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Abstract: Phosphodiesterase 4B (PDE4B) plays an important role in inflammation. Recently we have
reported that roflumilast as a PDE4-selective inhibitor, synergizes with nontypeable Haemophilus
influenzae (NTHi) to up-regulate PDE4B expression in vitro and in vivo. Clinical evidence and
our previous results suggest that synergistic induction of PDE4B could be counterproductive for
suppressing inflammation or may contribute to tolerance to roflumilast. We thus investigated if
dexamethasone inhibits the synergistic induction of PDE4B by roflumilast and NTHi as well as
inflammation. Here, dexamethasone markedly suppressed the synergistic induction of PDE4B
in human lung epithelial cells and in vivo. We also found that dexamethasone further suppressed
NTHi-induced inflammatory response in vitro and in vivo. Moreover, Compound A, as a dissociating
non-steroidal glucocorticoid receptor (GR) ligand, inhibited the synergistic induction of PDE4B,
thereby suggesting the requirement of dexamethasone-mediated GR activation in the suppression
of PDE4B expression. Taken together, our data suggest that dexamethasone may help attenuate
inflammation and tolerance through suppressing the PDE4B expression in chronic obstructive
pulmonary disease (COPD) patients using roflumilast.

Keywords: dexamethasone; PDE4B; roflumilast; nontypeable Haemophilus influenzae;
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1. Introduction

Intracellular cAMP is inactivated by the phosphodiesterases (PDEs), leading to the suppression
of inflammatory responses [1–4]. Each identified PDE (PDE1-11) has several isoforms and
transcriptional/splice variants with distinct properties [5–7]. In particular, PDE4 is a major therapeutic
target protein in chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) [8–10].
Previous studies showed that cigarette smoke extracts, cAMP elevator, lipopolysaccharide (LPS),
and nontypeable Haemophilus influenzae (NTHi) induced expression of PDE4, pro-inflammatory
cytokines and chemokines in various cell types, including airway epithelial cells and leukocytes [11–17].

Roflumilast, a second generation PDE4-selective inhibitor, was approved in 2012 for treating
severe COPD patients with exacerbations and chronic bronchitis [18–20]. In addition, roflumilast
has been shown to inhibit a broad range of inflammatory cytokines and chemokines in human
neutrophils and pulmonary epithelial cells [21–23]. However, clinical evidence suggests that treatment
with repeated dosing of roflumilast may lead to the development of tachyphylaxis or tolerance for
roflumilast through up-regulation of phosphodiesterase 4B (PDE4B) expression [24–27]. Recently,
we have reported that roflumilast synergizes with NTHi to induce the pro-inflammatory cytokines and
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chemokines through upregulation of PDE4B expression in vitro and in vivo [28]. Thus, understanding
how up-regulation of PDE4B expression by roflumilast and NTHi is attenuated may help to improve
the efficacy of roflumilast.

Glucocorticoids (GCs) are the most widely used agents for controlling inflammatory diseases
such as COPD and asthma [23,29–32]. GCs directly bind to glucocorticoid receptors (GRs) and are then
translocated to the nucleus, thereby suppressing the activity of nuclear factor-κB (NF-κB) and activator
protein 1 (AP-1) and leading to decreased inflammatory gene expression [33,34]. Recent studies also
showed that dexamethasone (Dex) decreases PDE4B expression in human pulmonary endothelial
cells and osteosarcoma cells [32,35]. Thus, we hypothesized that dexamethasone may suppress the
synergistic induction of PDE4B by roflumilast and NTHi and improve the anti-inflammatory effects
and the side effects of roflumilast through down-regulation of PDE4B expression.

