −1.51 (0.038) 5 SDM: 0.40, NS DM: 0.08, NS
T-C (mmol/L) −0.04 (NS) 11 −0.02 (NS) 11 −0.32 (0.000) 17 −0.098 (0.000) 15 SDM: 10.83, 0.001 DM: 3.31, 0.069

LDL-C (mmol/L) −0.07 (NS) 10 −0.05 (NS) 10 −0.26 (0.047) 16 −0.11 (0.000) 14 SDM: 1.31, NS DM: 0.66, NS
HDL-C (mmol/L) +0.11 (NS) 10 +0.01 (NS) 10 +0.14 (NS) 13 +0.03 (0.029) 11 SDM: 0.09, NS DM: 0.30, NS
TAGs (mmol/L) −0.05 (NS) 10 −0.01 (NS) 10 −0.33 (0.031) 16 −0.11 (0.000) 14 SDM: 1.44, NS DM: 1.10, NS

SBP (mm Hg) −0.09 (NS) 8 −0.26 (NS) 6 −0.13 (NS) 13 −1.63 (NS) 9 SDM: 0.03, NS DM: 0.03, NS
DBP (mm Hg) −0.46 (0.000) 8 −4.31 (0.000) 8 +0.06 (NS) 12 +0.58 (0.004) 10 SDM: 12.95, 0.000 DM: 17.32, 0.000

FMD (%) +0.71 (NS) 1 +0.05 (NS) 1 +0.58 (0.058) 2 +1.04 (0.053) 2 SDM: 0.07, NS DM: 3.37, NS
Glucose (mmol/L) −0.10 (NS) 7 −0.09 (NS) 7 −0.36 (0.079) 8 −0.14 (0.061) 8 SDM: 1.17, NS DM: 0.10, NS

(b) ANC-Containing Products

Source Berries Red Wine/Red Grapes

SDM (p-Value) n DM (p-Value) n SDM (p-Value) n DM (p-Value) n Comparison between Subgroups (Q Statistic, p-Value)

T-C (mmol/L) −0.21 (0.021) 38 −0.16 (0.093) 35 −0.14 (NS) 44 −0.06 (NS) 43 SDM: 0.30, NS DM: 0.70, NS
SBP (mm Hg) −0.25 (0.000) 38 −2.41 (0.000) 34 −0.21 (0.000) 36 −3.31 (0.014) 34 SDM: 0.11, NS DM: 0.35, NS
DBP (mm Hg) −0.25 (0.001) 42 −1.57 (0.002) 37 −0.16 (0.000) 39 −1.50 (0.002) 35 SDM: 0.80, NS DM: 0.06, NS

FMD (%) +0.46 (NS) 9 +1.39 (0.011) 8 −0.19 (NS) 10 −0.73 (NS) 10 SDM: 2.89, NS DM: 5.68, NS
Hb1Ac −0.63 (0.044) 7 −0.20 (0.040) 6 +0.97 (0.038) 7 +0.26 (0.026) 7 SDM: 8.59, 0.003 DM: 9.41, 0.002

WC: Waist Circumference; T-C: Total Cholesterol; LDL-C: Low Density Lipoprotein Cholesterol; HDL-C: High Density Lipoprotein Cholesterol; TAGs: Triglycerides; SBP: Systolic Blood
Pressure; DBP: Diastolic Blood Pressure; FMD: Flow Mediated Dilation; Hb1Ac: Glycated Haemoglobin; n: total number of studies included in the analysis; SDM: standardized difference
in means (relative values); DM: Difference in means (units as indicated per each biomarker).
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3. Discussion

