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Abstract: We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate
the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via
two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units
organized in a multilayered architecture. The magnetic activity of the structures was assured by
coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite.
In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size
helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures,
we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT
on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red
and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure
optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than
2 as compared with the same structure in the absence of a magnetic field.

Keywords: static magnetic field stimulation; 3D biomimetic structures; bone cell growth
and differentiation

1. Introduction

Nowadays, the term tissue engineering is frequently used in order to address the solutions for
tissue replacement following an accident, surgical excision or organ loss of function. The concept refers
to the “development of biological substitutes that restore, maintain or improve the tissue function” [1].
Starting from this concept, the strategy of developing 3D biomimetic structures that simulate the
architecture of the natural tissue has evolved into implementing specific properties to the structures
for stimulating the cells growth, development and differentiation into functional tissue.

Bone tissue engineering has been one of the hot topics in biomaterials science, due to the increased
need of tissue replacement in traumas, tumor excision, skeletal abnormalities or resection. A successful
regeneration of this tissue depends on the interface interactions that take place between the osteoblasts
and the 3D structure, on the ability of cells penetration, growth and development inside the construct,
as well as on their access to growth factors and nutrients.
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Engineered materials for bone implants make use of different physical external stimuli,
such as magnetic, electric or mechanic, in order to accelerate the repair and regeneration in the
affected tissue [2]. In particular, magnetic field stimulation has been proved to promote the integration
of the implant, to determine an increased bone density of the newly developed tissue, by increasing
the calcium content, thus promoting a more rapid and better healing of the affected bone [2,3].
Static magnetic fields were found to accelerate the proliferation, migration, orientation or differentiation
of osteoblast-like cells [4–9], and to induce the osteogenic differentiation in bone marrow-derived
mesenchymal stem cells [10–12]. These effects can be correlated to the fact that the cell membrane
has diamagnetic properties and the membrane flux can be modified by exposure to static magnetic
field [13–15]. In addition, the extracellular matrix proteins have diamagnetic properties, their structure
and orientation being also affected by static magnetic fields [16]. Weak static magnetic or pulsed
electromagnetic fields are also effective stimuli for bone fracture healing, spinal fusion, bone ingrowths
into ceramics in animal models. Strong static magnetic fields of 5–10 T were also found to regulate the
orientation of matrix proteins and cells in vitro and in vivo [12,13,16].

Researchers have previously studied the effects of static magnetic fields on cells cultured on
different non-magnetic substrates [5], but implantable structures incorporating superparamagnetic
nanoparticles have gained significantly more interest [2,17–19]. Owing to their intrinsic magnetic
properties, they have the ability to improve the adhesion and growth of cells, even in the absence
of an external magnetic field [20–24]. In particular, composites containing magnetic nanoparticles
(MNPs) integrated in various matrices showed significant potentials as bone substitutes. Ceramic
composites containing super-paramagnetic nanoparticles, hydroxyapatite and tricalcium phosphate
had good biocompatibility with the bone cells, and the presence of the nanoparticles did not affect the
function of the bone morphological protein binding to the composites [25]. Magnetic, biodegradable
Fe3O4/chitosan/poly (vinyl alcohol) nanofibrous films fabricated by electrospinning, with average
fiber diameters ranging from 230 to 380 nm and porosity of 83.9–85.1%, facilitated the osteogenesis
in MG-63 human osteoblast-like cells [26]. Magnetic hydroxyapatite coatings with oriented nanorod
arrays using magnetic bioglass coatings as sacrificial templates were also fabricated and used as
substrates for bone growth. To date, the magnetic implantable structures have been fabricated either
by dip-coating conventional structures in aqueous ferrofluids containing iron oxide nanoparticles
coated with various biopolymers or by direct nucleation of biomimetic phase and super-paramagnetic
nanoparticles on self-assembling collagen fibers [27].

The major goal of this work is to accelerate the osteogenesis via the synergic effect of magnetic
3D structures in response to weak static magnetic fields. For this, we designed and fabricated novel
complex 3D structures with unitary elements that mimic the shape of native osteoblast-like cells,
using laser direct writing via two photons polymerization (LDW via TPP) method. For large-scale use
of these structures, as, for example, future in vivo studies with envisaged outcome to be translated into
clinics, an important point is that the material designs need to be reproduced with exactly the same
dimensions for every application. LDW via TPP is a method with great advantages in manufacturing
arbitrary three dimensional (3D) micro/nanostructures of polymers, hybrid materials, organically
modified ceramics (Ormocer), and metals with high reproducibility and sub diffraction-limit resolution
down to 100 nm [28]. The high reproducibility of the 3D structures is mostly provided by the fact
that LDW via TPP uses three-dimensional computer aided design. LDW via TPP is a layer-by-layer
method where every layer is stacked up by voxels. The two-photon solidified small volume elements
called voxels are quite reproducible, their size fluctuating within less than 8% (from the actual
sizes down to 1 µm depending on the multicomponent optical objective used for laser focusing).
The micro/nanostructures are formed by the stack of the voxels, so the resolution and spatial
arrangement of the voxels play an important role in fabricating high precise structures. The high
accuracy and reproducibility of the 3D structures implies the use of small voxels and tight arrangement.
Owing to these characteristics, LDW via TPP is generally recognized as having high reproducibility and
fidelity in obtaining 3D structures with complex architectures [28]. After fabrication, we identified the
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3D structures that provided the best micro-environmental conditions for cell attachment and growth
and favored the cells interconnections in complex 3D architectures, similar with those encountered
in vivo. Then, we provided the structures with the function of responding to applied static magnetic
fields, by coating them with collagen (Col)-chitosan (Chi)-hydroxyapatite (HA)-magnetic nanoparticles
(MNPs) composite. Thus, we obtained new biomimetic magnetically responsive structures aiming to
accelerate the osteogenic response in vitro in osteoblast-like cells, when exposed to static magnetic
fields. We stimulated the cell-seeded structures using a range of weak magnetic fields intensities
(between 100–250 mT) that was not investigated in previous studies and we provide evidence of their
osteogenic effect.