2. Results

2.1. Dexamethasone Suppresses Synergistic Induction of PDE4B Expression by Roflumilast and NTHi In Vitro
and In Vivo

We first sought to determine if dexamethasone suppresses the synergistic induction of PDE4B
and thereby improves its efficacy in human bronchial epithelial BEAS-2B cells by performing
quantitative PCR (Q-PCR), semi-quantitative RT-PCR analysis (RT-PCR), and western blot analysis.
As shown in Figure 1, dexamethasone markedly inhibited induction of PDE4B induced by either
NTHi or roflumilast alone or both in BEAS-2B cells (Figure 1A–C). Consistent with in vitro results,
dexamethasone also suppressed the synergistic induction of pde4b expression at mRNA level in mouse
lung (Figure 1D). Similar result was also observed by performing immunofluorescent staining in
the mouse lung (Figure 1E). To further investigate the effects of dexamethasone on cAMP-induced
PDE4B expression, BEAS-2B cells were pre-treated with cAMP inducer, such as forskolin and
isoproterenol, or dexamethasone for 1h followed by 5 h stimulation with NTHi. Dexamethasone
significantly inhibited the PDE4B induction in BEAS-2B cells (Figure 1F). Together, our data suggest
that dexamethasone suppresses the synergistic induction of PDE4B expression by roflumilast and
NTHi at mRNA and protein levels in vitro and in vivo.

2.2. Dexamethasone Suppresses NTHi-Induced Inflammation In Vitro and Mouse Lung In Vivo

The pro-inflammatory mediators including cytokines and chemokines play a critical role in
airway inflammatory diseases, such as COPD, through the recruitment and activation of leukocytes
from the circulation to the lung [17]. Previously we reported that PDE4B2 is critical for mediating
NTHi-induced chemokines in both a PDE enzymatic activity-dependent and -independent manner [28].
Thus, we examined the effects of dexamethasone on the induction of chemokines induced by either
NTHi or roflumilast alone, or both, in mouse lungs by performing Q-PCR analyses. As shown in
Figure 2A, dexamethasone markedly inhibited the expression of cxcl1, cxcl2, ccl5 and ccl7 in the
mouse lungs.

To further determine the effects of dexamethasone on NTHi-induced inflammation in the lungs
of mice, we performed hematoxylin and eosin (H&E) staining and evaluated the recruitment of
polymorphonuclear neutrophils (PMN) in bronchoalveolar lavage (BAL) fluid. NTHi induced
recruitment of PMNs. The recruitment of PMN in BAL fluid was inhibited by roflumilast or
dexamethasone treatment in mouse lungs. Interestingly, recruitment of PMN was further inhibited
by treatment with both roflumilast and dexamethasone (Figure 2B). Similar results were also
confirmed by performing histological analysis (H&E staining) to evaluate the effects of dexamethasone
on the NTHi-induced inflammation in the lungs of mice (Figure 2C). Thus, we suggest that
dexamethasone-induced inhibition of chemokine expression leads to the suppression of inflammation
and PMN infiltration.
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Figure 1. Dexamethasone suppresses up-regulation of phosphodiesterase 4B (PDE4B) expression by 
roflumilast and NTHi in vitro and in vivo. (A) BEAS-2B cells were pretreated with Roflumilast (Rof) 
(0.1 µM) and dexamethasone (Dex) (10 nM) for 1 h followed by 1.5 h stimulation with NTHi, and 
PDE4B mRNA expression was analyzed by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. (B) BEAS-
2B cells were pre-treated with Rof (0.1 µM) and dexamethasone (Dex) (10 nM) for 1 h followed by 1.5 
h stimulation with NTHi, and PDE4B2 mRNA expression was analyzed by semi-quantitative RT-
PCR. (C) BEAS-2B cells were pre-treated with Rof (0.1 µM) and Dex (10 nM) for 1 h followed by 5 h 
stimulation with NTHi, and PDE4B protein expression was analyzed by western blot. (D,E) Mice were 
inoculated with Rof (5 mg/kg i.p.) and/or Dex (2 mg/kg i.p.) for 2 h, followed by intratracheal 
inoculation with NTHi (5 × 107 CFU/lung). (D) After 5 h, mRNA expression in lung tissues was 
analyzed by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. (E) Lung tissues were stained against 
PDE4B (Magnification ×200, Scale bar, 100 µm). Arrows indicate bronchial epithelium of mouse lung 
tissues. (F) BEAS-2B cells were pre-treated with forskolin (FSK) (1 µM), Isoproterenol (ISO) (1 µM) 
and Dex (10 nM) for 1 h followed by 1.5 h stimulation with NTHi, and mRNA expression was 
analyzed by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. All the relative quantity of mRNA is 
relative to a house keeping gene cyclophilin or GAPDH. Data are representative of three independent 
experiments. 