As far as the authors are aware, this is the largest (128 reported dietary intervention studies
involving 5438 participants from countries covering five continents) systematic review and subsequent
meta-analysis investigating and comparing the effects of the consumption of plant food products
and derived extracts containing substantial quantities of ANCs and (or) ETs, i.e., berries, red grapes
and wine, pomegranate and nuts, on a number of well-established risk biomarkers associated with
cardiometabolic disease. We have analyzed all these trials in an effort to determine the evidence
accumulated so far in relation with their potential cardiometabolic benefits in humans, as well as the
factors that cause variability in the results and may influence the response of the individuals to the
consumption of these products. In the first part of our analysis, it was pertinent to investigate all
these foods and food products together because some of them can contain high concentrations of both
types of polyphenols, notably various berries [161,162]. This approach provides a most significant
association between the intake of ANC- and (or) ET-containing products and beneficial changes in
WC, T-C, SBP and DBP (reductions compared to control), or HDL-C (increase compared to control).
Further, there were modest borderline significant reductions in fasting plasma glucose and TAGs and
an increase in FMD. On the other hand, our analyses of data from studies separately investigating the
effects of ET-rich foods (pomegranate and nuts) or ANC-rich foods and extracts (berries, red wine,
red/black grapes) confirms effective and similar reduction of T-C levels by both types of products
but points out differences between the beneficial effects of pomegranate and nuts (more efficacious at
reducing WC, LDL-C, TAGs or glucose) and the benefits berries/grapes/wine (significant effective
regulators of blood pressure). It is important to acknowledge that the beneficial effects detected by
our analysis cannot be exclusively attributed to the ANCs or ETs present in them and that we cannot
discard these effects may be also attributed to other components. Nevertheless, these results support
the benefits of consuming food products containing ANCs and (or) ETs that, at least partially, may be
due to these polyphenols.

With regards to the magnitude of the effects, it has been previously stated that a reduction of
1 mmol/L for non-HDL-C and an increase of 0.3–0.4 mmol/L for HDL-C are associated each with a
one third reduction in ischemic heart disease risk [163] or a 22% reduction in coronary heart disease
risk [164]. It has also been reported that a reduction of 12 mm Hg for SBP and of 5 mm Hg for DBP
are accompanied by significant reductions of major cardiovascular events [165]. The results of our
meta-analysis (expressed as DM values) show that, on average, the intake of ANC- and ET-containing
products is associated with approximately 10-fold lower effects, i.e., a reduction of 0.10 mmol/L in T-C,
an increase of 0.03 mmol/L in HDL-C and a decrease of 1.5–2.0 mm Hg for blood pressure, both SBP
and DBP. These changes constitute between 1% and 3% change of the desirable threshold values for
these biomarkers [164,166,167] and might be comparatively considered small or very small changes.
This is also shown by the SDM values, mostly in the range of 0.1 to 0.2, generally considered as small
changes [168]. Nevertheless, it is recognized that conventional risk factors interact to increase the risk
for cardiometabolic diseases [169] and that combined treatment may be advantageous for the lowering
of cardiometabolic events [170]. The fact that multiple vascular biomarkers that reflect multiple
components of the cardiometabolic system are significantly altered in response to the consumption of
ANC- and ET-rich foods and food products may contribute to the reduction of major cardiovascular
events. In support of this, a previous meta-analysis of three prospective cohort studies concluded that
ANCs intake was inversely associated with the risk of cardiovascular disease comparing the highest
and lowest categories of intake [171]. Together, all these data suggest that foods and food products
containing ANCs and ETs may act via the regulation of multiple biomarkers, including lipids, blood
pressure and glucose homeostasis/insulin resistance.

