A highly efficient cell division-specific CRISPR/Cas9 system generates homozygous

mutants for multiple genes in Arabidopsis

Zhengyan Feng¹, Zhengjiang Zhang^{1,2}, Kai Hua^{1,2}, Xifeng Gao^{1,2}, Yanfei Mao¹, Jose Ramon Botella³, Jian-Kang Zhu^{1,4}

The following Supporting Information is available for this article:

Figure S1. Characterization of mutations in individual multi-CRISPR/Cas9 binary vectors in the T1 generation.

(a) Identification of T1 generation mutations from individual multi-pUBQ-Cas9 binary vectors.

(b) Identification of T1 generation mutations from individual multi-pCDC45-Cas9 binary vectors.

The number of target sites showing non-chimeric mutations, chimeric mutations and Wild-type is indicated. Sequencing results of all loci from a single binary vector are shown in the graph.

Figure S2. Analysis of mutation frequencies induced by the different Pol III promoters.

(a) Zygosity of mutations induced by the CDC45-15 construct in 10 T2 plants from one individual T1 line (#7).

(b) Zygosity of mutations induced by the CDC45-9 construct in 10 T2 plants from one individual T1 line (#7).

Figure S3. Editing efficiency vs. target GC content.

a, Editing efficiencies of all 74 target sites for pUBQ-Cas9 system.

b, Editing efficiencies of all 93 target sites for pCDC-Cas9 system.

 Table S1. Phenotypic characterization of T1generation.

Table S2. Mutation analysis of T1generation.

Table S3. Phenotypic analysis of the T2 population segregated from 10 individual T1 lines.

Table S4. Mutation frequencies for different Cas9 systems in the T2 generation.

 Table S5. Summary of mutagenesis frequency induced by the multi-AtUBQ-Cas9 system at 74 target

 sites in the T1 generation.

Table S6. Summary of mutagenesis frequencies induced by the multi-pCDC45-Cas9 system at 93 target sites in the T1 generation.

Table S7. List of primers used in the study.

Figure S1. Characterization of mutations in individual multi-CRISPR/Cas9 binary vectors in the T1 generation.

(A) Identification of T1 generation mutations from individual multi-pUBQ-Cas9 binary vectors.

(B) Identification of T1 generation mutations from individual multi-pCDC45-Cas9 binary vectors.

The number of target sites showing non-chimeric mutations, chimeric mutations and Wild-type is indicated. Sequencing results of all loci from a single binary vector are shown in the graph.

Figure S2. Analysis of mutation frequencies induced by the different Pol III promoters.

(A) Zygosity of mutations induced by the CDC45-15 construct in 10 T2 plants from one individual T1 line (#7).

(B) Zygosity of mutations induced by the CDC45-9 construct in 10 T2 plants from one individual T1 line (#7). Sum: The number of target genes with homozygous mutation in individual plant.

Figure S3. Editing efficiency vs. target GC content.

- (A) Editing efficiencies of all 74 target sites for pUBQ-Cas9 system.
- (B) Editing efficiencies of all 93 target sites for pCDC-Cas9 system.

T-11. C1	D1	1	· · · · · · · · · · · · · · · · · · ·	1
Table SL.	Phenotypic	characteriz	ation of 1	generation.
	1	• • • • • • • • • • • • • • • • • • • •	which of t	

	Phenotypic characterization of T1							
	generation (%)							
	Uniform							
	glabrous	Chimera	Wild-type					
	phenotype							
p2x35S-Cas9-sgR97	0	0	100					
pCDC45-Cas9-sgR97	23.5	68.1	8.7					
pSPO11-Cas9-sgR97	0	5.5	94.5					
pDMC1-Cas9-sgR97	0	8.3	91.7					
pYAO-Cas9-sgR97-Nos	20	70	10					
pYAO-Cas9-sgR97-YaoT	25.4	58	20.3					

	Zy	Zygosity of T1 generation							
	NO. of non-chimeric mutants	NO. of chimera	NO. of wild-type	Total					
p2x35S-Cas9-Nos	0	1	42	43					
pCDC45-Cas9-Nos	3 (4.4%)	52	13	68					
pSPO11-Cas9-Nos	0	56	8	64					
pDMC1-Cas9-Nos	0	28	2	30					
pYAO-Cas9-Nos	4 (10%)	36	0	40					
pYAO-Cas9-YaoT	3 (5.1%)	50	6	59					

Table S3. Phenotypic analysis of the T2 population segregated from 10 individual T1 lines.

		Phenotypic segregation of T2 plants								
	Uniform glabrous phenotype		Parti	al glabrous		Total				
			pł	nenotype	wild-type					
p2x35S-Cas9-Nos	0	0.00%	55	5.68%	913	968				
pCDC45-Cas9-Nos	443	22.73%	365	18.73%	1141	1949				
pSPO11-Cas9-Nos	13	0.70%	97	5.24%	1740	1850				
pDMC1-Cas9-Nos	40	3.94%	108	10.63%	868	1016				
pYAO-Cas9-Nos	302	24.47%	250	20.26%	682	1234				
pYAO-Cas9-YaoT	217	16.13%	197	14.65%	931	1345				

The T2 seeds were sown on 1/2 MS medium and evaluated after 2 weeks.