2. Results and Discussion

2.1. Structures Optimization

The fabricated structures closely followed the design, yet not perfectly, as there are some geometry
variations determined by intrinsic material properties and development methodology (Figure 1).
Voxel height accounts for stronger overlap on the Z axis. This results in better structural integrity,
albeit along with lowering porosity and potentially hindering cell migration due to smaller transfer
windows throughout the structure.

Variations at the edge of the structure were determined by both material properties and
development methodology. During irradiation, a series of chemical reactions result in the formation of
polymeric chains. The density of the resulting polymer is slightly higher compared to non-irradiated
material. As such, there is mechanical tension of various strengths throughout the irradiated volume.
Moreover, until the sample is developed and dried, the polymer possesses higher flexibility, adherence
and surface charges. This results in the welding of neighboring structures which, in combination
with other effects of the irradiation (mechanical tension and surface charges), induces small variations
of geometry at every contact point. After development, during the drying phase of the sample,
surface tension of the evaporating developer can also induce deformation of the still-flexible polymer.
This can be observed in Figure 1a. Apart from edge effects, the structure presents high stability and
integrity due to the high number of contact points. Negligible differences from the design can still
be observed at contact points, yet these are not considered variations as they are well reproduced
throughout the whole structure.

The exponential overlap is designed for the Y-axis. The structure is designed to have 4 rows with
respect to this axis. As such, on the Y-axis, there are 3 contact points with different overlaps. This results
in rows with different spatial parameters (such as porosity) in the same structure. Its purpose is to
determine the optimal overlap for cell growth throughout the entire volume of the structure.

Figure 2 shows the morphology of the cells during the first days of culture on the ellipsoidal and
hexagonal multilayered 3D structures. The aspect is heterogeneous, depending on the movement of the
cells and their affinity for the area in which they have settled (morphology is given by the number and
position of the attachment points on the structure). In the detailed pictures (Figure 2b,c) it is evidenced
the tendency of the cells to migrate into the interior of the structure, to climb onto the lateral walls
and to travel through the inner part of the structure, where the specific surface is higher and thus the
higher the number of attachment points. We can also observe a tendency of the osteoblast-like cells
surface density to increase with higher overlap. For medium and low overlaps of the ellipsoidal and
hexagonal elements, the cells seem to have better migrated through whole volume of the scaffold.
While this distribution is found for both the elliptic and the hexagonal structures, we observe a higher
density for the elliptic version. This is determined by the shape of the edges, as the cells seem to attach
better on rounded edges rather than straight ones.
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Figure 1. SEM micrographs of ellipsoidal (upper panel) and hexagonal (lower panel) multilayered 
3D structures produced by LDW (laser direct writing) via TPP (two photon polymerization) of 
IP-L780 photopolymer. (a,d) Side overviews; (b,e) Tiled overviews; (c,f) Closer, tilted views of the 
structures. 

 
Figure 2. SEM (scanning electron microscopy) micrographs of MG-63 osteoblast like cells seeded for 
two days on ellipsoidal (upper panel) and hexagonal (lower panel) multilayered 3D structures. (a,d) 
Overviews of cells attachment on the structures; (b,e) Cells penetrating inside the structures; (c,f) 
Cells growing on the lateral walls of the structures. 

SEM (scanning electron microscopy) images for MG-63 cells cultured during 7 days showed the 
high potential of the structures to support the cells growth. It can be clearly seen that the cells 

Figure 1. SEM micrographs of ellipsoidal (upper panel) and hexagonal (lower panel) multilayered 3D
structures produced by LDW (laser direct writing) via TPP (two photon polymerization) of IP-L780
photopolymer. (a,d) Side overviews; (b,e) Tiled overviews; (c,f) Closer, tilted views of the structures.
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Figure 2. SEM (scanning electron microscopy) micrographs of MG-63 osteoblast like cells seeded
for two days on ellipsoidal (upper panel) and hexagonal (lower panel) multilayered 3D structures.
(a,d) Overviews of cells attachment on the structures; (b,e) Cells penetrating inside the structures;
(c,f) Cells growing on the lateral walls of the structures.

