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Abstract: Tumor necrosis factor-stimulated gene-6 (TSG-6) is a 35-kDa glycoprotein that has been
shown to exert anti-inflammatory effects in experimental models of arthritis, acute myocardial
infarction, and acute cerebral infarction. Several lines of evidence have shed light on the
pathophysiological roles of TSG-6 in atherosclerosis. TSG-6 suppresses inflammatory responses
of endothelial cells, neutrophils, and macrophages as well as macrophage foam cell formation and
vascular smooth muscle cell (VSMC) migration and proliferation. Exogenous TSG-6 infusion and
endogenous TSG-6 attenuation with a neutralizing antibody for four weeks retards and accelerates,
respectively, the development of aortic atherosclerotic lesions in ApoE-deficient mice. TSG-6 also
decreases the macrophage/VSMC ratio (a marker of plaque instability) and promotes collagen fibers
in atheromatous plaques. In patients with coronary artery disease (CAD), plasma TSG-6 levels
are increased and TSG-6 is abundantly expressed in the fibrous cap within coronary atheromatous
plaques, indicating that TSG-6 increases to counteract the progression of atherosclerosis and stabilize
the plaque. These findings indicate that endogenous TSG-6 enhancement and exogenous TSG-6
replacement treatments are expected to emerge as new lines of therapy against atherosclerosis and
related CAD. Therefore, this review provides support for the clinical utility of TSG-6 in the diagnosis
and treatment of atherosclerotic cardiovascular diseases.

Keywords: TSG-6; atherosclerosis; endothelial cell; macrophage; vascular smooth muscle cell;
coronary artery disease

1. Introduction

Atherosclerotic cardiovascular diseases, such as coronary artery disease (CAD) and stroke, are
a leading cause of mortality worldwide [1]. The prevalence of traditional risk factors for CAD, such
as diabetes, hypertension, dyslipidemia, obesity, and others, has been increasing worldwide, with
consequent increases in the rates of coronary and cerebrovascular events [1]. Atherosclerosis is
characterized by a complex interaction of vascular endothelial injury, inflammation with monocyte
adhesion to endothelial cells (ECs), lipid deposition with macrophage foam cells, and the migration
and proliferation of vascular smooth muscle cells (VSMCs) accompanied by extracellular matrix (ECM)
remodeling [2].
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We have investigated the atheroprotective properties of a large number of novel human endogenous
peptides, such as salusin-α, heregulin-β1, omentin-1, catestatin-1, urocortin-1, stanniocalcin-1, and
incretins (glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide) [3–9]. Now we are
paying more attention to tumor necrosis factor-stimulated gene-6 (TSG-6) as an anti-atherogenic
protein [10]. There has been recent progress in TSG-6 studies. The present article reviews the recent
literature and introduces our new data regarding the role of TSG-6 in the pathogenesis of atherosclerosis
and as a biomarker and novel potential therapeutic target for atherosclerotic cardiovascular diseases.

2. Structure of TSG-6

TSG-6, which maps to human chromosome 2q23.3, was originally identified as the sixth gene
product induced by tumor necrosis factor-α (TNF-α) in human fibroblasts [11], and is also called
Tnfaip6 or Tnfip6 (accession numbers: CAD12353, CAD13434). TSG-6 cDNA encodes a polypeptide of
277 amino acids, including an N-terminal cleavable signal peptide of 17 amino acids. The molecular
size of the mature, fully glycosylated TSG-6 protein is 31,203 Da. The N-terminal half of the
TSG-6 protein shows 36–40% homology to the Link module, which is a conserved sequence in
hyaluronan-binding proteins, such as CD44, cartilage link protein, and G1 domains of aggrecan
and versican [12]. The C-terminal half of the molecule (CUB domain) shows 30% homology to the
complement C1r A chain [12]. Human and murine TSG-6 are >94% identical [12]. The specific receptors
for TSG-6 have not yet been identified.