The second aim of this systematic review and meta-analysis was to investigate the potential
associations between some participant variables (baseline BMI, age, gender, smoking, geographical
location where the study was carried out, health status and nature of the diet followed during the
intervention) and the effects of the intervention with the food products containing ETs and (or) ANCs.
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We show, for first time, that the significant effects of ET-rich products on T-C, LDL, TAGS and DBP
and of ANC-rich food products on T-C, DBP and SBP were consistently observed in participants
with BMIs ≥ 25 kg/m2 (overweight/obese). Similar results were found in a previous meta-analysis,
looking at the effects of flavanol-containing products in T-C [29]. Together, these results suggest that
supplementation with polyphenol-rich products may have a beneficial impact on some cardiometabolic
risk factors in overweight and/or obese people. In addition, significant effects of ET-rich products
on SBP were observed in overweight/obese subjects but no significant effects on SBP were observed
in the global study population, again supporting the need for population stratification, within such
intervention studies, in order to discern effective regulation of biomarkers by the intake of bioactive
compounds or products. It should be noted, however, that we found limited or non-evidence in
normoweight participants since the number of studies reported was very small (n = 3). Thus, further
investigation of the effects of ANC- and ET-products, and of other bioactive compounds, in individuals
with BMI < 25 kg/m2 are needed. With regard to the influence of participant sex, smoking habits,
health status and habitual diet, there were, in general, a very small number of trials that provided this
information in a useable form, limiting our ability to investigate how these host factors might affect the
responses to intervention with foods and food products containing ANCs and/or ETs. Nevertheless,
in the subsequent paragraphs we discuss some of the most relevant effects found in this meta-analysis
for some of these factors.

Different responses were observed depending on the biomarkers analyzed and the health status of
the participants. Accordingly, the beneficial effects of ANC-rich foods and extracts on blood pressure
appeared to be independent of the participant health status, whereas we found some differences
between healthy, ‘at risk’ and diseased participants in the effects of these foods on WC and T-C. On the
other hand, supplementation with the ET-containing products modified WC, T-C and DBP only in
healthy people, but affected FMD, LDL and TAGs in the ‘at risk’ and disease subpopulations. Previous
reviews and meta-analyses had already indicated differences in the response to the intake of these and
other bioactive compounds depending on the health status of the sample population. For example,
systematic reviews of the effects of interventions with ANCs on lipid biomarkers have reported
that only ANCs cause significant reductions in LDL-C in participants with hypercholesterolemia
(4 out of 4 studies), but not in participants who had normal cholesterol (zero out of 8 studies) [172].
It was also reported that ANCs supplementation significantly decreased T-C, TAGs, LDL-C and
increased HDL-C in dyslipidemic patients (6 studies including 586 subjects [173]. Similarly, it has been
reported that high-dose quercetin supplementation caused a significant reduction in blood pressure in
stage 1 hypertensive participants but was not affected in pre-hypertensive participants [174]. Also,
the consumption of green tea [175,176], black tea [177], and flavanol-containing tea, cocoa and apple
products [29] had beneficial effects on blood lipids both in healthy subjects and in patients with
hyperlipidaemia or in individuals with cardiovascular risk and/or diagnosed diseases. On the
contrary, meta-analyses conducted with flavonols [28], cocoa products [178], and soy products [179]
reported beneficial effects in LDL-C, HDL-C and TAGs in participants with cardiovascular risk and/or
diagnosed diseases, but no effect on healthy participants. Overall, these results show some evidence of
the influence of the health status on the cardiometabolic response to the intake of bioactive compounds
but this interaction is complex and far from understood. It is essential to continue the research to clarify
the impact of the health/disease baseline conditions of the participants on the response to bioactive
compounds intake.

Previous studies have indicated that the country or area of the world where the clinical study
was conducted appears to have some influence on the results of these types of interventions with
plant bioactive polyphenols. For example, specific differences between East Asian and Non-Asian
countries or between Mediterranean and Non-Mediterranean countries for some lipid biomarkers
in response to the intake of flavonol-containing products [28] or flavanol-containing products [29]
have been reported. In the current meta-analysis, we have also identified a few differences in the
effects of the ET- and ANC-containing foods for some of the biomarkers examined between specific
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countries or geographical locations. In the case of products with ANCs, a significant reduction of
LDL-C was seen only in East-Asian countries, but not in the rest of other countries; whereas the
products containing ETs were efficient at reducing LDL-C in the subgroup of all the countries, but not
in the East-Asian ones. The rationale for these potential differences and as to why a particular country
or world area population may benefit best from the intake of these or other bioactive compounds is
not yet known. In addition to the fact that the number of studies per subgroup of countries remains
low and the results are very unstable, important country-associated features, such as the ethnicity of
the participants, which may influence greatly the results have not been clearly indicated in most of the
revised publications included in this meta-analysis and in previous ones [28,29]. Future studies should
better describe these country-related characteristics of the participants.