Table S4. Mutation frequencies for different Cas9 systems in the T2 generation.												
	No	NO.of		No	NO.of							
	NO.01	heterozygotes	NO.of chimera	INU.0I	total							
	homozygotes	or Bi-allele		wild-type	plants							
2x35S-Cas9-Nos	0	0	7	81	88							
pCDC45-Cas9-Nos	49	17	45	50	161							
pYAO-Cas9-Nos	41	30	71	12	154							
pYAO-Cas9-yaoT	25	25	56	48	154							

TADIE 54. Mutation nequencies for unrefent Casz systems in the 12 genera	1 adie 54	ole S	, 4.	Mutation	frequencies	for	different	Casy	systems	in th	e 12	, generat
---	-----------	-------	-----------------	----------	-------------	-----	-----------	------	---------	-------	------	-----------

Constructs	NO.of sgRNA in a vector	relative positon to Cas9 in vector	Target gene	promoter	Target Sequence	PAM sequence	length of Target	GC content	mutation efficiency in T1	homozygous ratio(sequencing in T1)
	2	F1	AT2G20250	AtU6	GTCGGTGAGGATGGAGTCAC	CGG AAA	20	60	0	0
0BQ-1	2	R4	A12030330	AtU6	CGGAGAATAAGGCAGCACAA	TGGAGA	20	50	0	0
	2	F1	A T2C20250	AtU6	TCACGGTATCACTATCATGA	TGGGTA	20	40	78.6	25
UBQ-2	Z	R4	A12030330	AtU6	GACGACTGAGGTTGATGTAG	AGGTGA	20	50	78.6	25
	2	F1	A TEC 52900	AtU6	AACGATTCCGGCTCTGAATC	TGG TTT	20	50	13	0
UBQ-3	Z	R4	A15G55800	AtU6	AACGTCCAGAGTTCACAGCA	TGGTTG	20	50	87	21.7
		F1	AT1G48410	AtU6	GAGCCAGAGACATCAGACAG	TGGCTC	20	55	100	0
UBQ-4	3	F2	AT1G69440	AtU3B	TGATAAGGCTTGTGGAGAAG	AGGTGT	20	45	0	0
		F3	AT5G43810	At7SL	CACCGTCAAAGAATCGTAGC	CGGAGG	20	50	0	0
		E1	AT1G31280			TGG ATG	20	50	61.5	0
	2	Γ1	AT1G31290	AlUo	GCGIGAIGIGIIGCAAGGAA	TGGATG	20	50	84.6	0
OBG-2	3	F2	AT2G27040	AtU3B	GGGGCCAGTTCGAGTTCCTA	TGG CTC	20	60	84.6	0
		F3	AT2G32940	At7SL	AGACGTGGGGTTGGAACCAC	AGG CAA	20	60	100	15
		R4	AT2G27880	AtU6	GTTTCCGCCGGTAGAGGTCG	TGGAAA	20	65	50	0
UBQ-6	6	R5	AT5G21030	AtU3B	CGCCGTGGCAACGGTTCCAA	AGGACA	20	65	78.6	0
		R6	AT5G21150	At7SL	CCTCGAGGCAGCGGCTCCAA	AGGACA	20	70	53.8	0
	2	F1		AtU6	GGGTAGGGTTCAATTGAAG	AGGATA	19	47.37	32	0
OBG-1	2	R4	A11G69120	AtU6	TGAAGTTACCAAGAATCAG	TGGAGT	19	36.84	9	0
	2	F1	A TE C 1 2 0 2 0	AtU6	AGAGAGCTGATGGACCTGC	AGG CAT	19	57.9	84	0
ORG-8	2	R4	A15G13930	AtU6	AGGCGACAAGTCGACAATT	CGG AAA	19	47.37	78	0
UBQ-9	2	F1	AT4G18480	AtU6	CCCCCATTTGCTTCAGGCC	AGG TAA	19	60	76	0

Table S5. Summary of mutagenesis frequency induced by the multi-AtUBQ-Cas9 system at 74 target sites in the T1 generation.

		R4		AtU6	GACATTCATAACAGAGACA	TGGTAA	19	36.84	89	0
		F1	AT1G70790	AtU6	GTCAGTTGTTCGTTCCACAC	TGG ATT	20	50	54.2	4.2
		F2	AT1G66360	AtU3B	CCCATACGGACAATGACATA	AGG ATC	20	45	25	0
	6	F3	AT1G23140	At7SL	CGTCGTAACCATGGGTTCTC	AGG TAT	20	55	4.2	0
0BQ-10	0	R4	AT1G70810	AtU6	CTGCAACCCTGAGTGGAACG	AGG AAT	20	60	33.3	8.3
		R5	AT2G01540	AtU3B	GCTGCTACGATGGTCGCGAA	TGGCGA	20	60	29.2	0
		R6	AT1G73580	At7SL	GCTGCTGGAAACATCACGTA	CGGCGA	20	50	12.5	0
	ſ	F	AT1G70800	AtU6	CGTCATAACCATGGGTCCAC	AGGTAC	20	55	87.5	20.8
0 BQ- 11	Z	R	AT1G48590	AtU6	CTCCGTATTCGCATCAAACG	CGGCGT	20	50	54.2	0
		F1	AT2G46440	AtU6	GACCGTCTTGTTAGCTTGCG	TGGTTG	20	55	9	0
		R4	AT2G46450	AtU6	CGTTCTCAAGCATCTTTGAG	TGGTTG	20	45	72.8	27.3
UBQ-12 6	6	F2	AT2G46430	AtU3B	TCTTCTAGTGGTTTCGGCAG	AGGAGA	20	50	63.7	18.2
	0	R5	AT2G46430	AtU3B	GTAACTGAAACTGCTTGGGC	TGGTGC	20	50	27.3	0
	F3	AT1G01340	At7SL	TAGAACGAGAAGACAGATGC	TGGC	20	45	18.2	0	
		R6	AT4G01010	At7SL	TTCTTCTACTGCTTCTGGTG	GGGT	20	45	0	0
		F1	AT4G25470	AtU6	TCGCCGCCATAGCTCTCCG	TGGCAG	19	68.42	90	0
UBQ-13	3	F2	AT4G25480	AtU3B	GGCTTGGAGACTCCGAATCC	CGGAAT	20	60	6.7	0
		F3	AT4G25490	AtAt7SL	GGACTTTCCAAACCGCTGAGA	TGGCAG	21	52.38	0	0
		F1	AT4G25470	AtU6	TCGCCGCCATAGCTCTCCG	TGGCAG	19	68.42	90	0
UBQ-14	3	F2	AT4G25490	AtU3B	TCGCTGCATTAGCCCTCCG	TGGCCG	19	63.16	0	0
		F3	AT4G25480	At7SL	GCGGCGGCTGAAGCTGCGT	TGGCGT	19	73.68	10	0
		F1	AT4G36820	AtU6	GCCACGATTGATCCAGAGCC	TGGAGA	20	60	44.4	11.1
LIPO 15	1	F2	AT2G23790	AtU3B	CAGTGCTATGATTAGGCCGG	CGGAGA	20	55	11.1	0
00Q-15	4	R1	AT1G09570	AtU6	AGGACATGGCTTGGTCACGG	TGGATT	20	60	100	37.5
		R2	AT5G42610	AtU3B	CAGTACATGACTTCACCTAA	TGGTCC	20	40	12.5	0