Figure 1. Dexamethasone suppresses up-regulation of phosphodiesterase 4B (PDE4B) expression by
roflumilast and NTHi in vitro and in vivo. (A) BEAS-2B cells were pretreated with Roflumilast (Rof)
(0.1 µM) and dexamethasone (Dex) (10 nM) for 1 h followed by 1.5 h stimulation with NTHi, and PDE4B
mRNA expression was analyzed by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. (B) BEAS-2B
cells were pre-treated with Rof (0.1 µM) and dexamethasone (Dex) (10 nM) for 1 h followed by 1.5 h
stimulation with NTHi, and PDE4B2 mRNA expression was analyzed by semi-quantitative RT-PCR.
(C) BEAS-2B cells were pre-treated with Rof (0.1 µM) and Dex (10 nM) for 1 h followed by 5 h
stimulation with NTHi, and PDE4B protein expression was analyzed by western blot. (D,E) Mice
were inoculated with Rof (5 mg/kg i.p.) and/or Dex (2 mg/kg i.p.) for 2 h, followed by intratracheal
inoculation with NTHi (5 × 107 CFU/lung). (D) After 5 h, mRNA expression in lung tissues was
analyzed by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. (E) Lung tissues were stained against
PDE4B (Magnification ×200, Scale bar, 100 µm). Arrows indicate bronchial epithelium of mouse lung
tissues. (F) BEAS-2B cells were pre-treated with forskolin (FSK) (1 µM), Isoproterenol (ISO) (1 µM) and
Dex (10 nM) for 1 h followed by 1.5 h stimulation with NTHi, and mRNA expression was analyzed
by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. All the relative quantity of mRNA is relative to a
house keeping gene cyclophilin or GAPDH. Data are representative of three independent experiments.
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Figure 2. Dexamethasone suppresses NTHi-induced infiltration of polymorphonuclear neutrophils 
(PMNs) and inflammation in mouse lung in vivo. (A) Mice were inoculated with Rof (5 mg/kg i.p.) 
and/or Dex (2 mg/kg i.p.) for 2 h, followed by intratracheal inoculation with NTHi (5 × 107 CFU/lung). 
After 5 h, mRNA expressions of pro-inflammatory mediators in lung tissues were analyzed by Q-
PCR. The relative quantity of mRNA is relative to a house keeping gene GAPDH. Data in (A) are mean 
± S.D. (n = 3); * p < 0.05. (B) Mice were inoculated with Rof (5 mg/kg i.p.) and/or Dex (2 mg/kg i.p.) for 
2 h, followed by intratracheal inoculation with NTHi (5 × 107 CFU/lung) for 9 h. Bronchoalveolar 
lavage (BAL) fluid was harvested and cells from BAL fluid were then cytocentrifuged and stained 
with Diff-Quik staining kit. (Magnification: 100×). The number of PMN cells from BAL fluid was 
counted by using a hemocytometer under the microscope. Data are mean ± S.D. (n = 3); * p < 0.05. (C) 
The lung tissues were collected 9 h after NTHi inoculation. Lung tissues were fixed with 10 % 
formalin, embedded with paraffin, and H&E stained (Magnification: 100×). Data are mean ± S.D. (n = 
3); * p < 0.05. All data are representative of three independent experiments. 