Although the source of bioactive compounds cannot be categorized as a host determinant of
interindividual variability, it has been already shown that it can significantly affect the response to the
intake of these compounds [33]. In our meta-analysis we also stratifiyed the results taking into account
the main categories of foods investigated, i.e., pomegranate, nuts, berries and red grape/wine. Our
results highlighted differences in the effects between pomegranate and nuts. The pomegranate products
significantly reduced DBP, but had no apparent effect on SBP, whereas nuts were found to cause a
small but significant increase in DBP and had no significant effect on the SBP either. Also, nuts were
associated with significant reductions in WC, T-C, LDL-C and TAGs, as well as a borderline increase in
FMD, but these effects were not observed for the pomegranate. In comparison with our results, we
found both agreement and disagreement with previous meta-analyses. For example, Sahebkar and
colleagues reported significant reductions in SBP and DBP caused by the consumption of pomegranate
products [24], but no significant effects on plasma lipids/lipoproteins [25]. Mohammadifard et al. [22]
saw significant reductions in SBP only in participants without diabetes and significant reductions in
DBP (but not SBP) in response to all nut supplementation and suggested that this was largely due to
pistachios. Also, the effects of tree nuts were shown to reduce T-C, LDL-Cand TAGs [23]. Regarding the
ANC-containing products, a previous meta-analysis looking at the supplementation with blueberries
and their effect on blood pressure concluded that the results were not convincing and that more RCTs
were needed [19]. In the current meta-analysis, ANC-containing products have come out as quite
consistent regulators of SBP and DBP. Separation between studies conducted with berries and those
carried out with red grapes/wine confirmed that both sources of ANCs significantly lowered SBP and
DBP and supported that this type of bioactive compounds might have an impact on blood pressure
regulation. We additionally found that the berries but not the grapes/wine significantly reduced T-C
and increased FMD. In agreement with this last result, a recent meta-analysis on 24 RCTs showed that
both acute and chronic supplementation with ANC-rich foods or extracts significantly improved FMD
and improved wave velocity after acute consumption [21].

Various factors might be implicated in the differences found between the different types of food
investigated. Most of the studies gathered in our meta-analysis, as well as in previous ones, have been
conducted with various whole foods or derived extracts which are complex mixtures of compounds
and thus, we cannot discard that the differences observed may be caused by differences in the types
and doses of ETs or ANCs provided by these products and (or) by differences in the presence of other
bioactive components with a beneficial effect. For example, there is a substantial literature describing
the beneficial effects of nuts on biomarkers of cardiovascular health and on cardiovascular events
see reviews by Schwingschackl et al., 2017 [180] and by Mayhew et al., 2016 [181], but it is not yet
known whether these benefits may be due to the fatty acids/lipids, the polyphenols (which are mainly
in the skins) or a combination of the two. Additional evidence from further well-designed trials are
required before we can unequivocally attribute the benefits to the specific ETs or ANCs present in
these products.

In addition to the factors examined in this meta-analysis, other important factors that may play
a critical role in the inter-individual variability and can contribute to explain the lack of consistent
evidence in humans of the beneficial cardiometabolic effects of the ANC- and ET-containing food
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products (as well as of other polyphenol-containing foods and extracts) are: bioavailability of all
these compounds and their derived metabolites [182,183], individuals enterotypes and functional
stratification of the gut microbiome profile (i.e., metabotypes) [31,184,185], and the (epi)genetic
characteristics of the host individual.