3. Expression and Regulation of TSG-6

TSG-6 is not usually expressed but is rapidly upregulated in many different cell types,
including monocytes/macrophages, dendritic cells, leukocytes, ECs, VSMCs, fibroblasts, synoviocytes,
chondrocytes, and proximal tubular epithelial cells upon exposure to inflammatory mediators, such
as interleukin (IL)-1, interferon-γ, TNF-α, lipopolysaccharide (LPS), and prostaglandin E2 [13–15] as
well as growth factors, such as fibroblast growth factor, epidermal growth factor, and transforming
growth factor-β, and mechanical stimuli in vitro [12,16]. Expression of TSG-6 is also known to be
markedly upregulated by exposure to high glucose and fatty acid (palmitic acid) concentrations in
human umbilical vein endothelial cells (HUVECs) [17]. In contrast, TSG-6 expression is suppressed
by anti-inflammatory cytokines, such as IL-4 or IL-10 either directly or via inhibition of LPS/Toll-like
receptor (TLR)-induced cell activation [15].

TSG-6 is released from the secretory granules of neutrophils and mast cells as well as macrophages
and a wide variety of stromal cell types [12,15,18–20]. Mesenchymal stem cells (MSCs) also secrete
TSG-6 to repair tissue injury and wounds and reduce inflammation [21]. Several lines of evidence have
shown that TSG-6 is detected in synovial fluids and joint tissues from patients with rheumatoid arthritis
and osteoarthritis [13,22] and in sera of patients with bacterial sepsis, systemic lupus erythematosus,
and CAD [10,23].

4. Roles of TSG-6

Based on structural homologies, TSG-6 binds to a large number of components of the ECM
including hyaluronan, heparin, heparan sulfate, thrombospondins-1 and -2, fibronectin, and
pentraxin-3 [24,25]. These interactions primarily act to stabilize or remodel the ECM [25]. Several lines
of evidence have suggested that TSG-6 may play a crucial role in ECM formation, inflammatory cell
migration, cell proliferation, and developmental processes [26]. TSG-6 is known as a potent inhibitor
of neutrophil migration and can modulate the protease network by inhibiting plasmin [24]. TSG-6 also
increases hyaluronan synthesis in airway smooth muscle cells [26]. TSG-6 has a chondroprotective
effect, with reduced loss of cartilage proteoglycan and less accumulation of matrix metalloproteinase
(MMP) and aggecanase-generated aggrecan fragments [27]. TSG-6 is locally coexpressed with its
ligand pentraxin-3 that cooperates with TSG-6 in ECM assembly [28]. TSG-6 suppresses the inhibitory
effects of pentraxin-3 on fibroblast growth factor-2-mediated angiogenesis [28].
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TSG-6 has been shown to exert anti-inflammatory effects in experimental models of arthritis,
corneal wounding, acute myocardial infarction, and acute cerebral infarction [29–32]. In transgenic
mice, inactivation of the gene increases inflammatory responses [33], and over-expression of the gene
decreases inflammatory responses [34]. Administration of recombinant TSG-6 decreases LPS-induced
inflammation (IL-6 and interferon-γ), and improves arthritis and memory after traumatic brain injury
in several murine models [25,29,35,36]. The half-life of TSG-6 after intravenous injection into mice is
up to 0.2 h [25].

In addition, TSG-6 secreted by human adipose tissue-derived MSCs ameliorates dextran sulfate
sodium-induced colitis by inducing anti-inflammatory M2 macrophage polarization in mice [37].
Co-incubation of human adipose tissue-derived MSCs suppresses LPS-induced IL-1β secretion from
THP-1 monocytes via increasing TSG-6 expression [38]. Knocking down TSG-6 in MSCs abrogates
the inhibitory effects of MSCs on inflammatory neovascularization and monocyte/macrophage
infiltration [39]. The intraarticular injection of MSCs increases TSG-6 expression in joint cartilage and
inhibits monoiodoacetate-induced arthritis in rats [40].