SEM (scanning electron microscopy) images for MG-63 cells cultured during 7 days showed the
high potential of the structures to support the cells growth. It can be clearly seen that the cells invaded
both the ellipsoidal and hexagonal structures, on the outside as well as on the lateral walls (Figure 3b).
In case of the ellipsoidal structure, the cells have a circular shape, given by the growth support, forming
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a continuous layer on the top surface of the scaffold (Figure 3a). The lateral walls show few cells
attached to the exterior of the ellipsoidal elements, the attachment points for the osteoblast-like cells
being mostly at their intersection. It seems as though the top cell layer continues until the bottom of
the glass support, covering the 3D structure. In case of the hexagonal multilayered scaffold, the cells
have a more fragmented morphology, star-shaped, guided by the morphology of the unit structures.
Here, the lateral walls are fully invaded (Figure 3b), the cells display a 3D arrangement, but not
necessary a methodical one. The fracture into the thick layer of cells covering the scaffold shows a 3D
biomimetic displacement of the cells.
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Figure 3. SEM (scanning electron microscopy) micrographs of MG-63 osteoblast like cells growing
on ellipsoidal (upper panel) and hexagonal (lower panel) multilayered 3D structures with optimum
horizontal arrangement, after 7 days in culture. (a,c) Overviews; (b,d) Cells growing on the lateral
walls of the structures.

The above experimental studies were used to determine the optimal geometry in the XY plane for
the cell growth. It is clear that the spacing between neighboring layers should be increased with respect
to Z-axis, in order to enhance the cell migration throughout the volume of the structure. This was
achieved by separating consecutive layers using appropriately placed cylindrical pillars. Each layer
was designed to be 10 µm tall (~14 µm when accounting for voxel height), while pillars were designed
to be 20 µm tall. The optimum overlap of consecutive rows in the XY plane was determined from
previous parametrization. Pillars were placed in overlap regions for enhanced stability. Resulting
structures are presented in Figure 4, for both ellipsoidal and hexagonal variants.
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To test the efficiency of this design, the structures were seeded with osteoblast-like cells and
observed by SEM. It can be seen that the larger space created by the pillars between the stories of
the structures allowed the cells to penetrate the interior of it. Figure 5b,d shows the 3D displacement
of the cells, inside both ellipsoidal and hexagonal structures, forming a tissue-like morphology.
However, the density of cells inside the structure was higher in case of the hexagonal one, as it provides
more attachment points for the cells. In case of the ellipsoidal structures, the cells have a fragmented
appearance, with a star-shaped morphology, for both the inside and outside of the structure. On the top
wall of the structure, the cells form a fragmented layer, because the unit cylinders have a larger inner
diameter, thus the cells need to stretch to have enough attachment points. In the case of the hexagonal
structure, the cells on the lateral walls and inside the structure have a star-shaped morphology, but the
ones on the top layer are hexagonally shaped, forming a more compact layer covering the structure.
These findings are rather intriguing, considering the previous statements related to better adhesion
to the elliptical shaped walls. It is highly likely that a larger top surface area in the case of elliptical
shaped structure induced the collapse of the top cellular layer.

In order to find a suitable architecture for bone tissue engineering, one must take into consideration
a series of factors, starting from the biocompatibility of the materials, porosity, mechanical properties
and osteointegration. Considering the porosity of the structure, this not only refers to the density of
pores and their dimension, which are important to allow the penetration of cells into the scaffold,
as well as nutrient perfusion inside, but it can also refer to the general displacement of these pores and
their ability to guide the attachment and growth of the bone cells, so that the resulting new tissue can
mimic the architecture of the natural bone.
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Figure 5. SEM (scanning electron microscopy) micrographs of MG-63 osteoblast-like cells growing on
ellipsoidal (upper panel) and hexagonal (lower panel) multilayered 3D structures having the layers
spatially separated by cylindrical pillars, after 7 days in cell culture. (a,c) Overviews; (b,d) Closer,
tilted side view, showing cells penetration inside the structure.

Loh et al. [29] discussed how the displacement and morphology of the pores can affect the
properties and architecture of the extracellular matrix in the resulting tissue. Thus, low porosity
materials initially can exhibit high proliferation rates, but compared to high porosity structures they
do not allow cell differentiation [30]. However, Mandal et al. [31] proved that the proliferation of
fibroblasts on porous scaffolds is facilitated not only when the dimension of the pores is higher
(around 200–250 µm), but also when the dimension of pores is lower (100–150 µm) accompanied
by a higher pore density. Loh et al. [29] reported data on scaffolds with various pore sizes, while
the optimal dimension of pore size and density is far from being established. 3D columnar layered
structures were obtained by Mata et al. [32] using microfabrication and soft lithography approaches.
The structures were seeded with adult human stem cells and connective tissue progenitor cells, which
showed an osteoblastic phenotype at 9 days of culturing. The cells were able to invade the interior of
the structure and form colonies. Mohanti et al. [33] used a 3D printing technique to obtain layered
woodpile-like structures, made of spaced polymer filaments. The porosity was varied from 20–80%
and channel distances from 78–1482 µm. Also, they designed the scaffolds to exhibit both elliptical and
hexagonal architecture of the pore structures. High porosity enabled a high specific surface area and
thus improved the ligand density for cell attachment and spreading, as showed by the group. In our
case, both elliptical and hexagonal 3D structures with optimum pore size allowed good cell attachment
and proliferation with a small difference in cell density related to the top layer. Mohanti et al. [33]
stated that the improved cell viability and proliferation are linked to the layered architecture of the
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scaffold, i.e., the network of periodic channels allowing the perfusion and mass transport inside
the scaffold.