Regarding microbiota enterotypes, it is important to note that ETs are hydrolyzed into ellagic
acid (EA) and further broken down into urolithin metabolites by the gut bacteria. Urolithins are
much better absorbed and reach significant concentrations in plasma that can persist for hours in the
human body after the intake of ETs-containing products suggesting that these urolithins may be the
actual bioactive molecules [186]. Recently, it was reported that three urolithin metabotypes, based
on the qualitative and quantitative proportions of urolithins produced, were consistently observed
across multiple intervention studies and appeared to be independent of the ET food source and age
or health status of participants [184]. These observations create a new paradigm where the urolithin
metabotype of the participants should be determined and included as a covariate in future studies
investigating the effects of consuming ET-rich products such as pomegranate and nuts. Along these
lines, a recent RCT has shown that intervention with a purified pomegranate extract containing
mainly ETs significantly improved lipid/lipoprotein profiles only in participants who produced a
particular type of urolithins (around 30% of the total sample population), whereas no significant effects
were detected when all participants were included in the analysis [31]. Therefore, since the urolithin
metabotype of participants has not been reported or used to stratify participants for the vast majority
of studies investigating the effects of ET-rich foods that were included in the current meta-analysis, it is
not surprising that the meta-analysis failed to detect significant effects of ETs on lipoprotein profiles.
Similar cases have been reported for the conversion of the soy isoflavone daidzein into equol, where
volunteers can be categorized into equol producers and non-producers and this stratification might
explain the discrepancy of the soy/isoflavones effects on human health, mainly cardiovascular. Thus,
obesity has been correlated with the non equol-producer phenotype [187]. In addition, a positive
correlation has been observed in the cardiovascular risk profiles and the equol-producer phenotype in
pre-hypertensive postmenopausal women [188].

On the other hand, the relevance of the genotype-dependent response to dietary constituents
is recognized as an additional key variability factor [189]. In this regard, an increasing number
of genetic variants has been identified and related to obesity and diet-interaction and, the studied
population has been segregated into groups of responders and non-responders in association with the
specific genetic variations [190]. A number of studies have now also looked at the role of specific host
genetic variants in response to the consumption of polyphenols or polyphenol-containing products,
including genetic polymorphisms involved in: (i) the metabolism and transport of polyphenols such
as Catechol-O-methyl transferase [191] or phase II enzymes UGT1A1 [192] and (ii) the cardiometabolic
responses such as the lipid and blood pressure variation associated with the apolipoprotein e genotype
in response to quercetin in overweight people [193] or the interaction between the IL-6-174 G/C
polymorphism and the reduction of body fat following the intake of a polyphenol-rich apple juice [194].
More genes and polymorphisms involved in the response to polyphenols need to be identified and
more RCTs need to be performed reporting and associating the presence of those relevant genetic
polymorphisms, as well the microbiota composition and microbiota-derived metabolic phenotype with
the differences in the response of the individuals to the consumption plant food bioactive compounds.
These studies will contribute to better understanding of the effectiveness of these compounds in
different subpopulations.

Some of the limitations of our meta-analysis are those inherent to this type of analysis. Given
the heterogeneity of the RCTs included, the size of the sub-groups and the effect size detected for the
variables investigated, some of the results presented here should be regarded with caution, even if some
p-values resulted significant. A critical issue to consider would be the level of statistical significance
accepted for the meta-analysis. We have accepted p-value < 0.05 as significant and indicated also
some results that were marginally significant (0.1> p-value > 0.05) since we thought that they could
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be indicative of an effect (that, of course, would need future confirmation). Some researchers may
believe that more restrictive p-values <0.01 or <0.001 should be applied [195] whereas, more recently,
estimation based on effect size and confidence intervals is recommended [196]. In any case, the
interpretation of the results of the meta-analysis may vary, especially for those most unstable results.
Equally important is to address and understand the clinical relevance of the effects. We have addressed
this in our discussion and suggested that, in general, the size of the effects of the dietary interventions
with foods and (or) food products containing ANCs or ETs (or other polyphenols) may be considered
small. Future RCTs should be sufficiently powered to validate these small changes. We additionally
detected some publication bias for some of the variables investigated in this review. It is important
that future publications of this kind of interventions also report the less favourable or negative results.

