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Abstract: The identification of components of the kallikrein–kinin system in the vitreous from
patients with microvascular retinal diseases suggests that bradykinin (BK) signaling may contribute
to pathogenesis of retinal vascular complications. BK receptor 2 (B2R) signaling has been implicated
in both pro-inflammatory and pro-angiogenic effects promoted by BK. Here, we investigated the
role of BK/B2R signaling in the retinal neovascularization in the oxygen-induced retinopathy (OIR)
model. Blockade of B2R signaling by the antagonist fasitibant delayed retinal vascularization in
mouse pups, indicating that the retinal endothelium is a target of the BK/B2R system. In the
rabbit cornea assay, a model of pathological neoangiogenesis, the B2 agonist kallidin induced vessel
sprouting and promoted cornea opacity, a sign of edema and tissue inflammation. In agreement
with these results, in the OIR model, a blockade of B2R signaling significantly reduced retinal
neovascularization, as determined by the area of retinal tufts, and, in the retinal vessel, it also reduced
vascular endothelial growth factor and fibroblast growth factor-2 expression. All together, these
findings show that B2R blockade reduces retinal neovascularization and inhibits the expression of
proangiogenic and pro-inflammatory cytokines, suggesting that targeting B2R signaling may be an
effective strategy for treating ischemic retinopathy.

Keywords: bradykinin; B2R antagonist; retinal endothelial cells; angiogenic factors; oxygen-induced
retinopathy

1. Introduction

The kallikrein–kinin system (KKS) has long been recognized as a key player of inflammatory
processes in various organs [1]. In particular, components of the KKS, including plasma kallikrein,
factor XII and high-molecular-weight kininogen (HK), are increased in the vitreous of patients
with diabetic retinopathy and have been associated with retinal vascular inflammation and
neoangiogenesis [2]. Bradykinin (BK), generated by the plasma kallikrein proteolytic activity on
HK, primarily mediates KKS actions.

BK exerts potent pro-inflammatory and pro-angiogenic effects through the activation of two
G-protein-coupled receptors, BK receptor 1 and 2 (B1R, B2R), widely expressed in vascular tissues,
including retinal vessels [3]. Previously, we demonstrated that, at nanomolar concentration,
BK promotes angiogenesis in rabbit corneas [4], while, at higher concentrations, it enhances vascular
permeability and promotes an inflammatory-related angiogenesis in in vitro and in vivo models,
events, which are significantly inhibited by the B2R antagonist, fasitibant [5]. BK/B2R signaling was
also reported to induce leakage in post-capillary venules of rat mesentery, and angioedema in both
C1-INH null mice and in humans [6,7].
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In endothelial cells, we demonstrated that BK/B2R signaling promotes cell proliferation and
migration through activation of the pro-inflammatory nuclear factor kB and by the upregulation of
cyclooxygenase-2, prostaglandin-E2 and vascular endothelial growth factor (VEGF) [5]. A similar
pro-inflammatory and proangiogenic pattern has also seen upregulated in rat retinal microvessel
dysfunction [8].

Other studies suggested that the BK/B2R-dependent angiogenic response might be mediated by
the upregulation of fibroblast growth factor-2 (FGF-2) and through transactivation of the VEGF-receptor
2 signaling [4,9]. VEGF is the major proangiogenic and pro-inflammatory factor released in the retina
under ischemic and inflammatory conditions [8,10]. FGF-2, in turn, mediates survival and sprouting
of endothelial cells under hypoxic conditions and appears to be required for the VEGF effects [11–14].
FGF-2 stimulates VEGF secretion from vascular smooth muscle, endothelial and Müller cells and
synergizes with VEGF in promoting the proliferation of retinal microvascular endothelial cells and
pericytes [15,16]. Furthermore, FGF-2 and VEGF levels, as the KKS components, are significantly
increased in vitreous from experimental models of retinal diseases [17], as well as at sites of chronic
inflammation [18], where both growth factors and BK appear to be the key metabolic mediators of
inflammatory responses, including vasoactive responses [19,20].