2.2. Structure Functionalization

The structures with optimized architectures were coated with Col-HA-MNPs:Chit-HA-MNPs
(Collagen-Hydroxyapatite-Magnetic nanoparticles: Chitosan-Hydroxyapatite-Magnetic nanoparticles)
(Figure 6). A conformal coating was relatively well achieved. Morphological investigations reveal
that the coated/functionalized structure allowed the cells to attach to the inner and outer parts of the
structures, in a similar fashion as for the non-coated samples.
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2.3. Static Magnetic Field Stimulation

Previous studies on SMF simulation of the osteogenesis have mainly focused on magnetic fields
above 250 M or below 50 mT. For example, Yamamoto et al. [4] reported that weak SMF between
280 and 340 mT applied to osteoblast cultures stimulated bone formation by promoting osteoblastic
differentiation and/or activation. On the other hand, Cunha et al. [8] showed that increasing the
magnetic field intensity up to 320 mT resulted in detrimental effects on cell proliferation and osteocalcin
secretion. On the opposite, Feng et al. [6] reported that MG63 cells seeded on a PLLA discs and exposed
to SMF of 400 mT showed a more differentiated phenotype. Much lower SMFs, from 50 mT down
to even 3 mT, were used as biophysical stimulators of proliferation and osteoblastic differentiation
of human bone marrow-derived mesenchymal stem cells [10]. Within this framework, in the present
study, we cover a range of magnetic fields (100–250 mT) in between of those previously reported.
In this way, we aim to explore new possibilities to optimize the cell osteogenic differentiation and to
gain more insight into the roles of SMF for the stimulation of the osteogenesis.

2.4. Biological Assessments

Based on the above findings, the optimum design for the 3D structures was the one with ellipsoidal
elements and having the layers spatially separated by cylindrical pillars (Figure 4a–c, upper panel).
These structures were seeded with MG-63 osteoblast-like cells. External static magnetic fields were
applied by positioning permanent magnets in the vicinity of the samples. The osteogenic effect of
the magnetic structures synergizing with the static magnetic field was investigated within 30 days,
by morphological evaluation, viability tests, differentiation and mineralization assays. We found
evidence that the super-paramagnetic structures accelerate bone tissue formation under the external
magnetic field in reference to the ones without external magnetic field.
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Viability assay showed a reduced proliferation rate for the stimulated samples compared to
non-stimulated ones (Figure 7). The proliferation rate was reduced with increasing magnetic field,
in relation to the control i.e., unstimulated samples.

A question to be raised is why some previous studies showed stimulation of proliferation yet ours
did not. Cooper [34] stated that there are three types of differentiated cells: the terminally differentiated
cells that do not have any precursor left (e.g., heart cells), the cells arrested in G0, that replace death cells
when needed (e.g., skin fibroblasts, smooth muscle cells, endothelial cells in blood vessels, epithelial
cells in organs) and the rest of differentiated cells in organs that exhibit their function, which are
not differentiating, but are replaced by stem cells undergoing differentiation (if needed). Noda [35]
stated that, during the first steps of bone cell differentiation, the proliferation gene expression is
supported, then the down-regulation of proliferation happens. Zhang et al. [36] used hyperoside,
a flavonoid compound to study its effects on U2OS and MG63 cell lines. The group proved that the
compound induces differentiation of the cells which is accompanied by cell cycle arrest in G0/G1.
Whang et al. [37] showed similar results for cinnamic acid, after 7 days of culture.

In our experiments, we evaluated the proliferative activity of the MG63 cells at 4 weeks of
culture, the inhibition of proliferation being associated with an advanced stage of cell differentiation.
Considering the papers that we have cited, Panseri et al. [38] has evaluated the proliferation and
differentiation of human osteoblast-like cells on magnetic hydroxyapatite-based scaffolds at 7, 14,
and 21 days of culturing and magnetic stimulation. However, by comparing the graphs for cell
proliferation measurements and ALP (Alkaline Phosphatase) measurements (differentiation), we can
see that cells exhibiting higher ALP content were not undergoing proliferation anymore (this can
be especially observed at day 10 and day 20). Li et al. [39] evaluated the proliferation of the cells in
magnetic scaffolds just until 7 days of culturing, so these are quite early time points associated with
the first steps in the differentiation process. Similar results were reported by Zheng et al. [40].
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Figure 7. MTS viability of MG-63 osteoblast-like cells growing on ellipsoidal multilayered 3D structures
having the layers spatially separated by cylindrical pillars, as a function of the applied static magnetic
fields. Results for unstimulated samples (controls) are shown for comparison. Each bar represents the
mean ± STD. Statistical significance was determined by Student’s t-test (* p ≤ 0.05, ** p ≤ 0.001).