		F 1	AT4G22120			CGG GTA	20	45	75	0
		ГІ	AT4G04340	Aluo	INICICCOGNIIINCIGGCI	<mark>GGG</mark> GTA	20	45	75	8.3
		D 4	AT1G62320	A +I 16		CGGCTT	20	49	54.2	8.3
		K4	AT1G11960	Aluo	AICAICGIIAGAGAGAAGA	CGGCTT	20	40	54.2	8.3
LIPO 16	6	E2	AT4G15430		ͲͲϹϹϹͲϪϪϪͲϹϹͲϪͲϹͲϹϪϪ	GGGTTT	20	35	25	8.3
UBQ-10	0	12	AT3G21620	AIUJD		GGGCTT	20	35	25	8.3
		D 5	AT4G15430	Λ+I ⊺2 D	ТТТТСССТССАТТТСТСТА	TGGCTT	19	36.84	0	0
		K5	AT3G21620	AIUJD	IIIIGGGIGGAIIIGIGIA	TGGCTT	19	36.84	0	0
		R6	AT4G02900	At7SL	TCAGGCATTTGAAGAGCAGC	AGGCAT	20	50	29	8.3
		F3	AT1G32090	At7SL	CGCTCCGACAGAACTCTCGT	CGGAAA	20	60	0	0
		F1	AT5G46790	AtU6	CGGTGGTGAACATAGGCTG	AGGAAT	19	57.9	95	28.6
		F2	AT4G17870	AtU3B	AGTTGGTATGTGTGGAACT	CGGCGA	19	42.1	89	0
UBO-17 6	F3	AT2G38310	At7SL	GCGGAGACGGCGATAACGT	TGGTAG	19	63.16	13	0	
UDQ-17	UBQ-17 6	R4	AT2G26040	AtU6	CGCTCCGGCCTCCGTGGTT	TGGCCT	19	73.68	71	0
		R5	AT5G53160	AtU3B	TTTGTCGTATCCGACGCGG	AGGTAT	19	57.9	27	0
		R6	AT5G05440	At7SL	AGCCTCACGATCAGACCGA	TGGTCC	19	57.9	27	0
UBQ-18	6	F2	AT5G53160	AtU3B	ACATCATAAGCATGAGCTTG	TGGATA	20	40	3.3	0
		F1	AT4G01026	AtU6	ACACTGGTTCTCTCTGCAG	TGGTGA	19	52.63	86	13.2
		F2	AT1G73000	AtU3B	GCACACCGTGTAGACGCAC	CGGCAC	19	63.16	78	0
	6	F3	AT2G40330	At7SL	GTGAGCCTCACGCGCGGGA	TGGCTG	19	73.68	0	0
UBQ-19	0	R4	AT1G01360	AtU6	TCGAGACGGTGCAATACGTA	CGGACG	20	50	61	0
		R5	AT5G45860	AtU3B	ATGCTCCACTATCTCTAGTT	TGGTCA	20	40	75	0
		R6	AT5G45870	At7SL	ATGCTCCGTTACCTCTAGTA	TGGTCG	20	45	47	0
UBO-20	2	F1	AT4G27920	AtU6	GAGGTTGGTAGCGTAAGAGAAG	TGGATT	22	50	19	0
000-20	2	R4	AT4G18620	AtU6	TGAAGCACCATTACCACTAGTG	TGGTCC	22	45.4	25	0

UBO-21 6	R5	AT2G40330	AtU3B	TCTGAAACTGTATCGACGT	TGGCAT	19	42.11	0	0	
UBQ-21	0	R6	AT2G40330	At7SL	GAGCTTTCCCACACGCACG	TGGTTG	19	63.16	0	0
UBQ-22	3	F1	AT4G27920	AtU6	ATCAGTAGGTGTGTGGTACA	AGGTAA	20	45	86.7	13.3

22 binary vectors with 70 sgRNAs were introduced into Arabidopsis by the flower dip method. The PAM sequences are shown in red.