2.3. Dexamethasone Improves the Inhibitory Effect of Roflumilast on NTHi-Induced Inflammation by 
Suppressing Up-Regulated PDE4B 

We next sought to determine if dexamethasone indeed suppresses the NTHi-induced 
inflammatory response mediated through up-regulated expression of PDE4B, by developing and 
using BEAS-2B cells stably overexpressing wild-type PDE4B2 (PDE4B2-stable cells). As shown in 
Figure 3A, the PDE4B2 expression was significantly increased in PDE4B2-stable cells compared to 
mock cells. NTHi-induced expression of CXCL1, CXCL2, CCL5, and CCL7 was significantly enhanced 

Figure 2. Dexamethasone suppresses NTHi-induced infiltration of polymorphonuclear neutrophils
(PMNs) and inflammation in mouse lung in vivo. (A) Mice were inoculated with Rof (5 mg/kg i.p.)
and/or Dex (2 mg/kg i.p.) for 2 h, followed by intratracheal inoculation with NTHi (5× 107 CFU/lung).
After 5 h, mRNA expressions of pro-inflammatory mediators in lung tissues were analyzed by Q-PCR.
The relative quantity of mRNA is relative to a house keeping gene GAPDH. Data in (A) are mean ± S.D.
(n = 3); * p < 0.05. (B) Mice were inoculated with Rof (5 mg/kg i.p.) and/or Dex (2 mg/kg i.p.) for
2 h, followed by intratracheal inoculation with NTHi (5 × 107 CFU/lung) for 9 h. Bronchoalveolar
lavage (BAL) fluid was harvested and cells from BAL fluid were then cytocentrifuged and stained
with Diff-Quik staining kit. (Magnification: 100×). The number of PMN cells from BAL fluid was
counted by using a hemocytometer under the microscope. Data are mean ± S.D. (n = 3); * p < 0.05.
(C) The lung tissues were collected 9 h after NTHi inoculation. Lung tissues were fixed with 10 %
formalin, embedded with paraffin, and H&E stained (Magnification: 100×). Data are mean ± S.D.
(n = 3); * p < 0.05. All data are representative of three independent experiments.

2.3. Dexamethasone Improves the Inhibitory Effect of Roflumilast on NTHi-Induced Inflammation by
Suppressing Up-Regulated PDE4B

We next sought to determine if dexamethasone indeed suppresses the NTHi-induced
inflammatory response mediated through up-regulated expression of PDE4B, by developing and
using BEAS-2B cells stably overexpressing wild-type PDE4B2 (PDE4B2-stable cells). As shown in
Figure 3A, the PDE4B2 expression was significantly increased in PDE4B2-stable cells compared to
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mock cells. NTHi-induced expression of CXCL1, CXCL2, CCL5, and CCL7 was significantly enhanced
in PDE4B2-stable cells compared with mock cells. The increased expression of CXCL1, CXCL2, CCL5,
and CCL7 was not fully suppressed by roflumilast even at 10 µM, but was fully suppressed by
additional treatment with dexamethasone (Figure 3B). These data suggest that dexamethasone may
inhibit induction of CXCL1, CXCL2, CCL5, and CCL7 via PDE4B-dependent mechanism.
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Figure 3. Dexamethasone improves the anti-inflammatory effect of roflumilast in cells stably expressing
PDE4B. (A) PDE4B expression in mock and PDE4B2-stable cells. Data are mean± S.D. (n = 3); * p < 0.05.
(B) Mock or PDE4B2 stable cells were pre-treated with Rof (10 µM) or Dex (100 nM) for 1 h followed
by 5 h stimulation with NTHi, and mRNA expression of pro-inflammatory mediators was analyzed
by Q-PCR. The relative quantity of mRNA is relative to a house keeping gene cyclophilin. Data are
mean ± SD (n = 3); * p < 0.05. Data are representative of three independent experiments.