ALP (Alkaline Phosphatase) is one of the substances in the ECM (extracellular matrix) that
indicates if the osteoblast cells have entered the period of ECM development and maturation.
Over the whole investigation period, the cells growing on magnetically stimulated structures produced
significantly more ALP than those growing on the non-stimulated samples (Figure 8). Moreover,
the ALP activity increased with increasing strength of the applied magnetic field. At 10 days of culture,
the difference in ALP production for the different groups of samples did not exceed 0.3 fold, regardless
the intensity of the applied static magnetic field. The difference between each group of samples became
significant starting from 20 days of cells stimulation. The stimulated cells showed more than a twofold
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increase of ALP production compared to the control (unstimulated samples). Moreover, the ALP
production increased with the intensity of the static magnetic field i.e., up to almost 3 fold for the
group of samples stimulated at 250 mT. The proportion between the ALP productions for each group
of samples was maintained after 30 days of magnetic stimulation, the values increasing as compared
to 20 days.
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Figure 9. Absorbance measurements for Alizarin Red marking of the mineral deposits in MG-63 
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Figure 8. ALP (Alkaline Phosphatase) activity normalized to protein content for MG-63 osteoblast-like
cells growing on ellipsoidal multilayered 3D structures having the layers spatially separated by
cylindrical pillars, as a function of the applied static magnetic fields. Results for unstimulated samples
(controls) are shown for comparison. Each bar represents the mean ± STD. Statistical significance was
determined by Student’s t-test (* p ≤ 0.05, ** p ≤ 0.001).

Alizarin Red staining was used to examine mineral deposition in the newly developed
extracellular matrix. The samples exposed to magnetic fields exhibited more mineral content that the
unstimulated ones (Figure 9). After 10 days of static magnetic stimulation, for the highest intensity of
the magnetic field the cells exhibited an increased Alizarin Red coloring up to 0.7 fold. Similar to ALP
activity measurements, the Alizarin Red dye attached more to the stimulated samples beginning with
20 days groups (almost a 2.7-fold increase in the case of the 250 mT group). The increase of Alizarin
Red absorbance with stimulation time and intensity of magnetic field was more evident for the 30-day
groups. These results indicate a higher number of osteoblast cells differentiating when exposed to
static magnetic fields, leading to more new bone tissue formation on day 30.
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Figure 9. Absorbance measurements for Alizarin Red marking of the mineral deposits in MG-63
osteoblast-like cells growing on ellipsoidal multilayered 3D structures having the layers spatially
separated by cylindrical pillars, as a function of the applied static magnetic fields. Results for
unstimulated samples (controls) are shown for comparison. Each bar represents the mean ± STD.
Statistical significance was determined by Student’s t-test (* p ≤ 0.05, ** p ≤ 0.001).
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For further confirmation, the level of osteocalcin was measured using immunohistochemically
staining. Osteocalcin is a bone-specific extracellular matrix protein produced by the osteoblast cells
during the process of the new bone formation. At each testing time point, the samples exposed to
magnetic fields exhibited higher osteocalcin formation than the unstimulated samples (Figure 10).
The samples showed the highest level of osteocalcin production on the day 30 (almost a 0.7-fold
increase compared to controls). The level of osteocalcin secretion increased with increasing intensity of
the applied magnetic field.
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growing on ellipsoidal multilayered 3D structures having the layers spatially separated by cylindrical
pillars, as a function of the applied static magnetic fields. Results for unstimulated samples (controls)
are shown for comparison. Each bar represents the mean ± STD. Statistical significance was determined
by Student’s t-test (* p ≤ 0.05, ** p ≤ 0.001).

All evaluated responses (cell viability, ALP, Alizarin Red staining and Osteocalcin secretion)
with respect to magnetic field stimulation were statistically significant as compared with the controls
(unstimulated) samples.

Our study followed the effects of static magnetic stimulation of osteoblast-like cells cultured on
3D biomimetic structures during 30 days of stimulation and incubation under standard conditions of
humidity and temperature. The results showed a decreased cell proliferation in stimulated samples
compared to non-stimulated samples, as measured by MTT tetrazolium salt viability assay at 30 days.
This can be explained by the fact that the cells undergoing differentiation do not proliferate anymore
and thus have a reduced metabolic activity [41,42]. The other results showed a more than 2-fold
increase of ALP production and Alizarin Red coloring of the mineral depositions in the 250 mT sample
group. These results were supported by the Osteocalcin level measurements, suggesting that the cells
underwent differentiation, the degree and advancement being directly influenced by the intensity of
the static magnetic field. All these results indicate that the innovative magnetic structure accelerated
new bone tissue formation via the synergic action of the magnetic 3D biomimetic architecture and
the applied static magnetic field, emerging as a promising approach for guiding and enhancing the
process of bone growth and regeneration.