Constructs	No.the sgRNA in a vector	relative positon to Cas9 in voctor	Target gene	promoter	Target sequence	PAM sequence	length of Target	GC content	mutation efficiency in T1(%)	homozygous ratio										
		In vector	A 12 22 400				10	52.62	02.22	0.00										
		F1	At3g22490	AtU6	GGUTTATCAGUGAGTTCAC	CGGAG	19	52.63	83.33	0.00										
			At3g22500		GGGCTTATCAGCGAGTTCAC	CGGAG	20	55.00	83.33	0.00										
		F2	At3g22490	A tI I3h	ACTCACCCTGGTGGTGTAG	CGGCT	19	57.89	66.67	8.33										
		1.77	At3g22500	A1030		CGGCT	19	57.89	83.33	8.33										
CDC45 1	(F3	At1g03120	At7SL	CACGGCCACATGATCAATA	CGGCA	19	47.37	8.33	0.00										
CDC45-1	0	D 4	At5g53260	A +I 16	CCC3 ##C3 CC3 3 C3 CC#CC	AGGAA	19	57.89	91.67	8.33										
		K4	At5g53270	Aluo	CGGATICAGCAACACCICC	AGGAA	19	57.89	100.00	0.00										
		D <i>5</i>	At5g53260	A 4T T21.	GTGGCTGCCATAAAAGAGG	TGGAA	19	52.63	100.00	8.33										
		КJ	At5g53270	AlU30	TGGCTGCCATAAAAGAGG	TGGAA	18	55.56	91.67	0.00										
		R6	At5g27980	At7SL	AAATCAACCTGTTCACCGG	AGGCC	19	47.37	0.00	0.00										
		E1	At1g20440	A +I 16		TGGAT	19	47.37	91.67	33.33										
		ГІ	At1g20450	Alu	ACAGAGGAAGAAGAGCIGI	TGGAT	19	47.37	75.00	25.00										
												F2	At1g76180	AtU3b	GCTCAAACTCTGAAGCGAT	CGGAG	19	47.37	75.00	0.00
CDC45-2	6	F3	At4g38410	At7SL	GAGAATGCCCGTGTAACCA	AGGAG	19	52.63	41.67	0.00										
		R1	At5g66400	AtU6	GTACTCGTCATACTGCTGC	TGGAT	19	52.63	75.00	0.00										
		R2	At3g50980	AtU3b	GAGTAGCTCTAGCTCTAGCT	CGGTA	20	50.00	100.00	33.33										
		R3	At2g21490	At7SL	CATCAGTCAGGTCGACAAT	TGGGT	19	47.37	0.00	0.00										
CDC45 3	6	F2	At4g39130	AtU3b	TGGTGAGGAGTATTGGTGG	TGGTG	19	52.63	91.67	0.00										
CDC43-3	U	F3	At1g54410	At7SL	CTTGTTGCCTCCTCCAATG	TGGAG	19	52.63	0.00	0.00										

Table S6. Summary of mutagenesis frequencies induced by the multi-pCDC45-Cas9 system at 93 target sites in the T1 generation.

		R4	At2g23110	AtU6	TGGGGTCTTGATAGACTCG	AGGTC	19	52.63	36.36	0.00
		R5	At2g23120	AtU3b	GATAGCCCTTACATGGCGA	CGGGT	19	52.63	9.09	0.00
		R6	At2g33690	At7SL	TATGGAACTTCCGGTCACC	AGG AC	19	52.63	0.00	0.00
CD C 45 4	•	F1	At2g41260	AtU6	CTCACTCGACATAGTTGAC	TGGTT	19	47.37	100.00	65.85
CDC45-4	Z	F2	At2g41280	AtU3b	CTCATGTCTCTCGTTCTCG	TGGCT	19	52.63	18.75	0.00
CDC45 5	2	F1	At2g41260	AtU6	CTCAAGTCTCTCGTTCTCT	TGGCT	19	47.37	56.25	0.00
CDC45-5	2	F2	At2g41280	AtU3b	TGTTGCCGCAGTCAAGCCG	AGGCC	19	63.16	93.75	6.25
CDC45-6	3	F2	At2g23120	AtU3b	GATAGCCCTTACATGGCGA	CGGGT	19	52.63	30.00	0.00
		F1	At5g06760	AtU6	GAAACGCGTCAGCACAACG	CGGCC	19	57.89	75.00	25.00
CDC45-7	3	F2	At2g35300	AtU3b	TCTGATGGGTTGTACTGTG	AGGGA	19	47.37	58.33	16.67
		F3	At1g32560	At7SL	GATATGGCTAGTACAGCCA	AGGAG	19	47.37	50.00	0.00
CDC45-8		F1	At1g01470	AtU6	CCTACAACAGGAAGGTCGA	TGGTT	19	52.63	84.62	15.38
	3	F2	At2g44060	AtU3b	GACATTGGTGAGAAACTCG	AGG GA	19	47.37	12.50	0.00
		F3	At2g46140	At7SL	GCTGGCGAATATTCCGACGC	CGGAA	20	60.00	5.88	0.00
	3	F1	At4g02380	AtU6	GACTTACCGGAAGATAGCAT	TGGAG	20	45.00	83.33	0.00
CDC45-9		F2	At1g02820	AtU3b	GCTTCAAGCGAGAAGGCACCA	TGGGT	21	57.14	100.00	36.36
		F3	At3g53770	At7SL	GTAGTCAAGAGAAGCCATCG	TGGGC	20	50.00	83.33	33.33
		F1	At4g02380	AtU6	GACTTACCGGAAGATAGCAT	TGGAG	20	45.00	91.67	8.33
		F2	At1g02820	AtU3b	GCTTCAAGCGAGAAGGCACCA	TGGGT	21	57.14	100.00	9.09
CDC45 10	6	F3	At3g53770	At7SL	GTAGTCAAGAGAAGCCATCG	TGGGC	20	50.00	91.67	25.00
CDC45-10	0	R4	At4g15910	AtU6	TGGCCGCTCGTTCACTCTC	CGGTG	19	63.16	90.00	0.00
		R5	At3g51810	AtU3b	GCTTGATGAGAAGGCGAAGCA	AGGAG	21	52.38	75.00	8.33
		R6	At2g40170	At7SL	CCCGTACCACCTGGCACGA	CGGTC	19	68.42	33.33	0.00
CDC45 11	6	F1	At5g06760	AtU6	GAAACGCGTCAGCACAACG	CGGCC	19	57.89	75.00	8.33
CDC45-11	0	F2	At2g35300	AtU3b	TCTGATGGGTTGTACTGTG	AGGGA	19	47.37	50.00	16.67