Several lines of evidence have recently shown the atheroprotective effects of TSG-6. TSG-6 exerts
anti-atherosclerotic effects on all the three cellular players in the pathogenesis of atherosclerosis, such
as ECs, macrophages, and VSMCs (Figure 1). Although the receptors for TSG-6 have not yet been
clarified, it is almost certain that the receptors are present in three types of vascular cells. Next,
the present review introduces the anti-atherosclerotic effects of TSG-6 on vascular cells in vitro, animal
models in vivo, and human clinical data, in this order.
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Figure 1. Mechanisms underlying the atheroprotective effects of tumor necrosis factor-stimulated 
gene-6 (TSG-6). This figure illustrates the suppressive effects of TSG-6 on atherosclerotic plaque 
formation in the arterial wall. TSG-6 prevents atherosclerosis by suppressing the inflammatory 
responses in endothelial cells (ECs) and macrophages, oxidized low-density lipoprotein (LDL)-
induced foam cell formation in macrophages, and the migration and proliferation of vascular smooth 
muscle cells (VSMCs). TSG-6 increases the production of collagen-1 and -3 by VSMCs. Abbreviations: 
ACAT1 = acyl-coenzyme A:cholesterol acyltransferase-1; ABCA1 = ATP-binding cassette transporter 
A1; CE = cholesterol ester; ICAM-1 = intercellular adhesion molecule-1; MCP-1 = monocyte 
chemotactic protein-1; Mo = monocyte; MΦ = macrophage; ROS = reactive oxygen species; VCAM-1 = 
vascular cell adhesion molecule-1. 

5. Effects of TSG-6 in ECs 

TSG-6 inhibits leukocyte adhesion to HUVECs and HUVEC-derived EA.hy926 ECs and 
leukocyte migration [41,42]. TSG-6 suppresses the proliferation of EA.hy926 ECs [10]. TSG-6 
suppresses LPS-induced expression of monocyte chemotactic protein-1 (MCP-1), vascular cell 
adhesion molecule-1, and intercellular adhesion molecule-1 in HUVECs [10]. In addition, MSCs 
improve glucolipotoxicity via TSG-6 production in HUVECs [17]. 
  

Figure 1. Mechanisms underlying the atheroprotective effects of tumor necrosis factor-stimulated
gene-6 (TSG-6). This figure illustrates the suppressive effects of TSG-6 on atherosclerotic plaque
formation in the arterial wall. TSG-6 prevents atherosclerosis by suppressing the inflammatory
responses in endothelial cells (ECs) and macrophages, oxidized low-density lipoprotein (LDL)-induced
foam cell formation in macrophages, and the migration and proliferation of vascular smooth muscle
cells (VSMCs). TSG-6 increases the production of collagen-1 and -3 by VSMCs. Abbreviations:
ACAT1 = acyl-coenzyme A:cholesterol acyltransferase-1; ABCA1 = ATP-binding cassette transporter
A1; CE = cholesterol ester; ICAM-1 = intercellular adhesion molecule-1; MCP-1 = monocyte chemotactic
protein-1; Mo = monocyte; MΦ = macrophage; ROS = reactive oxygen species; VCAM-1 = vascular cell
adhesion molecule-1.
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5. Effects of TSG-6 in ECs

TSG-6 inhibits leukocyte adhesion to HUVECs and HUVEC-derived EA.hy926 ECs and leukocyte
migration [41,42]. TSG-6 suppresses the proliferation of EA.hy926 ECs [10]. TSG-6 suppresses
LPS-induced expression of monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1,
and intercellular adhesion molecule-1 in HUVECs [10]. In addition, MSCs improve glucolipotoxicity
via TSG-6 production in HUVECs [17].

6. Effects of TSG-6 in Monocytes/Macrophages

TSG-6, either directly or through a complex with hyaluronan, binds to CD44 and downregulates
TLR-2/nuclear factor-κB (NF-κB) and upregulates cyclooxygenase-2, a negative regulator of
inflammation, in mouse macrophages [43,44]. TSG-6 inhibits cell proliferation and LPS-induced
release of inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, via c-Jun N-terminal kinase (JNK)
and p38 pathways in rat macrophages [45]. TSG-6 also suppresses the inflammatory M1 phenotype
and LPS-induced TNF-α production in human monocyte-derived macrophages [10]. TSG-6 suppresses
oxidized low-density lipoprotein-induced foam cell formation associated with downregulation of
acyl-coenzyme A:cholesterol acyltransferase-1 and CD36 in human monocyte-derived macrophages [10].

7. Effects of TSG-6 in VSMCs

TSG-6 suppresses angiotensin II-induced migration and proliferation of human aortic smooth muscle
cells via c-Src/JNK/NF-κB pathways [10]. In contrast, TSG-6 enhances rat VSMC proliferation [46].
TSG-6 also increases the expression of collagen-1, collagen-3, MMP-2, and tissue inhibitor of
metalloproteinase-2 in human aortic smooth muscle cells [10]. These findings indicate that TSG-6
suppresses atherosclerosis and restenosis after angioplasty and induces vascular remodeling.