Here, we investigate the role of BK/B2R signaling in two in vivo models of neovascularization,
the rabbit cornea assay and the mouse retinal vascularization assay. We demonstrate that the B2R
signaling is involved in physiological retinal vascularization. In fact, the B2R blockade by a selective
antagonist significantly delayed the extension of retinal vessels in mouse pups. At high concentration,
BK significantly induced pathological vessel sprouting in avascular rabbit cornea accompanied by
an inflammatory response. Kallidin, a B2R agonist, mimicked the activity of BK in rabbit cornea,
inducing a marked neoangiogenesis associated with a persistent corneal opacity indicating that B2R
signaling plays a key role in inflammation-related angiogenesis. In the OIR model, characterized
by hypoxia-induced pathological pre-retinal neovascularization, the B2R blockade reduced retinal
neovessels, as determined by the area of retinal tufts (unorganized, small-caliber vessels, also termed
pathological neovessels), and the expression of VEGF and FGF-2 in pathological retinal vessels,
suggesting that drugs targeting B2R signaling might have a role in proliferative retinal diseases.

2. Results

2.1. B2R Blockade Reduces the Extent of Retinal Vascularization and Maturation in Mouse Pups

Mouse pups have an immature retinal vascularization at birth. The superficial vascular plexus
forms during the first week after birth by radial outgrowth of vessels from the optic nerve into the
periphery, reaching the retinal edges at approximately postnatal day (P) 8. Preliminary experiments
were performed on mice (C57Bl/6) from P4 to P8 to investigate the B2R signaling activity on
physiological radial outgrowth of retinal vessels and the maximum tolerate dose of the B2R antagonist
fasitibant. Mice were treated daily with fasitibant (0.5, 1 and 2 mg/kg) and then retinal vascularization
was evaluated by immunohistochemistry. In all mice, no effects were observed after vehicle treatment
(daily intraperitoneal, i.p., administration NaCl 0.9% treatment in 50 µL, Control, Figure 1a,b).
Fasitibant (daily i.p. treatment in 50 µL, from P4 to P7), significantly delayed the extent of retinal
vascularization in a dose dependent manner, evaluated at P8, maximal activity being at 2 mg/kg
(Figure 1a,b), without signs of toxicity. At higher doses, fasitibant showed toxicity after 1–2 treatments,
estimated as reduced mice motility, failure to eat, and respiratory distress.

At 2 mg/kg, fasitibant perturbed the retinal vascular pattern, delaying vessel fusion, indicative of
vessel maturation, and reducing vessel density (Figure 2a,b).
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Figure 1. Fasitibant reduces the extent of retinal vascularization in mouse pups. (a) pups were treated 
with or without fasitibant (NaCl 0.9% = Control; fasitibant, 0.5 to 2 mg/kg, in 50 μL, i.p.) and then 
retinas were dissected at P8 and stained with isolectin, IB4-488. Magnitude 4×, scale bar = 100 μm; (b) 
quantification of retinal vessels. Retinal whole-mounts from P8 pups were stained for endothelial cells 
with IB4-488. For measurement of the vascularized area at the retinal edges, the retinal edges were 
outlined with image-processing software (Photoshop Adobe Systems, Adobe Photoshop Elements 
11). The density of vascularization in the outlined areas was quantified by ImageJ software, version 
2.0.0-rc-43/1.50e, U.S. National Institutes of Health, Bethesda, MD, USA; and expressed in relation to 
the control areas (% vs. Ctr). Data are the mean of 10 outlined areas, obtained from at least five flower-
like structures. Arrows indicate the distance from vascularized area to retinal edge.  
* p < 0.05, ** p < 0.01 vs. Ctr. 

At 2 mg/kg, fasitibant perturbed the retinal vascular pattern, delaying vessel fusion, indicative 
of vessel maturation, and reducing vessel density (Figure 2a,b). 
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Figure 2. Fasitibant delays retinal vessel maturation in mouse pups. (a) Retinas dissected from pups 
at P8, treated with or without fasitibant (2 mg/kg) were stained for IB4-488. Arrows indicate vessel 
anastomosis in left panel (Control condition) and vessel sprouting (right panel, fasitibant treatment). 
Magnitude 40×; (b) quantification of vessel density measured as number of vessel circles. For 
measurement of vascular density, a square close to the retinal edge was performed with Photoshop 
(Adobe Systems) and the density of vascularization in the square was quantified by ImageJ software, 
and expressed in relation to the control areas (% vs. Ctr). Data are the mean of 10 squares, obtained 
from at least five flower-like structures. ** p < 0.01 vs. Ctr. 