Our results are consistent with previously reported studies on static magnetic field stimulated
bone tissue regeneration. Previous in vitro studies on magnetic responsive scaffolds showed
the stimulating effect of the static magnetic field to the proliferation and differentiation of cells.
Tampieri et al. reported on porous ceramic composite made of HA and magnetite, with enhanced
in vitro cell proliferation at early stage under the external magnetic field [38]. Zhou’s group fabricated
a nanofibrous scaffold composed of PLA and iron oxide nanoparticles, with good biocompatibility
and guided cells orientation along the fibers under the external magnetic field [39]. A weak magnetic
force with intensity of 10–50 mT was reported to accelerate osteoblast differentiation, the effect being
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assigned to the increased phosphorylation. Porous hydroxyapatite scaffolds containing magnetic
nanoparticles enhanced the in vitro osteoblast cells growth when a magnetic field was applied [39,40].
A composite of a polyester matrix magnetically functionalized with iron oxide nanoparticles showed
good ability to support and enhance the osteogenic differentiation of mesenchymal stem cells [23].

Despite these positive results, the mechanism of bone cell stimulation in magnetically responsive
structures is not yet understood. It was hypothesized that the MNPs generate the microdeformation
of the structure under the magnetic field, providing strain stimulation to the seeded cells. The strain
stimulation would activate the cells to proliferate and differentiate and form new bone tissue.
The synergy effect of magnetically responsive biomimetic structures in response to the external applied
magnetic field to fasten the osteogenesis may be further amplified by combining it with chemical
signaling provided by growth factors and osteogenic drugs. Moreover, the magnetism of the structures
can be tailored by controlling the MNPs content in the composite.

3. Materials and Methods

3.1. Structures Design

The 3D structures were aimed to mimic the shape of a typical osteoblast cell. To this end,
we designed repetitive ellipsoidal and hexagonal units, organized in a multilayered architecture.
We used Python (SciPy pack, Python Software Foundation, Beaverton, OR, USA) for structure
generation. After all parameters were calculated, the Python script wrote .gwl files, which are specific
to the equipment used for fabrication. From a computing point of view, both geometries represent
ellipses. Hexagonal structures were derived from elliptic structures, as we used only 6 points on each
elliptic cell to define the hexagonal element. We employed different geometries, for different purposes,
in an iterative fashion. The complete structure is composed of elements of specific geometry and
position, which are repeated on each axis independently. Elements on the X-axis are positioned with
a constant distance between the centers of neighboring elements, 30 µm. In order to determine the
optimal geometry, the distanced between neighboring elements on the Y axis is varied according to
the following equation:

CY−axis = i · incx · 2(
i

10 ) + const (1)

where CY−axis represents the center of the specified element, i is the row number, incx is the distance
between the centers of the first two rows of elements, and const is an arbitrary constant used for
positioning the whole structure with respect to the 0 position. This results in an exponential variation
of the distance between the centers of neighboring elements. In other words, the overlap of elements
varies exponentially with respect to the Y-axis. The 2(i/10) term is used to adjust the exponential
overlap to the overall size of the structure. Element diameters were 40 µm on X-axis and 80 µm on
the Y-axis, respectively. The height of each layer was designed to be 20 µm (~24 µm when accounting
for the voxel height). Neighboring layers intertwine for higher structural resistance. The overlap
is ~8 µm depth-wise for two consecutive layers. Moreover, the layers are dislocated to the left and
right, consecutively, by half the diameter of a cell on the X-axis. In order to compensate for this
dislocation, even-numbered layers are comprised of 6 cells on the X-axis, while odd-numbered layers
are comprised of 5 cells on the X-axis. After determining the optimal distance between centers of
neighboring cells on each axis, we fabricated structures with fixed overlap in the X and Y directions.
Height optimization is done after experimental results for optimized XY geometry.

3.2. Structure Fabrication and Characterization

Structure fabrication was achieved using the Photonic Professional 3D Lithography system from
Nanoscribe GmbH (Eggenstein-Leopoldshafen, Germany). This installation relies on two-photon
polymerization to create 3D structures by laser direct writing (LDW by TPP). We used IP-780 as the
material of choice for the structures. This material is a liquid photoresist that results in a biocompatible
polymer after TPP-induced chain reaction and development. This formulation is optimized for high
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sensitivity in the case of rapid 3D structuring. Laser irradiation was achieved with 150 fs pulses with
an 80 MHz repetition rate and centered on λ = 780 nm. The light was focused with a 63× microscope
objective. The positioning was made using a hybrid system comprised of motorized and piezoelectric
stages. Coarse positioning was achieved with the motorized stages, while the laser writing was done
using the piezoelectric stages. Each sample was prepared by drop-casting the photoresist on a 170 µm
thick glass substrate, previously cleaned by ultrasonication for 30 min in ethanol. It was then inserted
into the positioning system and the laser was focused on the surface. The structure was written in
the polymer drop while maintaining contact points to the substrate for adherence. The polymer was
formed rapidly after irradiation without the need for additional processing. After the laser writing,
the sample was taken out and immersed in Propylene Glycol Mono-methyl Ether Acetate (PGMEA)
solvent for up to 15 min in order to remove the non-photopolymerized material. After removing the
samples from the solvent, they were allowed to dry, in air, at room temperature.