8. Effects of TSG-6 on Atherosclerotic Lesion Development in ApoE-Deficient Mice

Infusing TSG-6 (100 µg/mouse) into ApoE-deficient mice for four weeks retards the development
of atherosclerotic lesions in the entire surface area of the aorta [10]. In atheromatous plaques in
the aortic sinus wall, vascular inflammation (pentraxin-3) and monocyte/macrophage and VSMC
contents are decreased (Figure 2D,F,H) by TSG-6 infusion. The ratio of macrophage contents/VSMC
contents (a surrogate marker of plaque instability) is reduced by TSG-6 infusion (Figure 2I). TSG-6
also increases collagen fibers within atheromatous plaques [10]. These findings indicate that TSG-6
stabilizes atheromatous plaques. In addition, four-week infusion of anti-TSG-6 neutralizing antibody
(50 µg/mouse) into ApoE-deficient mice significantly enhances the development of atherosclerotic
lesions in the entire aortic surface area and plaque burden in the aortic sinus (Figure 3A,B).

Four-week infusion of TSG-6 (100 µg/mouse) into ApoE-deficient mice decreases the inflammatory
M1 phenotype and the levels of inflammasome proteins such as MCP-1, NF-κB, C-reactive protein, and
apoptosis-associated speck-like protein containing a caspase recruitment domain in exudate peritoneal
macrophages [10]. TSG-6 also decreases plasma levels of total cholesterol with a tendency to increase
high-density lipoprotein cholesterol in ApoE-deficient mice [10].
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Figure 2. Effects of TSG-6 on atheromatous plaque progression and phenotype in ApoE-deficient mice.
Four-week infusion of TSG-6 (100 µg/mouse, GenWay Biotech, San Diego, CA, USA) or saline (control)
using osmotic mini-pumps was performed in 17-week-old ApoE-deficient mice fed a high cholesterol
diet. Atheromatous plaques (A,B); vascular inflammation (C,D); macrophage contents (E,F); and VSMC
contents (G,H) were assessed by staining with Oil Red O (Wako Pure Chemical Industries, Osaka,
Japan), anti-pentraxin-3 antibody (Bioss Antibodies, Woburn, MA, USA), anti-MOMA-2 antibody
(Millipore, Billerica, MA, USA), or anti-α-SMA antibody (Sigma, St. Louis, MO, USA), respectively.
Hematoxylin was used for nuclear staining. Bar = 100 µm. The markers of plaque instability, such as
high levels of pentraxin-3 expression and the increased ratio of macrophage contents (µm2)/VSMC
contents (µm2) within atheromatous plaques (I), were compared between 21-week-old mice infused
with saline (n = 13) and TSG-6 (n = 9). Data are presented as mean ± SEM. Unpaired Student’s t test
was used for statistical analysis. p = 0.1453. These results are unpublished data from our previous
experiments [10].
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Figure 3. Effects of endogenous TSG-6 decreases on the development of atherosclerotic lesions in
ApoE-deficient mice. Four-week infusion of an anti-TSG-6 neutralizing antibody (50 µg/mouse, R&D
Systems, Minneapolis, MN, USA) or saline (control) using osmotic mini-pumps was performed in
17-week-old ApoE-deficient mice fed a high cholesterol diet. Atherosclerotic lesions were stained with
Oil Red O (Wako Pure Chemical Industries, Osaka, Japan). The atherosclerotic lesions were measured
in the whole aortic tree. Plaque burden is expressed as a percentage relative to the entire cross section
of the aortic sinus wall. Bar = 500 µm. Atherosclerotic lesions in the entire aortic surface area (A) and
plaque burden (B) are increased in mice infused with anti-TSG-6 neutralizing antibody (n = 3) than
those infused with saline (n = 5). Data are presented as mean ± SEM. Unpaired Student’s t test was
used for statistical analysis. (A) * p = 0.0085; (B) p = 0.3124. These results are unpublished data from
our new experiments.