2.2. B2R Signaling Promotes Pathological Neoangiogenesis 

In order to investigate whether B2R signaling was also involved in pathological neoangiogenesis 
in adult tissues, inflammatory concentrations of BK or kallidin were evaluated in the avascular rabbit 
cornea assay. This in vivo model was used to specifically investigate whether B2R signaling was 
associated to pathological neoangiogenesis, thus BK and the selective B2 receptor agonists, kallidin, 
were implanted in the corneal stroma as slow-release preparations. BK (1 μg/pellet) induced a 
marked pathological neoangiogenesis (Figure 3a), characterized by tortuous vascular sproutings, 

Figure 1. Fasitibant reduces the extent of retinal vascularization in mouse pups. (a) pups were treated
with or without fasitibant (NaCl 0.9% = Control; fasitibant, 0.5 to 2 mg/kg, in 50 µL, i.p.) and then
retinas were dissected at P8 and stained with isolectin, IB4-488. Magnitude 4×, scale bar = 100 µm;
(b) quantification of retinal vessels. Retinal whole-mounts from P8 pups were stained for endothelial
cells with IB4-488. For measurement of the vascularized area at the retinal edges, the retinal edges were
outlined with image-processing software (Photoshop Adobe Systems, Adobe Photoshop Elements
11). The density of vascularization in the outlined areas was quantified by ImageJ software, version
2.0.0-rc-43/1.50e, U.S. National Institutes of Health, Bethesda, MD, USA; and expressed in relation
to the control areas (% vs. Ctr). Data are the mean of 10 outlined areas, obtained from at least five
flower-like structures. Arrows indicate the distance from vascularized area to retinal edge. * p < 0.05,
** p < 0.01 vs. Ctr.
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Figure 2. Fasitibant delays retinal vessel maturation in mouse pups. (a) Retinas dissected from
pups at P8, treated with or without fasitibant (2 mg/kg) were stained for IB4-488. Arrows indicate
vessel anastomosis in left panel (Control condition) and vessel sprouting (right panel, fasitibant
treatment). Magnitude 40×; (b) quantification of vessel density measured as number of vessel circles.
For measurement of vascular density, a square close to the retinal edge was performed with Photoshop
(Adobe Systems) and the density of vascularization in the square was quantified by ImageJ software,
and expressed in relation to the control areas (% vs. Ctr). Data are the mean of 10 squares, obtained
from at least five flower-like structures. ** p < 0.01 vs. Ctr.

2.2. B2R Signaling Promotes Pathological Neoangiogenesis

In order to investigate whether B2R signaling was also involved in pathological neoangiogenesis
in adult tissues, inflammatory concentrations of BK or kallidin were evaluated in the avascular rabbit
cornea assay. This in vivo model was used to specifically investigate whether B2R signaling was
associated to pathological neoangiogenesis, thus BK and the selective B2 receptor agonists, kallidin,
were implanted in the corneal stroma as slow-release preparations. BK (1 µg/pellet) induced a
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marked pathological neoangiogenesis (Figure 3a), characterized by tortuous vascular sproutings, which
were associated with mild corneal opacity, a sign of increased vessel permeability and inflammatory
response. Similarly, the selective B2 receptor agonist kallidin at 5 µg/pellet induced significantly
corneal angiogenesis (Figure 3b,c), associated with loss of corneal transparency (Table 1), while a
modest effect was observed with kallidin at 1 µg/pellet. As BK and kallidin were nearly equipotent
(EC50 10−12 M) [21], the data indicates that BK effect on pathological neoangiogenesis was mainly
mediated by B2R signal activation.
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of retinal microvascular complications by using the model of oxygen-induced retinopathy (OIR) in 
mice, which is well characterized by retinal vascular regression and hypoxia-induced pathological pre-
retinal neovascularization. In OIR mice, a large avascular area was observed at the center of the retina, 
while the mid-peripheral area showed regrowth of superficial vessels leading to pre-retinal neovascular 
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Figure 3. Bradykinin (BK) stimulates angiogenesis through the bradykinin 2 receptor (B2R). Representative
images of rabbit corneas implanted with: (a) BK (1 µg/pellet) (panel a, day 14) and (b) kallidin
(5 µg/pellet) at day 2 or (c) day 14. Asterisks mark flash artifacts. White arrows indicate corneal
opacity with loss of corneal clarity and transparency. Original magnification 18×.

Table 1. Assessment of angiogenesis by BK and kallidin in the rabbit cornea assay.