Bare iron oxide nanoparticles (MNPs) with physical dimension of 4–20 nm have been obtained
using a modified chemical co-precipitation as described in [43]. It has been proved that iron
oxide nanoparticles express super-paramagnetic behavior that is preserved when incorporated in
nanocomposite materials [19]. Collagen (Col), chitosan (Chit) and hydroxyapatite (HA) were acquired
from Sigma Aldrich, St. Louis, MO, USA. The 3D structures were coated by spin coating at 6000 rpm
with solutions containing 2 wt % chitosan, 2 wt % collagen, 2 wt % HA, and 4 wt % MNPs. Preliminary
studies highlighted the differences in cell viability, density and morphology as a function of the
Col:Chit ratio in the mixture. Specifically, the cell viability and density were higher for higher Col
concentration, decreasing progressively with increasing Chit content. Also, in the case of compounds
with a higher concentration of Col, the cells retained their native morphology, while on structures
with higher Chit content, cell morphology was altered, showing specific signs of apoptosis. Based on
these preliminary biological assessments, the optimal composition of the Col:Chit nanocomposite was
established to be 80:20.

SEM

The structures were investigated by Scanning Electron Microscopy (SEM, FEI InspectS model,
Hillsboro, OR, USA). Prior to SEM examination, the samples were coated with ~10 nm gold. After the
cell-seeding, the samples were fixed and dehydrated using the protocol described in the next section.

3.3. Biological Assessments

3.3.1. Cell Cultures

MG-63 osteoblast-like cells, were purchased from the European Collection of Cell Cultures
(ECACC, Salisbury, United Kingdom). The cells were cultured in MEM growth medium (Biochrom,
Berlin, Germany), supplemented with 10% fetal bovine serum (FBS, Biochrom), 2 mML-glutamine
(Biochrom), 1% (v/v) non-essential amino-acids and 100 IU/mL of penicillin/streptomycin (Biochrom)
under standard conditions of temperature and humidity (37 ◦C, 5% CO2). When confluent, the cells
were detached with 1% Trypsin and seeded onto the UV-sterilized structures (5000 cells/structure) and
cultured under standard conditions for 4 weeks. Before preparation for MTS assay, ALP production
measurement, Alizarin Red staining and Human Osteocalcin Immunoassay, the samples were checked
under an Axio Imager 2, Zeiss microscope with AxioCam MRm camera and the cells surrounding the
structures were removed using a cell scraper (TPP, Trasadingen, Switzerland).

3.3.2. Cells Morphological Investigations by SEM

After being cultured for 7 days under standard conditions on the 3D structures and
controls, the cells were gently washed with PBS and fixed with 2.5% glutaraldehyde in PBS,
during 1 h, at room temperature. After this, the cells were washed again and proceeded to the
dehydration procedure. First, the samples were dehydrated in ethanol (EtOH) solutions with
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the indicated concentrations (2 times, during 15 min wash with Et OH 70%, 90%, respectively
100%). Then, the samples were immersed in EtOH-HMDS solutions (50%:50%; 25%:75%, respectively
0%:100% ratios, 2 times, during 3 min). Finally, the samples were let to dry prior to SEM analysis.

3.3.3. MTS

5000 cells/ sample were cultured in complete MEM for 4 weeks under standard conditions
of temperature and humidity. After this time, the culture medium was replaced with 16.67% MTS
(Cell Titer 96® Aqueous One Solution Cell Proliferation Assay, Promega, Madison, WI, USA) and
83.33% MEM (5% FBS). After 2–3 h of incubation, the supernatant was collected and 100 µL from
each sample was distributed in a 96-well plate. The absorbance was measured at 490 nm, using the
Mitras LB 940 (Berthold Technologies, Bad Wildbad, Germany) spectrophotometer. The viability was
calculated as percent from controls (non-stimulated samples i.e., 0 mT).