9. Roles of TSG-6 in Animal Atherosclerosis and Vascular Restenosis in Wire-Injury and
Vein Graft Models

Several animal studies have shown the expression of TSG-6 in atherosclerotic lesions in vivo [10,46,47].
TSG-6 is localized in rat neointima after arterial injury and rabbit carotid atherosclerotic plaques [46,47].
In our study, TSG-6 was expressed in atherosclerotic plaques in the aorta and neointimal lesions in
the femoral artery after wire injury in ApoE-deficient mice (Figure 4B,J). The expression of TSG-6 is
consistent with vascular inflammation and macrophages in atheromatous plaques (Figure 4B,D,E) and
neointimal thickness (VSMCs) in obstructive arteries following injury (Figure 4I,J).

TSG-6 inhibits the inflammatory response of transplanted vein grafts in rats and reduces vascular
injury by downregulating the JNK and P38 pathways [45]. TSG-6 suppresses vascular restenosis in
the venous bridge with decreasing VSMC proliferation, macrophage infiltration, and plasma levels of
inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, via JNK and p38 pathways [45].
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Figure 4. Expression of TSG-6 in atherosclerotic and restenotic lesions in ApoE-deficient mice. TSG-6 is
expressed at high levels in aortic atherosclerotic lesions (A–G) and femoral artery restenotic lesions
after wire injury (H–J) in ApoE-deficient mice fed a high-cholesterol diet. Tissues were immunostained
with Oil Red O (Wako Pure Chemical Industries, Osaka, Japan; (A)); anti-TSG-6 antibody (Bioworld
Technology, St. Louis Park, MN, USA; (B,J)); anti-podocalyxin antibody (Life Technologies, Carlsbad,
CA, USA; (C)); anti-pentraxin-3 antibody (Bioss Antibodies, Woburn, MA, USA; (D)); anti-MOMA-2
antibody (Millipore, Billerica, MA, USA; (E)); anti-α-SMA antibody (Sigma, St. Louis, MO, USA; (F,I));
Masson’s Trichrome (Muto Pure Chemicals, Tokyo, Japan; (G)); and Elastica-Van Gieson (Muto Pure
Chemicals; (H)). Hematoxylin was used for nuclear staining. Bar = 100 µm. (C) Podocalyxin is used
as an EC marker. (G) Masson’s Trichrome is used to stain collagen fibers in blue. Panels (A–G) show
unpublished data from our previous experiments [10], and panels (H–J) show unpublished data from
our new experiments.

10. Expression of TSG-6 in Human Arteriosclerotic Lesions and Aneurysms

Recent studies have shown the presence of TSG-6 expression in human coronary atherosclerotic
plaques and abdominal aortic aneurysms [10,48]. The expression of TSG-6 is almost absent in normal
and non-stenotic coronary arteries from non-CAD and CAD patients respectively [10]. In the stenotic
coronary arteries from CAD patients, TSG-6 is highly expressed in the fibrous cap within atherosclerotic
plaques [10]. In addition, the expression of TSG-6 is observed in the tunica media of human abdominal
aortic aneurysms [48]. These findings suggest that TSG-6 is produced to counteract the progression of
atherosclerotic lesions and to stabilize vulnerable plaques and aneurysms.

11. Potential Biomarker for CAD

Plasma TSG level was significantly higher in 135 patients with angiographically proven CAD
(acute coronary syndrome) than the level in 47 non-CAD subjects [10] (Figure 5A). Based on the
receiver operating characteristic (ROC) curve (Figure 5B), 9.5 ng/mL is adopted as the cutoff value that
shows a higher true-positive rate (sensitivity) with a low false-positive rate (1-specificity). The area
under the curve (AUC) value is 0.68 (Figure 4B). The sensitivity and specificity for detecting CAD
using this cutoff value were 52% and 30%, respectively. Therefore, plasma TSG-6 level could be a
reliable biomarker for detecting CAD.
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Among 135 patients with CAD, 32 patients had major adverse cardiovascular events (MACE),
defined as cardiovascular death, heart failure, acute myocardial infarction, post-infarction angina,
and ischemic stroke, during a period of four years. Plasma TSG-6 level at the onset of acute coronary
syndrome tended to be increased in CAD patients with MACE compared with those without MACE,
but there was no significant difference (Figure 6A). Furthermore, the prevalence rate of MACE was
significantly higher in CAD patients with TSG-6 ≥ 19 ng/mL (40%, 10/25 cases) than the rate in
those with TSG-6 < 19 ng/mL (20%, 22/110 cases) (Figure 6B). The finding suggests that high plasma
levels of TSG-6 may induce downregulation of its receptor, leading to ineffective MACE prevention in
CAD patients.
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Figure 6. Prediction of prognosis using plasma TSG-6 levels at onset of CAD. Among 135 patients with
acute coronary syndrome, 32 patients had major adverse cardiovascular events (MACE) including
cardiovascular death, heart failure, acute myocardial infarction, post-infarction angina, and ischemic
stroke during a period of four years after onset. The follow-up period was 50.0 ± 0.57 months.
(A) Plasma TSG-6 levels tended to increase in CAD patients with MACE compared with those
without MACE. Data are presented as mean ± SEM. Unpaired Student’s t test was used for statistical
analysis. p = 0.6109; (B) Prevalence rate of MACE (+) was significantly higher in CAD patients
with TSG-6 ≥ 19 ng/mL (40%, 10/25 cases) than those with TSG-6 < 19 ng/mL (20%, 22/110 cases).
Chi-squared test was used for statistical analysis. * p = 0.0338. These results are unpublished data from
our follow-up study based on our previous report [10].
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12. Treatment of Atherosclerotic Diseases with TSG-6