		F3	At1g32560	At7SL	GATATGGCTAGTACAGCCA	AGGAG	19	47.37	16.67	16.67
		R4	At1g01470	AtU6	CCTACAACAGGAAGGTCGA	TGGTT	19	52.63	75.00	8.33
		R5	At2g44060	AtU3b	GACATTGGTGAGAAACTCG	AGGGA	19	47.37	8.33	8.33
		R6	At2g46140	At7SL	GCTGGCGAATATTCCGACGC	CGGAA	20	60.00	0.00	0.00
		F1	At1g72100	AtU6	GGCAATAGAAAGGCAAGTGA	CGGAA	20	45.00	100.00	60.00
		F2	At2g03850	AtU3b	GATCAGTCGAGGCAAGAGAAG	CGGCG	21	52.38	80.00	10.00
CDC45 12	6	F3	At2g42540	At7SL	GGAGCTGTTCTCACTGGTA	TGGCT	19	52.63	55.56	0.00
CDC45-12	0	R4	At2g03740	AtU6	GCACCTCAGCGCAAGAAGTCA	TGGGT	21	57.14	40.00	0.00
		R5	At2g42530	AtU3b	GGTGTTGGTACCGTCAGAGT	TGGCC	20	55.00	88.89	0.00
		R6	At2g42560	At7SL	GGTGACGGAGAGAGAAGTTC	AGGTG	20	55.00	77.78	0.00
		F1	At4g21020	AtU6	TAGATAACGCTAGAGACTCG	AGGGC	20	45.00	36.36	0.00
		F2	At4g13230	AtU3b	GTCTGTGACAAAGCCACAG	AGGCT	19	52.63	91.67	16.67
CDC45-13	6	F3	At2g36640	At7SL	ATTGTGACATCAGCACCAC	CGGAT	19	47.37	25.00	0.00
		R5	At3g53040	AtU3b	GCTGCAGCCTCAGCTCTCT	CGGCC	19	63.16	41.67	0.00
		R6	At3g17520	At7SL	GTTGTGTCCAAGCTACGATCG	AGGAA	21	52.38	0.00	0.00
		F 1	At1g20440	A +I 16		TGGAT	19	47.37	100.00	16.67
		1,1	At1g20450	Alu	TGGA	TGGAT	19	47.37	75.00	16.67
		F2	At1g76180	AtU3b	GCTCAAACTCTGAAGCGAT	CGGAG	19	47.37	66.67	25.00
CDC45-14	6	F3	At2g36640	At7SL	ATTGTGACATCAGCACCAC	CGGAT	19	47.37	16.67	0.00
		R4	At3g53040	AtU6	GATAGGCTCGGTGATGAAGG	CGGTG	20	55.00	100.00	25.00
		R5	At2g44060	AtU3b	GACATTGGTGAGAAACTCG	AGG GA	19	47.37	45.45	18.18
		R6	At2g42560	At7SL	GGTGACGGAGAGAGAAGTTC	AGG TG	20	55.00	83.33	25.00
		F1	At4g21020	AtU6	TAGATAACGCTAGAGACTCG	AGGGC	20	45.00	41.67	16.67
CDC45-15	6	F2	At4g15910	AtU3b	CGCAGAATGTAACAGCAGC	AGGAT	19	52.63	66.67	16.67
		F3	At4g02380	At7SL	AGACGTGGTTATGCGGCCA	CGGCG	19	57.89	25.00	0.00

		R4	At5g44310	AtU6	GAGAGACTCGAGGGCCGACT	TGGCA	20	65.00	91.67	58.33
		R5	At4g02380	AtU3b	GACTTACCGGAAGATAGCAT	TGGAG	20	45.00	66.67	0.00
		R6	At3g53770	At7SL	GTAGTCAAGAGAAGCCATCG	TGGGC	20	50.00	66.67	25.00
		F1	At2g03740	AtU6	GCACCTCAGCGCAAGAAGTCA	TGGGT	21	57.14	36.36	0.00
CDC45-16	5	F2	At2g03850	AtU3b	GATCAGTCGAGGCAAGAGAAG	CGGCG	21	52.38	66.67	8.33
_		R5	At2g42530	AtU3b	GGTGTTGGTACCGTCAGAGT	TGGCC	20	55.00	63.64	0.00
		F1	At2g18340	AtU6	GGGGAAATGGTTAGAGTCGA	CGGCG	20	50.00	100.00	85.71
CDC45-17	6	F3	At3g17520	At7SL	GTTGTGTCCAAGCTACGATCG	AGGAA	21	52.38	40.00	0.00
_		R4	At4g36600	AtU6	GAACGGAGACAGCAGAGGATA	TGGTT	21	52.38	100.00	0.00
CDC45 18	ſ	F1	F1	AtU6	GGCAATAGAAAGGCAAGTGA	CGGAA	20	45.00	100.00	45.45
CDC45-18	Z	F2	At1g/2110	AtU3b	GATCACAAAGGTGATGAGGGTC	TGGAA	22	50.00	0.00	0.00
		F 1	At1g20440	Λ +I] (ACAGAGGAAGAAGAGCTGT TGGA	TGGAT	19	47.37	50.00	20.00
		ГТ	At1g20450	Alu		TGGAT	19	47.37	70.00	20.00
			F2	At1g01470	AtU3b	CACACCAACGTCTCGAGCC	AGGTT	19	63.16	66.67
CDC45-19	6	F3	At1g54410	At7SL	CTTGTTGCCTCCTCCAATG	TGGAG	19	52.63	8.33	0.00
		R4	At4g02380	AtU6	GACTTACCGGAAGATAGCAT	TGGAG	20	45.00	91.67	16.67
		R5	At4g15910	AtU3b	CGCAGAATGTAACAGCAGC	AGGAT	19	52.63	75.00	25.00
		R6	At5g66400	At7SL	GGTGGCCAAGGATACGGAAC	CGGGA	20	60.00	25.00	8.33
		F1	At5g06760	AtU6	GAAACGCGTCAGCACAACG	CGGCC	19	57.89	100.00	8.33
		F2	At4g15910	AtU3b	CGCAGAATGTAACAGCAGC	AGGAT	19	52.83	100.00	16.67
CDC45-20	(F3	At5g66400	At7SL	GGTGGCCAAGGATACGGAAC	CGGGA	20	60.00	41.67	0.00
	0	R4	At1g52690	AtU6	GACAAGACAGGAAGCTACATGT	CGGAA	22	45.45	58.33	0.00
		R5	At2g23120	AtU3b	GATAGCCCTTACATGGCGA	CGGGT	19	52.63	50.00	0.00
		R6	At4g02380	At7SL	AGACGTGGTTATGCGGCCA	CGGCG	19	57.89	8.33	0.00