2.4. Dexamethasone Suppresses PDE4B Expression in a GR-Dependent Manner

Dexamethasone regulates specific gene expression via GR-dependent and -independent
mechanisms [34,36,37]. To investigate the mechanism of dexamethasone-mediated PDE4B suppression,
we determined the effect of RU486 (mifepristone), as a GR antagonist, on the PDE4B expression. In the
presence of RU486, the suppressive effect of dexamethasone on PDE4B expression was completely
abolished, indicating that dexamethasone-mediated GR activation is required to suppress PDE4B
expression (Figure 4A). GR activation has been shown to reduce specific gene expression either by
transcriptional regulation or via post-transcriptional and non-genomic actions including pathways
controlling mRNA stability [38,39]. Thus, we examined the effect of dexamethasone on the PDE4B
mRNA stability. BEAS-2B cells were treated with Actinomycin D (ActD) in the presence or absence
of dexamethasone, and the disappearance of PDE4B mRNA over time was quantified by Q-PCR.
As shown in Figure 4B, PDE4B mRNA level was decreased time-dependently, which was not affected
by dexamethasone, suggesting that dexamethasone suppresses PDE4B expression transcriptionally.
To further investigate whether dimerization of GR is required for the PDE4B suppression, we examined
the effect of Compound A (CpdA), as a GR modulator through directly binding to GR, on the PDE4B
expression. Interestingly, like dexamethasone, CpdA significantly attenuated the PDE4B induction by
NTHi and roflumilast, although the required concentration was 100-fold higher than dexamethasone
(Figure 4C). Collectively, these results suggest that the dexamethasone-mediated suppression of PDE4B
is GR-dependent, but likely GR dimerization-independent.
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manner. (A) Rof (0.1 µM) and Dex (0.1 µM) were pre-treated with or without RU486 (1 µM) for 1 h in 
BEAS-2B cells, followed by 1.5 h stimulation with NTHi and PDE4B mRNA expression was analyzed 
by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. (B) ActD (5 ng/mL) was treated with or without 
Dex (0.1 µM) for indicated time in BEAS-2B cells. PDE4B mRNA expression was analyzed by Q-PCR. 
(C) BEAS-2B cells were pre-treated with Rof (0.1 µM), Dex (0.01 and 0.1 µM) and CpdA (1 and 10 µM) 
for 1 h followed by 1.5 h stimulation with NTHi, and PDE4B mRNA expression was analyzed by Q-
PCR. Data are mean ± S.D. (n = 3); * p < 0.05. All the relative quantity of mRNA is relative to a house 
keeping gene cyclophilin. Data are representative of three independent experiments. (D) Schematic 
representation of dexamethasone-mediated suppression of PDE4B induction by roflumilast and 
NTHi. Arrows indicate induction or activation, and T bars indicate inhibition. 
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counterproductive for suppressing inflammation and may contribute to tolerance to roflumilast in 
enzymatic-dependent and -independent manner [28]. The clinical efficacy of roflumilast in treating 
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Figure 4. Dexamethasone suppresses PDE4B expression in a glucocorticoid receptor (GR)-dependent
manner. (A) Rof (0.1 µM) and Dex (0.1 µM) were pre-treated with or without RU486 (1 µM) for 1 h in
BEAS-2B cells, followed by 1.5 h stimulation with NTHi and PDE4B mRNA expression was analyzed
by Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. (B) ActD (5 ng/mL) was treated with or without
Dex (0.1 µM) for indicated time in BEAS-2B cells. PDE4B mRNA expression was analyzed by Q-PCR.
(C) BEAS-2B cells were pre-treated with Rof (0.1 µM), Dex (0.01 and 0.1 µM) and CpdA (1 and 10 µM)
for 1 h followed by 1.5 h stimulation with NTHi, and PDE4B mRNA expression was analyzed by
Q-PCR. Data are mean ± S.D. (n = 3); * p < 0.05. All the relative quantity of mRNA is relative to a house
keeping gene cyclophilin. Data are representative of three independent experiments. (D) Schematic
representation of dexamethasone-mediated suppression of PDE4B induction by roflumilast and NTHi.
Arrows indicate induction or activation, and T bars indicate inhibition.