Stimulus (Dose/Pellet) Corneal Opacity (Day 2) Sprouting (Day 8) Sprouting (Day 14)

BK (1 µg) ++ 3.6 ± 0.4 5.0 ± 0.1
Kallidin (1 µg) ++ 1.8 ± 0.2 1.3 ± 0.9
Kallidin (5 µg) +++ 3.7 ± 0.9 4.6 ± 0.5

Corneal opacity was monitored and scored blind at every observation. The column reports data obtained at day 2.
Numbers represent vessel sprouting (area in mm) from the limbus to the pellet implant during time from surgery.
Data represents means ± standard deviation (SD) of three implants.

2.3. Fasitibant Reduces Retinal Neovascularization in the OIR Model

Next, based on above results, we assessed whether B2R signaling contributed to the pathogenesis
of retinal microvascular complications by using the model of oxygen-induced retinopathy (OIR) in
mice, which is well characterized by retinal vascular regression and hypoxia-induced pathological
pre-retinal neovascularization. In OIR mice, a large avascular area was observed at the center of the
retina, while the mid-peripheral area showed regrowth of superficial vessels leading to pre-retinal
neovascular tufts, which were, mostly, at the border between the vascularized peripheral area and the
avascular central area. Fasitibant did not affect the extension of the avascular central area (Figure 4a–d),
while significantly reducing the vessel tufts area (Figure 4a–d).

Furthermore, in OIR mice, B2R blockade markedly reduced FGF-2 and VEGF protein expression
in retinal microvessels (Figure 5a). It also reduced, at a lesser extent, hypoxia inducible factor (HIF)-1α
expression, without affecting B2R levels (Figure 5a,b).
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retinal vascularization in mouse pups, and induces pathological inflammation-related 
neoangiogenesis in the model of rabbit cornea. In mice from OIR model, characterized by hypoxia-
induced pathological retinal neovascularization, the blockade of B2R by the antagonist fasitibant 
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Figure 4. B2R signaling inhibition reduces pathological vessels in Oxygen-induced retinopathy (OIR)
model. Representative OIR flat mounted retinas stained for IB4-488: (a) vehicle treated and (c) fasitibant
treated. Left panels: magnification 4×, scale bar = 100 µm; Right panels: magnification 40×; (b)
quantification of avascular area and (d) area with neovascular tufts. The extent of neovascular tufts area
was quantitatively evaluated outlining with Photoshop the border of tufts between the vascularized
peripheral area and the avascular central area and the density of neovascular tufts area was quantified
by ImageJ software. Each column represents the mean ± SD of data from 10 different quadrants
derived from 10 retinas. ** p < 0.01 vs. Ctr.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 11 

 

 
(c) (d)

Figure 4. B2R signaling inhibition reduces pathological vessels in Oxygen-induced retinopathy 
(OIR) model. Representative OIR flat mounted retinas stained for IB4-488: (a) vehicle treated and (c) 
fasitibant treated. Left panels: magnification 4×, scale bar = 100 μm; Right panels: magnification 40×; 
(b) quantification of avascular area and (d) area with neovascular tufts. The extent of neovascular 
tufts area was quantitatively evaluated outlining with Photoshop the border of tufts between the 
vascularized peripheral area and the avascular central area and the density of neovascular tufts area 
was quantified by ImageJ software. Each column represents the mean ± SD of data from 10 different 
quadrants derived from 10 retinas. ** p < 0.01 vs. Ctr. 

Furthermore, in OIR mice, B2R blockade markedly reduced FGF-2 and VEGF protein expression 
in retinal microvessels (Figure 5a). It also reduced, at a lesser extent, hypoxia inducible factor (HIF)-
1α expression, without affecting B2R levels (Figure 5a,b).  

  
(a) (b)

Figure 5. BK/B2R signaling inhibits proangiogenic growth factor expression in OIR mice. (a) 
representative blots of fibroblast growth factor (FGF-2), vascular endothelial growth factor (VEGF), 
hypoxia inducible factor (HIF(-1α and B2R expression in OIR mice treated with or without fasitibant 
(fas) given at 2 mg/kg. Two groups of fasitibant 2 mg/kg are reported in which each lane is 
representative of four pooled retinas (b) lane quantification with ImageJ. Data are reported as 
arbitrary density unit (A.D.U.). FGF-2, VEGF, HIF-1α and B2R lanes were normalized to β-actin. Fas 
bands are the mean of the two representative groups (8 retinas) reported in panel (a). * p < 0.05; *** p 
< 0.001 vs. Ctr. 