20 binary vectors with 56 sgRNAs were introduced into Arabidopsis by the flower dip method. The PAM sequences are shown in red.

 Table S7. List of primers used in the study.

YAO-F	TCAGCCCGGGACAAATAGAGGTAGGGGGAGAGTT
YAO-R	TGAGCCATGGTCTTCTCTCTCTCACTCCCTCTTAG
CDC45-F	TTTAAGCTTCTCCTGATGATAAAGGTGGGAG
CDC45-R	TTTCTCGAGTTCCGTGAAATTGAATCACCC
DMC1-F	AAAGTCGACCAGGGAATGTTCCAATATAAGAC
DMC1-R	TTTCTCGAGTTTCTCGCTCTAAGAGTCTCTAAG
SPO11-F	CCATGGGCATTTGCAGCTCGTCTGG
SPO11-R	CTCGAGCTCTTTCGAGTTTCAAAACTGAAA
VU6-1F	AACGACGGCCAGTGCCAAGCTTCATTCGGAGTTTTTGTATCTTG
VU6-R	GTTATCCATCACAGGCTCGAGCCATTTGTCTGCAGAATTGGC
VU6-1R	CTTTATCATCAGGAGGTCGACCCATTTGTCTGCAGAATTGGC
VU3-F	CTCGAGCCTGTGATGGATAAC
VU3-R	GCCAATTTACCAGCATCTAGACCATTTGTCTGCAGAATTGGC
VU3-1R	CTTTATCATCAGGAGGTCGACCCATTTGTCTGCAGAATTGGC
V7SL-F	TCTAGATGCTGGTAAATTGGC
V7SL-1R	CTTTATCATCAGGAGGTCGACGCCATTTGTCTGCAGAATTGGC
VU6-2F	ATGTTACTAGATCGGCCCGGGCATTCGGAGTTTTTGTATC
VU3-2R	AATTCGAGCTCGGTACCCGGGCCATTTGTCTGCAGAATTGGC
V7SL-2R	AATTCGAGCTCGGTACCCGGGGCCATTTGTCTGCAGAATTG
1300-F	GGCGATTAAGTTGGGTAACG
CDC45-R	GACATTGGTCTAGAGTTACAG
NOS-F	CGCGCGCGGTGTCATCTATG
1300-R	CTCGTATGTTGTGTGGGAATTG
AtGL2-F	AGTTAGGGTTCAGTTGCATG
AtGL2-R	AGTTATAGTAGCTGGTAACAG
GL2-sg97-F	GATTGTCGGAGCATGAAGCCTGCA
GL2-sg97-R	AAACTGCAGGCTTCATGCTCCGAC

YAOT-F	ATGCGGATCCGCATAAGTATTTCATTGGGAT
YAOT-R	ATGCGAATTCCCGGCGAATCGAGGTATGGCTAC
YAOT-F1	CTACTACTTGAATGAATTGTCTTAAGTCAAGCTTAG
YAOT-R1	CAATTCATTCAAGTAGTAGGCTCT

Methods S1

Materials: Backbone vectors: pAtU6-sgR(Amp+); pAtU3b- sgR (Amp+); pAt7SL- sgR (Amp+);

pCDC45-Cas9-1300(Kan+).

Restriction enzyme: BbsI; HindIII; SalI; XmaI, T4 DNA Ligase, ClonExpress MultiS One Step Cloning

Kit (Catlog #C113, http://en.vazyme.com/products_detail/productId=67.html).

Methods

Design and synthesize two oliogs of the sgRNA

For pAtU6-sgR:

 CF: 5'-GATTGNNNNNNNNNNNNNNNNNN
 -3'

 CR:3' СИМИМИМИМИМИМИМИКААА-5'

For pAtU3b-sgR:

CF: 5'-GGTCGNNNNNNNNNNNNNNN -3'

CR: 3'- CNNNNNNNNNNNNNNNNNAAA-5'

For pAt7SL-sgR:

CF: 5'-TTACGNNNNNNNNNNNNNNNNNNNNN

CR: 3'- CNNNNNNNNNNNNNNNNNNAAA-5'

Oligo annealing and cloning into the corresponding backbone vectors.