3. Discussion

Roflumilast is a recently approved drug for the treatment of COPD with exacerbations and
chronic bronchitis. Inhibition of the enzymatic activity of PDE4B is a well-known strategy to
ameliorate the symptoms [14–16,28,40]. However, our previous study and clinical evidence
indicate that roflumilast also increases the expression of PDE4B. Induction of PDE4B could be
counterproductive for suppressing inflammation and may contribute to tolerance to roflumilast
in enzymatic-dependent and -independent manner [28]. The clinical efficacy of roflumilast in
treating COPD may be thus compromised. Based on these interesting observations, we hypothesized
that suppressing the expression of PDE4B may provide therapeutic benefit. In the present study,
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we have demonstrated that glucocorticoids (GCs) suppressed PDE4B expression. GCs are the most
widely used agent for controlling inflammation in a number of diseases including COPD [23,29–32].
Previous studies indicate that dexamethasone decreases PDE4B expression in human pulmonary
endothelial cells, airway epithelial cells, and osteosarcoma cells [32,35]. The anti-inflammatory
effect exerted by increasing cAMP using roflumilast, forskolin, and isoproterenol (β-adrenoceptor)
has been well demonstrated. In addition, the superior therapeutic benefits from the combination
therapies of dexamethasone with PDE4 inhibitors or β2-agonists have also been reported in various
studies [19,41,42]. Moreover, dexamethasone (Dex) inhibited the cigarette smoke extract (CSE)-induced
expression of PDE4 in human pulmonary artery endothelial cells (HPAECs) [32]. Dex also suppressed
the expression of PDE4B in human osteosarcoma cells. Consistent with these results, forskolin
(FSK) and isoproterenol (ISO), the known cAMP elevators, increased the expression of PDE4B [35].
We previously reported that roflumilast synergizes with NTHi to up-regulate PDE4B expression
in vitro and in vivo. In this study, we showed that treatment with Dex decreased the up-regulated
PDE4B expression by NTHi and Rof or FSK and ISO stimulation (Figure 1). These results suggest that
roflumilast or other cAMP elevators may become more efficacious if used in combination with Dex.
The combination treatment with Dex and selective cAMP elevators is thus therapeutically desirable for
treating patients with COPD and asthma.

Proinflammatory mediators including cytokines and chemokines play an important role
in the activation and recruitment of leukocytes in pulmonary diseases [43–45]. We recently
reported that NTHi significantly up-regulated the expression of chemokines including CCL5, CCL7,
CXCL10, CXCL11, and IL-8. PDE4B inhibitor roflumilast markedly suppressed the induction of
chemokines including CCL5 and CCL7 [28]. In addition, glucocorticoids inhibited the production of
chemokines [46]. PDE4 inhibitors have been shown to reduce chemotaxis of lymphocytes and PMN
through suppression of chemokine production [28,47]. In line with these findings, our results showed
that the treatment with both roflumilast and Dex inhibited the expression of chemokines including
CXCL1, CXCL2, CCL5, and CCL7 (Figures 2 and 3).

Several studies also demonstrated additive anti-inflammatory effect of the roflumilast together
with GCs in peripheral blood mononuclear cells (PBMCs), bronchial epithelial cells and CD8
lymphocytes [22,23,48]. Moreover, the REACT clinical trial study showed that treatment with
roflumilast together with GCs reduced the exacerbation rates in COPD patients with a history
of exacerbations [48,49]. Our histological results suggested that the combination treatment of
roflumilast and dexamethasone markedly inhibited the inflammation likely through the suppression
of chemokines induction and PMN infiltration in mouse lungs (Figure 2), which is consistent
with previous studies showing the anti-inflammatory effects of roflumilast and glucocorticoid
in vivo [28,50,51].

It is still largely unclear how Dex down-regulates PDE4B expression. Dex regulates the expression
of a variety of genes via GR-dependent and –independent mechanism [34,37,52]. Recently, we have
shown that roflumilast synergizes with NTHi to induce PDE4B expression through a cross-talk
between NF-κB p65 and PKA-Cβ [28]. Negative cross-talk between GR and NF-κB has also been
reported [53,54]. PDE4 inhibitors enhanced the action of glucocorticoids through the induction of
glucocorticoid receptor (GR) expression in a dose-dependent manner [55,56]. In this study, we found
that Dex significantly inhibited the expression of PDE4B induced by roflumilast and NTHi through a
GR-dependent mechanism (Figure 4). Moreover, PDE4B expression is attenuated by Dex likely via the
GR dimerization-independent manner (Figure 4C). Collectively, we provided supportive evidence that
the addition of Dex may improve the compromised anti-inflammatory effects of Roflumilast due to
the up-regulated PDE4B and reduce the side effect of roflumilast through down-regulation of PDE4B
expression in a GR-dependent manner in pulmonary diseases such as COPD and asthma (Figure 4D).
Therefore, our study may be helpful for developing a combination therapeutic strategy in order to
improve the efficacy of roflumilast.
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4. Materials and Methods