3. Discussion 

In this study, we demonstrated that the BK/B2R signaling affects the pattern of physiological 
retinal vascularization in mouse pups, and induces pathological inflammation-related 
neoangiogenesis in the model of rabbit cornea. In mice from OIR model, characterized by hypoxia-
induced pathological retinal neovascularization, the blockade of B2R by the antagonist fasitibant 
significantly reduced retinal neovessels and expression of the proangiogenic and pro-inflammatory 
growth factors FGF-2 and VEGF (Figure 6). 

Ctr fas 2 mg/kg
0.0

0.5

1.0

1.5

VEGF

FGF-2
HIF-1α

***
*** *

B2R

A
.D

.U
.

Pr
ot

ei
n/

A
ct

in

Figure 5. BK/B2R signaling inhibits proangiogenic growth factor expression in OIR mice. (a)
representative blots of fibroblast growth factor (FGF-2), vascular endothelial growth factor (VEGF),
hypoxia inducible factor (HIF(-1α and B2R expression in OIR mice treated with or without fasitibant (fas)
given at 2 mg/kg. Two groups of fasitibant 2 mg/kg are reported in which each lane is representative
of four pooled retinas (b) lane quantification with ImageJ. Data are reported as arbitrary density unit
(A.D.U.). FGF-2, VEGF, HIF-1α and B2R lanes were normalized to β-actin. Fas bands are the mean of the
two representative groups (8 retinas) reported in panel (a). * p < 0.05; *** p < 0.001 vs. Ctr.
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3. Discussion

In this study, we demonstrated that the BK/B2R signaling affects the pattern of physiological
retinal vascularization in mouse pups, and induces pathological inflammation-related neoangiogenesis
in the model of rabbit cornea. In mice from OIR model, characterized by hypoxia-induced pathological
retinal neovascularization, the blockade of B2R by the antagonist fasitibant significantly reduced retinal
neovessels and expression of the proangiogenic and pro-inflammatory growth factors FGF-2 and VEGF
(Figure 6).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 11 
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Figure 6. Schematic representation of the effects of inhibition of BK/B2R signaling on retinal
vascularization. Fasitibant inhibits proangiogenic growth factor expression (FGF-2, VEGF, HIF-1α),
reducing the inflammatory angiogenesis induced by BK/B2R signaling.

The kallikrein–kinin system (KKS) has been implicated in the pathogenesis of retinal vascular
inflammation and neoangiogenesis observed in several retinal diseases [2]. BK and its receptors B1R
and B2R are the primary effectors of the KKS. B2R has been shown to mediate the pro-inflammatory and
pro-angiogenic effects promoted by BK, which are central to the pathogenesis of diabetic retinopathy
and macular edema [3]. Retinal inflammation plays a key role in the development of diabetic
retinopathy, characterized by vessel permeability and upregulation of VEGF, nuclear factor-κB,
cyclooxygenase 2, and prostaglandin-E2. We have demonstrated a similar pattern of inflammatory
and proangiogenic molecules induced by BK/B2R system in endothelial cells and in a model of
osteoarthritis [4]. Here, we demonstrate that B2R modulates physiological retinal vascularization,
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affecting the extent/sprouting, density and anastomosis of vessels. In a model of angiogenesis in the
adult, the rabbit cornea assay, we show that activation of the B2R signaling is associated with corneal
vessel sprouting and corneal opacification, strengthening the pathological relevance of these findings.
Indeed, preservation of the avascular phenotype of the cornea has been associated with high levels of
antiangiogenic factors as the soluble vascular endothelial growth factor receptor (sVEGFR1), able to
neutralize the VEGF-A present in the cornea [22]. Thus, vascularization occurring during different
pathophysiological conditions is the result of the perturbed balance among redundant inhibitory
mechanisms. The recruitment of inflammatory cells by B2R further contributes to tissue detrimental
reactivity. Consistently with these observations, the blockade of B2R in the OIR model significantly
reduces the pathological pre-retinal neo-vascular tufts.