- 1. Digest 1µg of pAtu6-sgR, pAtU3b-sgR, pAt7SL-sgR with *Bbs*I for 2h at 37°C.
 - 1µg pAtu6-sgR or pAtU3b-sgR or pAt7SL-sgR
 - 1μL BbsI -HF (20 U/μL ,NEB)
 - 2µL 10 x CutSmart Buffer

Up to 20µL ddH2O

 Gel purified digested pAtu6-sgR, pAtU3b-sgR, pAt7SL-sgR using Gel Extraction Kit and elute in EB solution.

- 3. Phosphorylate and anneal each pair of oligos:
 - 1 μL oligo 1 (100mM)
 - 1 μL oligo 2 (100mM)
 - 1 µL 10 x T4 Ligation Buffer
 - 0.5 µL T4 Polynucleotide Kinase (10 U/µL,NEB)
 - Up to10µL ddH2O

Anneal in a thermocycler using the following parameters:

- 37°C 30 min
- 95° C 5 min and then ramp down to 25° C at 5° C/min
- 4. Set up ligation reaction and incubate at 22° C for 30 min:
 - X µL BbsI digested pAtu6-sgR, pAtU3b-sgR or pAt7SL-sgR from step 2
 - 1 µL annealed oligo duplex from step 3
 - 1 µL 10 x T4 ligase Buffer
 - 1 μ L T4 DNA Ligase (400 U/ μ L, NEB)
 - Up to10µL ddH2O

5. Transformation and identify postive clone by Colony PCR (primer M13F+CR or CF+M13R).

SgRNA cloned into binary vector(pCDC45-Cas9-1300)

1, Amplify the sgRNA-cassette (pAtU6-sgRNA, pAtU3b-sgRNA, pAt7SL-sgRNA) with corresponding

primer pairs and purified the PCR products.

Primers:	pAtU6-sgRNA	VU6-1F+VU6-R
	pAtU3b-sgRNA	VU3-F+VU3-R
	pAt7SL-sgRNA	V7SL-F+V7SL-1R

- 2, Digest 1µg of pCDC45-Cas9-1300 with *Hind*III and *Sal*I and purified the constructs.
- 3, Set up Homologous recombination reaction and incubate at 37° C for 30 min:
 - 4 μL 5x CE MutiS Buffer (Vazyme)
 - 2 μL Exnase MutiS (Vazyme)
 - X μL Fragement 1 (step 1)
 - X μL Fragement 2 (step 1)
 - X μL Fragement 3 (step 1)
 - X μL digested vector (step 2)

 $Up \ to \ 20 \ \mu L \qquad ddH_2O$

Transformation and select the correct clone by Colony PCR (1300-F+CDC45-R) for the 3sgRNA-

pCDC45-Cas9-1300.

4, Amplify the sgRNA-cassette (pAtU6-sgRNA, pAtU3b-sgRNA, pAt7SL-sgRNA) with corresponding primer pairs and purified the PCR products.

Primers: pAtU6-sgRNA VU6-2F+VU6-R

pAtU3b-sgRNA VU3-F+VU3-R

pAt7SL-sgRNA V7SL-F+V7SL-2R

5, Digested 1µg of 3sgRNA-CDC45-Cas9-1300 with XmaI and purified the construct.

6, Set up Homologous recombination reaction and incubate at 37° C for 30 min:

4 μL 5x CE MutiS Buffer (Vazyme)
2 μL Exnase MutiS (Vazyme)
X μL Fragement 1(step 4)
X μL Fragement 2 (step 4)
X μL Fragement 3 (step 4)
X μL digested vector(step 5)
Up to 20 μL ddH₂O

Transformation and select the correct clone by Colony PCR (NOS-F+1300-R) for the 6sgRNA-

pCDC45-Cas9-1300

List of primers used for construction of the multi-pCDC45-Cas9-1300.

	6sgRNA	5sgRNA	4sgRNA	3sgRNA	2sgRNA	1sgRNA	
	PRIMER	PRIMER	PRIMER	PRIMER	PRIMER	PRIMER	
AtU6-sgRNA	VU6-1F+VU6-R	VU6-1F+VU6-R	VU6-1F+VU6-R	VU6-1F+VU6-R	VU6-1F+VU6-R	VU6-1F+VU6-1R	step1
AtU3b-sgRNA	VU3-F+VU3-R	VU3-F+VU3-R	VU3-F+VU3-1R	VU3-F+VU3-R	VU3-F+VU3-1R		step1
At7SL-sgRNA	V7SL-F+V7SL-1R	V7SL-F+V7SL-1R		V7SL-F+V7SL-1R			step1
AtU6-sgRNA	VU6-2F+VU6-R	VU6-2F+VU6-R	VU6-2F+VU6-R				step4
AtU3b-sgRNA	VU3-F+VU3-R	VU3-F+VU3-2R	VU3-F+VU3-2R				step4
At7SL-sgRNA	V7SL-F+V7SL-2R						step4