In conclusion, and despite these limitations, this is one of the largest meta-analysis performed in
the area of the beneficial effects of the consumption of plant polyphenols in humans, and provides
a good summary of the available information on the cardiometabolic effects of the intake of foods
and food products containing ANCs and ETs. Overall, these foods and products appear to promote
small but beneficial regulatory changes on a combination of risk factors and may contribute to prevent
cardiometabolic diseases. Nevertheless, from a nutritional practice point of view, it is not yet possible
to establish specific intake recommendations for these foods and (or) for the ANCs and ETs present
in them since there are still some important challenges to solve. One of those is that there are still
very few trials conducted with specific doses of purified ANCs or ETs compared with nutritionally
matched placebos to demonstrate unequivocally the effects of these compounds and the doses needed.
More RCTs designed for this purpose should be done in the future. Another important issue is that
responses to polyphenol dietary interventions can be significantly dependent on different host factors
and that within a study population there are subgroups of participants that respond strongly to a
polyphenol intervention while other participants respond weakly or not at all. Our meta-analysis has
explored some of the factors that might affect the response to the intake of ANC- or ET-containing
products (baseline BMI, health status or food source) but our results were not sufficient to draw
definitive conclusions in the subgroup analyses. Research to establish the determinants that cause
inter-individual variability of the responses to the consumption of these and other bioactive compounds
is a high current priority [33]. Ideally, better study design providing detailed descriptions, particularly
around the choice and numbers of participants, should be addressed so that significant and clinically
relevant effects on a primary outcome can be established for each subpopulation investigated with the
ultimate goal of developing personalized nutrition strategies for human health and disease prevention.
Such studies are still rare, and it is instead typical that stratifying of participants is done as an
afterthought and was not considered in setting the participants’ numbers at the stage calculating
study power. An alternative approach would be to use data reported from completed and future
trials to determine what factors affect responses to polyphenols. The ideal scenario would be the
reporting of individual level data, notwithstanding the complex ethical and regulatory issues that
this would raise. If all outcome responses were available for each participant along with pertinent
participant characteristics such as age, gender, BMI, ethnicity, health status, habitual diet, smoking
habit, baseline values for a series of risk biomarkers, relevant host genetic makeup and metabolic
phenotype, this would allow studies to determine relationships between participant characteristics and
their propensity to respond to polyphenols to advance rapidly. One could envisage an online repository
for such information being of tremendous value and supporting high quality research that would
relatively rapidly allow individual characteristics that determine responses to be identified. However,
the ethical and regulatory issues are not trivial, and are not even consistent between territories, and
such a data repository is not currently available.

4. Materials and Methods

A meta-analysis was performed to explore the potential regulatory effects of foods and (or)
products containing ellagitannins (ETs) and/or anthocyanins (ACNs). We used the preferred reporting
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items and statement guidelines for systematic review and meta-analysis protocols (PRISMA, Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) [197], the Cochrane Handbook for
Systematic Reviews of Interventions [198], and the Centre for Reviews and Dissemination’s guidance
for undertaking reviews in health care [199]. The protocol for this review was registered on the
International Prospective Register of Systematic Reviews (PROSPERO) [200] with the registration
number CRD42016037539.