The half-life of BK in plasma is short [23], suggesting that its actions are regulated locally, and are
propagated through stimulation of other local signaling. [24]. A limited number of studies suggests
that the angiogenic response induced by BK/B2R system could be mediated by the upregulation of
proangiogenic factors [25]. Although evidence for the direct activation of the FGF-2 or VEGF pathway
by BK in vivo is not yet available, there is indirect evidence suggesting a functional link between the
two systems in several inflammatory diseases, including vasoactive responses [17–20,26]. Notably, in
this study, in the model of OIR, we observed that endothelial cells from retinal vessels express FGF-2
and VEGF, and that fasitibant reduced the expression of both growth factors, also marginally affecting
HIF-1α expression. These data indicate that retinal endothelium is a target of the BK/B2R system and
that B2R appears to modulate FGF-2 and VEGF signaling in retina vessels.

In light of the results, we propose a model for the angiogenic switch in retinal endothelial
cells based on the BK/B2R signaling activation and, in turn, proangiogenic factor upregulation.
We previously reported that FGFR-1 acts as a master switch in neovascularization mediated by
inflammatory mediators by initiating a positive autocrine/paracrine cycle of FGF-2 synthesis and
FGFR-1 activation [27]. Further studies are required to investigate whether BK promotes FGFR-1
signaling in retinal vessels. However, the downregulation of FGF-2 that we observed in the OIR model
in response to B2R blockade suggests that the growth factor might be an important player in BK
pro-inflammatory and proangiogenic effects. Similarly, BK proangiogenic activity has been reported to
be mediated by the activation of VEGFR2 signaling [9]. Here, we demonstrated the involvement of the
selective B2R signaling on VEGF expression, highlighting a role of the KKS in perpetuating signals for
pathological retinal neovascularization triggers in ischemic proliferative disorders of the retina.

In conclusion, the blockade of the B2R signaling by a selective antagonist might restrict the
pathological angiogenesis in retinal diseases, reducing the acute inflammatory and angiogenic
responses of the vascular endothelium, and the concomitant amplification and propagation through
the FGF-2 and VEGF pathway (Figure 6).

4. Materials and Methods

4.1. Fasitibant Treatment of Mouse Pups

Mice were housed in a controlled environment and provided with standard rodent chow and
water. All animals were subjected to a 12 h light–12 h dark schedule. The experimental procedures,
according to Italian (DL 26/2014) and European (No. 63/2010/UE) regulations on the protection of
animals used for experimental and other scientific purposes, were approved by the Italian Ministry of
Health (authorization No. 55/2017-PR, 20 January 2017). To investigate the role of B2R signaling on
retinal vascularization, neonatal mice with their nursing mothers (C57Bl/6) were treated from postnatal
day P3 until P8 (10/12 mice/experimental condition) daily with 0.5, 1 or 2 mg/kg fasitibant or NaCl
0.9% (control condition), in 50 µL, i.p. Mice were sacrificed at day 8 by cervical dislocation, and the eyes
were enucleated for retinal dissection and evaluation of retinal vascularization by immunofluorescence
and Western blot analysis.
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4.2. Immunofluorescence Analysis

Enucleated eyes were immersion-fixed for 2 h in 4% paraformaldehyde in 0.1 M phosphate
buffer (PB) at room temperature. Retinal dissection was performed as reported [28]. To visualize
blood vessels, retinal whole mounts were incubated for 18 h at 4 ◦C with the endothelial isolectin,
IB4-488 (Vector Laboratories, Cambridgeshire, UK) monoclonal antibody (1:50) diluted in 0.5% Triton
X-100-containing 0.1 M PBS, and then incubated for 48 h at 4 ◦C in Alexa Fluor 488 (1:200) in 0.1 M PB.
Finally, they were rinsed in 0.1 M PB, mounted on gelatin-coated glass slides, and cover-slipped with a
0.1 M PB-glycerine mixture. The antibody specificity was evaluated by the use of rabbit IgG negative
control (1 µg/mL). Immuno-fluorescent materials were observed with confocal microscopy (Leica TCS
SP5 confocal, Leica microsystems, Wetzlar, Germany. using ×10 or ×40 objective lens). Electronic
images from the confocal microscope were processed using Adobe Photoshop 8.0 (Adobe Systems
Incorporated, San Jose, CA, USA) [29].

4.3. Angiogenesis In Vivo: Rabbit Cornea Assay

The experimental procedures, according to Italian (DL 26/2014) and European (No. 63/2010/UE)
regulations on the protection of animals used for experimental and other scientific purposes, were
approved by the Italian Ministry of Health (Authorization n. 148/2015-PR, 6 March 2015).