Primer list

VU6-1F AACGACGGCCAGTGCCAAGCTTCATTCGGAGTTTTTGTATCTTG

VU6-R GTTATCCATCACAGG<u>CTCGAG</u>CCATTTGTCTGCAGAATTGGC

VU6-1R CTTTATCATCAGGAGGTCGACCCATTTGTCTGCAGAATTGGC

VU3-F CTCGAGCCTGTGATGGATAAC

VU3-R GCCAATTTACCAGCA<u>TCTAGA</u>CCATTTGTCTGCAGAATTGGC

VU3-1R CTTTATCATCAGGAG<u>GTCGAC</u>CCATTTGTCTGCAGAATTGGC

V7SL-F TCTAGATGCTGGTAAATTGGC

V7SL-1R CTTTATCATCAGGAG<u>GTCGAC</u>GCCATTTGTCTGCAGAATTGGC

VU6-2F ATGTTACTAGATCGG<u>CCCGGG</u>CATTCGGAGTTTTTGTATC

VU3-2R AATTCGAGCTCGGTA<u>CCCGGG</u>CCATTTGTCTGCAGAATTGGC

V7SL-2R AATTCGAGCTCGGTA<u>CCCGGG</u>GCCATTTGTCTGCAGAATTG

1300-F GGCGATTAAGTTGGGTAACG

CDC45-R GACATTGGTCTAGAGTTACAG

NOS-F CGCGCGCGGTGTCATCTATG

1300-R CTCGTATGTTGTGTGGAA

PROMOTER SEQUENCE

pCDC45

gtttataaatccttgacaaagaaaataaaaataaaaatcaaattaggaaaaaacaaaaatcggcatgatcatggctaattaggttttgatcatcttctagattaggttttgatcatcttctagattaggttttgatcatcttctagattaggttttgatcatcttctagattaggttttgatcatcttctagattaggttttgatcatcttctagattaggttttgatcatcttctagattaggttttgatcatcttctagattaggttttgatcatcttcttctaggttttgatcatcttaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttctaggttttgatcatcttaggtttgatcatctttgatggtttgatcatcttaggtttgatcatcttaggtttgatcatcttaggtttgactta at agttittttg cttg tag tag tag tag tag tag ac a cattlt tg cacact g tag ac cat g t cg tag a at a ctt ta ca at tt g ag g tag tag a cat g t cg tag t cg tag a cat g t cg tagcaatttactagagatgaggaattgtataagattaaggatgtatttcactatgagattttagagttagctttgaagatgtcaaattggaatatcatgttggtggaaaattattatgetttgaaggttggaataagcattggaaagcegatgatgttgagatatacatttacaatggtetegtaatcaggtgetaaatattgcaaggtggaatgaatggaatgaaggtggaataaggtggaataaggtggaataaggtggaataaggtggaataaggtggaataaggtgaataaggtggaatgaaggtggaatgaaggtggaatgaatgaatggaatgaaggtggaatgaatggaatgaatggaatgaaggtggaatgaaggtggaatgaaggtggaatgaatgaatgaatggaatgaatgaaggtggaatgaatgaatgaaggtggaatgaaggtggaatgaaggtgaatgaatgaaggtggaatgaaggtgaaggtggaatgaatgaatggaaggaaggaaggaaggaaggaatgaatgaatgaatgaatgaatgaatggaagaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaggaaaa at geca at gatte a at agt agt gt a at cteet gea ca acceg ca aga ca cet get ca a a acca a a a ca a a at get the act the act the second secaaacaatttaaaatttattagataattaataaaaaatgtatgacacacagacacagctggttgatttgtttatttgaattttigactaggattaagaacattaat cat caacegt tgattata ag caagt tgaagaa aag g caegg t cag at t cacet ctt ct cat at g at g cg t t a cat a ag at cet t t cect cat t cect ctt cect cat at g at g cg t t a cat a ag at cet t t cect cat at g at g cg t t a cat a g at cet t t cect cat at g at g cg t t a cat a g at cet t t cect cat at g at g cg t t a cat a g at cet t t cect cat at g at g cg t a cat a g at cet t t cect cat at g at cet t cect cat at a cet t cect cat at at a cet t cect cat at at at a cet t cect cat at at at at atagaattcaaatctcaggtacttttcctgtggatttgatctgggcactgcttattagggatttgattggatctacaaaattctgccttctgggtgattcaatttaatttcaatttcaatcggaa

pDMC1

 attagattgaaaaaataaaaattaagatctatggctgagattaaagacaataaatggattaattttttgatgttaaaatctgattagaaaaaggtatttctcttcgtete taga acta a a tete tete ta a a a a a a a a a tete tetet tete tete tete tetet tetet tetet tete tete tetegagatgttgaaaatcgtttctcatgaaattaatcgattattctctgtgaagttctttaatccacaacatttcctcatgaacatgataatagtagtaaatggagggatgatgatgatgatgacatattatggatgacgcatcatggattgtatattatggattgatatggtgagattgtaaatcttttggtcttacatgttaagagtaaaagatgaagaattggagaagcatgtctaacatcctaaaaacaagctatatgcggttgattgctacaaataattttttggtatccataataacaaatcaattgcggttgattgctacaaataattttttggtatccataataacaaatcaattgcggttgattgctacaaataattttttggtatccataataacaaattgcggttgattgctacaaataattttttggtatccataataacaaattgcggttgattgctacaaataattttttggtatccataataacaaattgcggttgattgctacaaataattttttggtatccataataacaaattgcggttgattgctacaaataattgcggttgattgctacaaataattgtggtatgcatgtaatgcggttgattgctacaaataattgcggttgattgctacaaataattgtggtatgcatgtaatgcggttgattgctacaaataattgtggtatgatgatgtgatgatggatggagata at attttagtta agagggt attttagta aaaaaa aa aa aa aa agtgccta at cttttga aagtgccta aa ca ca gaa at agtttta aa aa agtgttta aa aa agtgct at a ca ca ca gaa at agtttta aa aa agtgttta aa aa agtgccta at ctttt gaa agtgccta ac ca gaa at agtttta aa aa agtgttta aa aa agtgccta at ctttt gaa agtgccta ac ca gaa at agtttta aa aa agtgct at a to the second secongtataacaaagaagagcacacaaacgaaaacaaattcagttgcggaacccaaattcaaatcaacggaattagaatcacgctttcaattccgtaacccgagcgagaaa

pSPO11