4.1. Reagents and Antibodies

Dexamethasone, RU-486 (Mifepristone), Isoproterenol, and Actinomycin D were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Roflumilast was purchased from Santa Cruz Biotechnology
(Dallas, TX, USA). Forskolin and Compound A were purchased from Enzo Life Science (Farmingdale,
NY, USA). Antibodies for β-actin (sc-8432) and PDE4B (sc-25812) were purchased from Santa Cruz
Biotechnology (Dallas, TX, USA).

4.2. Bacterial Strains and Culture Condition

Nontypeable Haemophilus influenzae (NTHi) strain 12 was a clinical isolate for this study [57].
Bacteria were cultured as described previously [58] and then bacteria were washed and suspended in
DMEM for in vitro cell experiments and in saline for in vivo animal experiments.

4.3. Cell Culture

Human bronchial epithelial BEAS-2B and PDE4B2-stable cells were maintained as described
previously [28]. To investigate the effects of dexamethasone, BEAS-2B cells were pre-treated with
cAMP elevators, such as forskolin (1 µM) and isoproterenol (1 µM), or dexamethasone (10 nM) for
1 h followed by 5 h stimulation with NTHi and then the expression PDE4B mRNA was analyzed by
Q-PCR. To examine the mechanism of dexamethasone-mediated PDE4B suppression, Rof (0.1 µM) and
Dex (0.01 and 0.1 µM) were pre-treated with or without a glucocorticoid receptor antagonist RU486
(1 µM) or CpdA (1 and 10 µM) for 1 h in BEAS-2B cells, followed by 1.5 h stimulation with NTHi and
then the expression of PDE4B mRNA was analyzed by Q-PCR.

4.4. Real-Time Quantitative and Semi-Quantitative RT-PCR Analyses

Total RNA was extracted with TRIzol (Life Technologies, Waltham, MA, USA) by following
the manufacturer’s instruction. The reverse transcription reaction was performed by using 1 µg of
RNA in 20 µL of TaqMan reverse transcription reagents (Life Technologies, Waltham, MA, USA) as
described previously [28,58]. For quantitative real-time RT-PCR analysis, PCR amplifications were
performed and quantified as described previously [58]. In brief, the reactions were performed in
triplicate containing 2xUniversal Master Mix, 1 µL of cDNA, 300 nM primers in a final volume of
12.5 µL and they were analyzed in a 96-well optical reaction plate (Life Technologies, Waltham, MA,
USA). Reactions were amplified under the following protocol: 95 ◦C for 20s followed by 40 cycle of
95 ◦C for 3 s and 60 ◦C for 30 s and quantified using StepOnePlus Real-Time PCR System and the
manufacturer’s corresponding software (StepOnePlus Software v2.3; Applied Biosystems, Waltham,
MA, USA). The primer sequences used are listed in Table 1. The relative quantities of mRNAs were
obtained by using the comparative Ct method and were normalized using human cyclophilin or mouse
GAPDH as an endogenous control. For semi-quantitative RT-PCR analysis, PCR amplifications were
performed with PrimeSTAR Max polymerase (Takara, Shiga, Japan) by following the manufacturer’s
instruction. The primers for human PDE4B2 and GAPDH have been previously described [28].
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Table 1. Primer sequences for quantitative real-time RT-PCR.

Primer Name Forward (5′-3′) Reverse (5′-3′)

human PDE4B CTATACCGATCGCATTCAGGTC CTGTCCATTGCCGATACAATT
human PDE4B2 AGCGGTGGTAGCGGTGACTC GCAGCGTGCAGGCTGTTGTG
human CXCL1 TGCAGGGAATTCACCCCAAG AGCTTTCCGCCCATTCTTGA
human CXCL2 GTGTGAAGGTGAAGTCCCCC AGCTTTCTGCCCATTCTTGA
human CCL5 CTACACCAGTGGCAAGTGC CTTTCGGGTGACAAAGACGAC
human CCL7 GGCTTGCTCAGCCAGTTG GGTGGTCCTTCTGTAGCTCTC