4.1. Search Strategy and Study Selection

A comprehensive search on Medline [201] and on the Web of Knowledge [202] databases was
conducted between April and June 2016. The search strategy included a combination of the following
search terms: #1 AND #2 AND #3 AND #4 AND #5 (#1 polyphenol* OR ellagitannin* OR urolithin* OR
hydrolizable tannin OR “ellagic acid” OR punicalagin OR peduncalagin OR sanguiin OR anthocyanin*
OR anthocyanidin* OR pelargonidin OR delphinidin OR cyanidin OR petunidin OR peonidin OR
malvidin; #2 berry OR berries OR “black currant” OR nuts OR walnut* OR “black carrot” OR “purple
corn” OR pomegranate OR aronia OR wine OR grape*; #3 trial OR experiment OR study OR studies
OR intervention; #4 human* OR subject* OR men OR male OR women OR female OR patient* OR
volunteer* OR participant*; #5 FMD OR “flow-mediated dilation” OR “flow-mediated vasodilation”
OR “flow-mediated vasodilatation” OR “endothelial function” OR “endothelial dysfunction” OR
“blood pressure” OR hypertens* OR “arterial pressure” OR “pulse pressure” OR cholesterol OR LDL
OR HDL OR BMI OR “body mass index” OR waist* OR HOMA-IR OR HOMA2 OR “homeostatic
model assessment” OR insulin* OR QUICKI OR “impaired sensitivity” OR “Syndrome X” OR
“Metabolic Syndrome X” OR glucose OR “blood glucose” OR glycemia OR “glycemic control” OR
HbA1c OR “glycosylated haemoglobin” OR “glycated haemoglobin” or “haemoglobin A1c” OR
“hemoglobin A, glycosylated” OR “euglycemic clamp” OR dyslipidemia* OR hyperlipidemia* OR
hypertriglyceridemia* OR triglyceride* OR triacylglycer*).

The search terms were queried using the “topic” field in the WOS database; whereas for PubMed
search we used the corresponding Mesh Terms, when available, and the presence of the keywords in
the title or abstract of the papers using the tag [TIAB].

Two authors independently assessed all papers and a third author double-checked data selection
to reach a consensus with the final selected studies. Studies included in the meta-analysis were
limited to human RCTs testing the effect of ET- or ANC-containing foods or products, which had a
control group receiving a placebo (group of participants who were exposed to a similar test product
but without the ETs or ANCs) and measured one or more of the defined outcomes. Additional
exclusion criteria were: case series, case reports, cohort studies, case-control studies, co-intervention,
and cross-sectional studies, studies with multifactorial interventions (dietary or physical activity
co-intervention), studies written in a non-European language and duplications.

4.2. Data Extraction

Data extraction was performed in duplicate by two authors, independently, and cross-checked
by a third author using a standardized data extraction form. Extracted data included: (i) publication
details (year of publication, name of first author, name and e-mail of corresponding author, clinical
trial registration number (when available), country where the study was carried out); (ii) participants’
characteristics (gender, age, ethnicity, health status, menopausal status, smoking habits, baseline BMI,
use of medication); (iii) study setting (total number of participants included in the study and in the
analysis, design (cross-over or parallel), washout duration, treatment duration, number of arms and
description, number of participants located in each arm and completing the study, composition of
test and placebo, dose and mode of administration); and (iv) information on reported outcomes (type
of sample, changes in the outcome, values before and after intervention, p-value when available,
dropouts). Before analysis, outcomes on blood lipid levels and glucose levels were converted to
mmol/L if reported in a different unit.
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4.3. Assessment of the Risk of Bias

A systematic assessment of the risk of bias for each of the included studies was based on the
Cochrane Collaboration measurement with some modifications [198]. The specific items used for the
assessments of each study are those used in a previous meta-analysis [28]: (1) selection bias—random
sequence generation, allocation concealment (in each item, yes = 1; no = 0, unclear = 0); (2) performance
bias—blinding (yes = 1 for each participants, researchers and statisticians, no = 0, unclear = 0),
measurement of compliance (1 for biomarker measure, 0.5 if compliance information was collected by
counting non used capsules or recipients, or by self-reporting, 0 if no measurement of compliance was
done or the information is insufficient); (3) attrition bias – flow of participants (1 if flow of participants
is explained in detail, including number of withdrawals and reasons, 0 if there is no information
or insufficient information); (4) other bias—baseline comparability between test and control groups
(yes = 1, no = 0, unclear = 0), data report (1 if pre and post data or change is reported in table with
central measure and spread for placebo and treatment groups, and number per group, 0 if anything
is missing), industry funding (0 if any commercial source provided some or all monetary funding
for the trial, if a company carried out a study “in house”, if any of the authors was employed by a
relevant industry or if it was unclear that there was any kind of industry funding, 1 if there was no
funding from industry or if the only involvement of a company was to provide any ingredient for the
intervention). Studies were rated as low risk of bias when total score was ≥8 and ≤10, moderate risk
of bias when total score was ≥5 and <8 and high risk of bias when total score was below 5.