3.3.4. ALP

Alkaline Phosphatase production was spectrophotometrically measured at 405 nm, using the
Alkaline Phosphatase Assay Kit (Colorimetric) (ab83369) (Abcam, Cambridge, UK), which uses
p-Nitrophenyl Phosphate Liquid Substrate (pNPP) for cell lysate. For this, the cells were cultured
similarly as for MTS. The Assay standards were prepared as following: 40 µL pNPP 5mM liquid
standard solution were mixed with 160 µL Assay Buffer and serial dilution were further prepared (0, 4,
8, 12, 16, 20 nmol/well of pNPP). For the sample preparation, the cells were harvested by trypsinisation,
gently washed for several times with cold PBS and resuspended in 100 µL Assay Buffer and were
then centrifuged at 7000 rpm, for 15 min, to remove the insoluble components. The supernatant
was transferred into 96 well-plates (100 µL/well) and completed with 50 µL of 5mM pNPP solution;
10 µL of ALP enzyme solution was only added into the standard wells. All standards and samples
were incubated in the dark, at room temperature, for 60 min. Next, 20 µL of Stop Solution was added
into each well, standards and samples and the absorbance was measured at 405 nm using the Mithras
(Berthold Technologies) spectrophotometer. The results were expressed as units per milligram of
protein in cell lysate, where the protein was assayed by the Bradford (B6916, Sigma Aldrich) method,
using serum bovine albumin as standard.

3.3.5. Osteocalcin

In order to measure the Human Osteocalcin protein, the cells were seeded similarly as
for SE; the samples were prepared using Quantikine®ELISA Human Osteocalcin Immunoassay
(Catalog Number DSTCN0 (R&D SYSTEMS, Minneapolis, MN, USA)), according to the producer’s
specifications. The standard Osteocalcin solution in the kit was used in order to obtain a standard curve
for Osteocalcin calibration. A total of 50 µL from the supernatant of each sample was added to a 96-well
plate, together with 100 µL of Assay Diluent. The samples were incubated while shaking during 2 h;
after this time, they were washed 3 times using the washing buffer; 200 µL from the conjugate were
added in each well. After another 2 h of shaking at room temperature, the samples were washed
4 times using the washing buffer; 200 µL from the Substrate solution was added to each well and then
allowed to incubate for 30 min, in the dark. At the end of this period, the reaction was finished using
50 µL of the Stop solution. The osteocalcin protein secretion was measured spectrophotometrically at
450 nm with a correction at 570 nm, using the Mitras LB 940 (Berthold Technologies).

3.3.6. Alizarin Red (ARS) Assay

For mineral distribution evaluation, the cells were seeded similarly as for SEM. After 4 weeks
of incubation, the samples were washed twice with double-distilled water; after this 1 mL of 40 mM
ARS (pH 4.1) was added to each well. Following this, the samples were incubated for 20 min,
at room temperature and then washed several times with double-distilled water while shaking for
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5 min. The quantification of mineralization was done by extracting the calcified mineral at low pH,
followed by neutralization with ammonium hydroxide and absorbance measurement at 405 nm.

3.3.7. Statistical Analysis

The values were presented as mean ± STD (standard deviation) of 3 measurements. The data
were analyzed statistically using a two-tailed Student’s test, where p values ≤ 0.05 were accepted as
statistically significant. Each data point in the relative cell viability, ALP, Alizarin and Osteocalcin
estimations was calculated as the mean of 3 different measurements performed in 3 different
experiments. The standard deviation was shown as an error bar. The calculated probability that
resulted in significant differences from the control samples was calculated based on the t-statistic of
the variance of differences between individual observations as related to control. We defined * p < 0.05
and ** p < 0.001.

3.3.8. Static Magnetic Fields Stimulation

The samples were positioned in the vicinity of gold-plated cubic Neodymium magnets (5 mm).
The strengths of the magnetic fields were measured using a Phywe digital teslameter with tangential
and axial Hall probes. For obtaining strengths of the magnetic field between 100 and 250 mT,
we employed 1 to 3 magnets positioned in particular configurations. The Petri dishes containing the
cell-seeded structures were placed on top of the magnets.

4. Conclusions

We demonstrated the synergistic effect of 3D magnetic structures on enhancing cell differentiation
in response to static magnetic fields. We fabricated innovative, complex 3D structures of ellipsoidal
and hexagonal repetitive units that mimic the native shape of osteoblast-like cells, by LDW via
TPP of IP-L780 photoresist. This is the first report in the literature of the use of this technique in
obtaining biomimetic 3D structures for bone tissue engineering, with this specific architectural design.
The structures were coated with a magnetic composite made of collagen, chitosan, HA and MNPs.
The nanoparticles provided the structures with magnetization ability suitable for cell guiding in the
vicinity and inside the structure, as well as for cells differentiation and mineralization. The static
magnetic field applied to the 3D structures accelerated the cell differentiation in vitro, in relation to the
structures without stimulation using a magnetic field. Moreover, the cells exposed to the most intense
magnetic field reached the end of proliferation period and started their differentiation faster than those
in the other samples. Thus, we have succeeded in obtaining novel 3D biomimetic structures with
potential for bone tissue engineering that are specifically designed to offer the best architectural features
that enable the support and growth of osteoblast cells. Moreover, adding magnetic properties to the
structures via the nanocomposite biocompatible coating made of collagen, chitosan, hydroxiapatite
and MNPs, accelerated cell differentiation, with the potential to promote earlier development of new
bone. These results provide encouraging perspectives for pre-clinical applications and set the basis for
further research in developing clinically available smart engineered materials for the management of
bone injures.
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