human Cyclophillin A CGGGTCCTGGCATCTTGT GCAGATGAAAAACTGGGAACCA
mouse pde4b2 GTAGAGGCCAGTTCCCATCA CCAACACCTAGTGCAGAGC
mouse cxcl1 CATGGCTGGGATTCACCTCA CCTCGCGACCATTCTTGAGT
mouse cxcl2 TCAATGCCTGAAGACCCTG GCAAACTTTTTGACCGCCCT
mouse ccl5 CCTCACCATATGGCTCGGAC ACGACTGCAAGATTGGAGCA
mouse ccl7 CAATGCATCCACATGCTGCT GCAGACTTCCATGCCCTTCT

mouse gapdh ACCCAGAAGACTGTGGATGG GGATGCAGGGATGATGTTCT

4.5. Plasmids and Transfections

All transient transfections were carried out as described previously [28]. Human PDE4B2 cDNA
sequences were generated and inserted into the BamHI and HindIII sites of the pcDNA3.1/mycHis(-)
vector. All transient transfections were carried out by using TransIT-LT1 reagent (Mirus, Madison, WI,
USA) following the manufacturer’s instruction.

4.6. Immunoblotting

Whole-cell lysates were harvested and separated on 10% SDS-PAGE gels, and transferred to
polyvinylidene difluoride (PVDF) membrane (GE Healthcare Life Sciences, Freiburg, Germany).
Western blot analysis was performed as described previously [58]. The membrane was blocked with
5% non-fat dry milk in Tris-buffered saline (TBS) buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.5).
The membrane was then incubated in a 1:1000 dilution of a primary antibody with 5% BSA in TBS
buffer. After five times washes with 0.1% Tween 20 in TBS buffer, the membrane was incubated
with 1:5000 dilution of the corresponding secondary antibody with 5% non-fat dry milk in TBS
buffer. Samples were visualized by using Amersham ECL Prime Regent (GE Healthcare Life Sciences,
Freiburg, Germany).

4.7. Mice and Animal Experiments

For NTHi-induced inflammation, we used a well-established C57BL/6J mouse model (8 weeks
old female) as previously reported [28,45]. Mice were anaesthetized intraperitoneally with a cocktail
of ketamine (70 mg/kg)/xylazine (6 mg/kg) and then intratracheally inoculated with NTHi for 5 h at
a concentration of 5 × 107 CFU per mouse and saline was inoculated as control [28]. For inhibition
study, mice were pretreated with roflumilast (5 mg/kg), dexamethasone (1 mg/kg), or roflumilast
(5 mg/kg) with dexamethasone (1 mg/kg) intraperitoneally 2 h before NTHi inoculation [28,59].
The mice were then sacrificed. For assessing the recruitment of polymorphonuclear neutrophils
(PMN) in bronchoalveolar lavage (BAL) fluid, BAL fluid was collected by cannulating the trachea
with sterilized PBS in mice followed by staining with Diff-Quik Staining system (Modified Giemsa
Staining, St. Louis, MO, USA). All animal studies were carried out in accordance with the guidelines of,
and were approved by, the Institutional Animal Care and Use Committee at Georgia State University
(A13034, 15 October 2013).

4.8. Histology and Immunofluorescence Assay

For histological analysis, we performed hematoxylin and eosin (H&E) staining as described
previously [28]. Immunofluorescence detection of PDE4B proteins were performed using rabbit
anti-PDE4B and FITC-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology, Dallas, TX, USA)
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in the paraffin section of mouse lung tissue. Stained sections were observed under light- or
fluorescence-microscopy systems (AxioVert 40 CFL, AxioCam MRC, and AxioVision LE Image system,
Carl Zeiss, Oberkochen, Germany). Histopathology was scored as described previously [60].

4.9. Statistical Analysis

All experiments were repeated three times with consistent results. Data were shown as mean
± SD. Statistical analysis was assessed by unpaired two-tailed Student’s t-test and * p < 0.05 was
considered statistically significant.
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