4.4. Data Analysis

Data for each outcome were analyzed using the Comprehensive Meta-Analysis Software, version
3.0 (Biostat, Englewood, NJ, USA) [203]. Standardized difference in means (SDM), standard error (SE)
and the 95% confidence intervals (CI) were calculated and pooled using random effects models to
determine test/placebo differences across studies. We additionally determined absolute difference in
means (DM) to estimate effect size. The heterogeneity of studies was assessed using the Cochran’s
Q statistic, the between-studies variance (T2) and I2 (the proportion of total variation contributed
by between-study variability) where I2 values equal to 25%, 50% and 75% were considered as low,
moderate and high heterogeneity, respectively [204]. Publication bias was assessed visually with
funnel plots and statistically by applying the Egger’s regression test [205]. Further assessment of the
possible associations between the overall effects of the ETs and/or ANCs supplementation and the
duration of the intervention was examined using random-effects meta-regression analysis.

Quality of evidence was assessed based on the GRADE system [198]. Level of evidence was
downgraded from high to moderate in the presence of serious risk of bias across studies or serious risk
of reporting bias, and downgraded to low if both were present.

Subgroup analyses were conducted to explore potential factors that may introduce heterogeneity
into the studies and influence the inter-individual variability in the response to supplementation
with the ET- and/or ANC-containing products. We selected those factors that were investigated
previously [28,29] and were most clearly reported in the selected articles (Table 5). Briefly, we included
factors that might be attributed to some of the individuals’ characteristics, such as baseline BMI, sex,
smoking habits and medication/health status. Age or ethnicity could not be assessed due to unclear
reporting. We also included stratification by the country in which the study was carried out, the source
and form of administration of the ETs and/or ANCs, as well as the type of diet reported to be followed
during the intervention. For each subgroup, the pooled effects (SDM and DM) and the significance of
these values were estimated. Statistical comparisons between subgroups were performed by applying
a random-effects analysis and calculation of the between-categories Q statistic and the corresponding
p-values. A p-value <0.05 was statistically significant. Differences with a p-value <0.1 and ≥0.05 were
reported as marginal.
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Table 5. Potential factors influencing the heterogeneity in the responses to the supplementation with ellagitannins and/or anthocyanins-containing products
investigated in this meta-analysis.

Factors

Baseline BMI 25.0 a (normal and (or) underweight) ≥25.0 (overweight and (or) obese)

Sex Women Men

Smoking Non-smokers Smokers

Country where the study
was conducted

East Asian countries
(Japan, Korea, China)

All-other-
countries-but-not-East Asian

North America (USA, Canada)

European countries

Non-Mediterranean countries
(Denmark, Norway, Finland, The
Netherlands, Germany, Poland, UK,
Scotland, France, Czech Republic)

Mediterranean countries
(Italy, Spain, Greece)

Medication Yes No

Health status Healthy individuals b Individuals ‘at a risk‘ of disease c Individuals with a reported disease d

Main source of compounds
Ellagitannins Anthocyannins

Pomegranate Nuts Berries Red wine and red grapes

Diet during intervention Controlled diet (specifically indicated to have restriction for the consumption of polyphenols or plant foods) Usual diet (no changes in the usual diet of the participants or NR)
a BMI cut-off values as established by the WHO; b Includes individuals specifically reported as healthy and not medicated (in some cases medication was not reported, NR); c Includes
individuals not medicated that were overweight and (or) obese, or specifically indicated to be borderline, mild condition or ‘at risk’ of a disease; d Includes individuals with one or more
than one of the following disorders: dyslipidemia, glucose disorders or type-2 diabetes, blood pressure disorders (hypertension), medicated obesity, metabolic syndrome (most cases were
also medicated but in some cases medication was NR).
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