The angiogenic activity was assessed in vivo by using the avascular rabbit cornea assay [30,31].
New Zealand white rabbits (Charles River, Calco, Como, Italy) (approx. 2 kg) were anesthetized by i.m.
injection of xilazine 2% (0.5 mL/animal) and tiletamine/zolazepam (10 mg/kg). In the lower half of the
eye, a micro pocket (1.5 × 3 mm) was surgically produced, and slow-release pellets (1 × 1 × 0.5 mm)
with BK (1 µg, 3 eyes) or the selective B2R agonist kallidin (1 or 5 µg, 3 eyes for each condition)
were implanted in the micropockets located inside the transparent corneal stroma. The corneas were
observed every two other days for 2 weeks after implant, and digital images were taken by means of a
slit-lamp stereomicroscope. Vessel sprouting was measured on digitalized images in a blind manner
by the use of National Institute of Health (NIH)-ImageJ. Corneal opacity was also scored (from 0 to
+++) at each observation.1.

4.4. The Mouse Model of OIR

Oxygen-induced retinopathy, OIR, is a reliable model of vascular retinopathy. In brief, neonatal
mice with their nursing mothers (C57Bl/6) were exposed to 75% oxygen from postnatal day P7 until
P12 and then returned to room air (21% oxygen) [32]. On return to room air, from P12 to P15 mice
(10 mice/experimental condition) were treated daily with 2 mg/kg fasitibant or NaCl 0.9% (control
condition), in 50 µL, i.p. At room air, the central vascular area becomes hypoxic, HIF-1α levels increase
and promote the formation of pathologic neovessels (NV), also termed as pre-retinal tufts. Mice were
sacrificed at day 16 by cervical dislocation, and the eyes were enucleated for retinal dissection and
evaluation of retinal vascularization by immunofluorescence and Western blot analysis.

4.5. Western Blot Assay

Retinas (a pool of 4 retinas/experimental point) were homogenized and centrifuged
at 22,000× g for 30 min at 4 ◦C. The pellet was re-suspended in 20 mM HEPES
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), pH 7.4 containing 150 mM NaCl, 5 mM EDTA
(Ethylenediaminetetraacetic acid), 3 mM EGTA (Ethylene-bis(oxyethylenenitrilo)tetraacetic acid),
1 mM phenylmethylsulphonyl fluoride, 1 µM peptistatin, 10 µg/mL leupeptin and 2 µg/mL aprotinin,
and centrifuged at 22,000× g for 30 min at 4 ◦C. The supernatant was used to detect FGF-2, VEGF,
HIF-1alpha and B2R. Proteins from cell extracts were electrophoresed in SDS (sodium dodecyl
sulfate)/4–12% polyacrylamide gels (Life Technologies, Monza, MB, Italy). Proteins were then blotted
onto activated nitrocellulose membranes, incubated overnight with the indicated antibodies, and
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antigen–antibody complexes were detected with enhanced chemiluminescence kit (Bio-Rad, Milan,
Italy). Band intensity was measured by scanning densitometry.

4.6. Materials and Reagents

Cell culture reagents, BK, kallidin, anti-B2R and anti-β-actin were purchased from Sigma Aldrich
(Merk Millipore, Darmstadt, Germany). Fasitibant was kindly provided by Menarini Ricerche, Florence,
Italy. Anti-VEGF, anti-FGF-2 was from Merk Millipore (Darmstadt, Germany). Anti-HIF-1α was from
Bioss (Aurogene, Rome, Italy).

4.7. Data Analysis and Statistical Procedures

Results are either representative or an average of at least three independent experiments
done in triplicate. Statistical analysis was performed using a two-way ANOVA test followed by
Bonferroni test (GraphPad Prism software, version 6.0c, La Jolla, CA USA). p < 0.05 was considered
statistically significant.
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A.D.U. Arbitrary density unit
BK Bradykinin
B1R BK receptor 1
B2R BK receptor 2
Fas Fasitibant
FGF-2 Fibroblast growth factor-2
HIF-1α Hypoxia-inducible factor 1-alpha
HK High–molecular-weight kininogen
i.p. Intraperitoneal
KKS Kallikrein–kinin system
NV Neovessel
OIR Oxygen-induced retinopathy
PB Phosphate buffer
PBS Phosphate buffer saline
VEGF Vascular endothelial growth factor
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