There are several major therapeutic strategies against atherosclerosis and related diseases using
TSG-6. One is the enhancement of endogenous TSG-6 by MSC infusion and the another is the
supplementation with exogenous TSG-6. (1) Silencing TSG-6 in the administered MSCs results in loss
of therapeutic activity, whereas administering exogenous TSG-6 rescues the therapeutic activity [21].
MSC therapeutic activities in other animal models of disease including cerebral ischemia, myocardial
infarction, type 1 diabetes, peritoneal adhesions, and experimental autoimmune encephalomyelitis
were observed to be dependent on TSG-6 [31,32,49–52]. (2) For replacement therapy of exogenous
TSG-6, a great amount of recombinant human TSG-6 is needed. The recombinant TSG-6 is synthesized
in Escherichia coli, wheat germ, insect cells, Chinese hamster ovary (CHO) cells, and mouse myeloma
cells. CHO cell-derived TSG-6 has a longer half-life compared with mouse myeloma cell-derived
TSG-6 in vivo [25].

It is especially important to elucidate the putative receptor for TSG-6, which provides an
investigation of its agonist as a new drug target. Otherwise, it is important to clarify a biologically
active fragment that has inhibitory effects against atherosclerosis among the 260 amino acids in TSG-6
protein (excluding the signal peptide), and further to develop derivatives or analogs based on the
TSG-6 protein for preventing and treating atherosclerosis. Because infusion and injection are not
convenient for patients, oral administration is a more suitable method. However, TSG-6 protein is
digested after oral administration. Therefore, nanocapsules have received a great amount of attention
as a drug delivery method [53]. Encapsulation methods are beneficial for protecting polypeptides
against the digestive environment, thereby promoting absorption and delivery to target organs [53].
Due to their small size, these particles are able to pass only through the increased endothelial gaps due
to injury and blood vessel damage in atherosclerotic arteries. Nanocapsules including TSG-6 analogs
would be useful for oral administration.

However, manipulating plasma TSG-6 level as a potential therapeutic strategy should be
considered with caution. If the putative TSG-6 receptors are downregulated in CAD patients, simply
infusing TSG-6 would not be effective. Further treatments improving TSG-6 resistance should be
developed in the future.

13. Conclusions

The above findings indicate that TSG-6 slows the development of atherosclerotic lesions
by decreasing plasma total cholesterol levels, inflammatory responses of ECs and macrophages,
macrophage foam cell formation, and the migration and proliferation of VSMCs. In addition, TSG-6
contributes to plaque stability by promoting collagen production by VSMCs in the fibrous cap. Thus,
endogenous TSG-6 enhancement and exogenous TSG-6 replacement treatments are expected to emerge
as a new line of therapy against atherosclerosis and its related CAD. The results presented here also
provide insights into the potential use of TSG-6 as a biomarker for CAD. These findings may strengthen
the clinical utility of TSG-6 in the diagnosis and treatment of atherosclerotic cardiovascular diseases.
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CAD Coronary artery disease
EC Endothelial cell
ECM Extracellular matrix
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JNK c-Jun N-terminal kinase
LPS Lipopolysaccharide
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