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Abstract: CircRNAs have particular biological structure and have proven to play important
roles in diseases. It is time-consuming and costly to identify circRNA-disease associations by
biological experiments. Therefore, it is appealing to develop computational methods for predicting
circRNA-disease associations. In this study, we propose a new computational path weighted method
for predicting circRNA-disease associations. Firstly, we calculate the functional similarity scores of
diseases based on disease-related gene annotations and the semantic similarity scores of circRNAs
based on circRNA-related gene ontology, respectively. To address missing similarity scores of
diseases and circRNAs, we calculate the Gaussian Interaction Profile (GIP) kernel similarity scores for
diseases and circRNAs, respectively, based on the circRNA-disease associations downloaded from
circR2Disease database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Then, we integrate disease
functional similarity scores and circRNA semantic similarity scores with their related GIP kernel
similarity scores to construct a heterogeneous network made up of three sub-networks: disease
similarity network, circRNA similarity network and circRNA-disease association network. Finally,
we compute an association score for each circRNA-disease pair based on paths connecting them in the
heterogeneous network to determine whether this circRNA-disease pair is associated. We adopt leave
one out cross validation (LOOCV) and five-fold cross validations to evaluate the performance of our
proposed method. In addition, three common diseases, Breast Cancer, Gastric Cancer and Colorectal
Cancer, are used for case studies. Experimental results illustrate the reliability and usefulness of
our computational method in terms of different validation measures, which indicates PWCDA can
effectively predict potential circRNA-disease associations.

Keywords: circRNA-disease associations; pathway; heterogeneous network

1. Introduction

In recent years, an increasing number of circRNAs [1] have been uncovered and have drawn more
attention than before. CircRNA is a newly discovered category of non-coding RNAs. Non-coding
RNAs also include a large number of different RNAs, such as miRNAs, lncRNAs, piRNAs [2]. The first
discovery of circular RNA was in the Tetrahymena cell [3]. There is an obvious difference between
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circular RNAs and common linear RNAs. That is, circRNA has a circular closed loop RNA structure,
yet have no free 5’ and 3’ compared with linear RNAs [4]. In addition, circRNAs can also be classified
into 4 categories as follows: Exonic circRNAs, intronic circRNAs, exonintron circRNAs and intergenic
circRNAs [4,5]. Because of such a closed loop structures, they are usually stable, abundant, conserved,
and tissue-specifically expressed [5].

With the progress of high throughput sequencing technology [6], more and more circRNAs have
been confirmed to play significant roles in different biological processes [7]. According to many
experiments, a large amount of circRNAs functions have been found to work as a scaffold in the
assembly of protein complexes [8], and local subcellular positions [9], and so on. They also regulate
the expression of their ancestor genes [10] and acts as a microRNA (miRNA) sponge [11,12]. Especially,
many studies have proved that circRNA can be biomarkers of tumors [13–15].

Recently, a sharply increasing number of circRNAs have been discovered and there are also
some circRNA-disease databases being developed, such as circR2Disease [16], Circ2Traits [17]
and Circ2Disease [18]. Simultaneously, circRNAs-related diseases also have been verified by
classic biological experiments. However, they are both time-consuming and expensive. Therefore,
it is appealing to develop computational methods that can produce reliable prediction results
and reduce both time and cost. Although, some computational methods have been proposed
for predicting miRNA-disease associations [19–21], lncRNA-disease associations [22,23] and
drug-target associations [18,24,25], there is no computational method for predicting circRNA-disease
associations yet.

In this study, we propose the first computational method, Path Weighed method for predicting
CircRNA-Disease Associations (PWCDA). After building a heterogeneous network consisting of three
sub-networks, the disease similarity network, the circRNA similarity network and circRNA-disease
association network, we calculate an association score for each circRNA-disease pair based on the
paths connecting them in the heterogeneous network to determine whether a circRNA-disease pair
is associated. Our method is evaluated with leave one out cross validation (LOOCV) and five-fold
cross validation. The average AUC (Area Under roc Curve) of LOOCV is 0.900, while the AUC value
of five-fold cross validation is 0.890. For further investigating the performance of our proposed model,
we conduct several case studies of some common cancers. What’s more, we compare our method
with some other computational prediction methods. The results show that our method outperforms
other methods, which indicates that our proposed model has the better capability to predict potential
circRNA-disease associations.

2. Results and Discussion

2.1. Effect of Parameter

Based on the previous study [26], we fix the maximum path length as 3. If the maximum path
length is more than 3, not only do the running time of the method increases, but our method also
takes some noisy information. In this study, we give a comprehensive analysis for the parameter α
in our decaying function. After we calculate scores for each disease-circRNA pair, we can obtain a
disease-circRNA association score matrix. Based on the scores matrix, we calculate the AUC. The results
are represented in Table 1. It’s obvious that the effect of different values of α on the final AUC value
is quite small and it can take value from 1 to 3. Therefore, we adopt the best result setting the value
of α as 1. In order to reduce the running time, we don’t use any cross validation in this experiment.
Furthermore, we also carry out an experiment to analyze another parameter, the threshold γ, which is
represented in Table 2. For the sake of reducing the running time, any cross validation is not adopted.
The result shows that the parameter γ might have tiny effect on the final AUC value. Thus, we set the
γ value as 0.5, which gets the greatest AUC value.
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Table 1. The Area Under roc Curve (AUC) value based on changing α and fixed pathway
maximum length.

α 0.5 1 1.5 2 3 3.5 4 4.5 5

AUC 0.97100 0.97209 0.97206 0.97208 0.97202 0.97010 0.97010 0.97010 0.96879

Table 2. The AUC value based on changing γ and fixed pathway maximum length.

γ 0.1 0.2 0.3 0.4 0.5 0.6

AUC 0.96483 0.96483 0.96483 0.96500 0.97209 0.97205

2.2. LOOCV

For a given particular disease i, there are some associations between disease i and a number of
circRNAs. In LOOCV, during each computational iteration, we leave one association out as a test data
and use the remaining associations as a training dataset. If there is just one association between disease i
and circRNAs in our dataset, we do not adopt LOOCV for this kind of disease. In LOOCV, we obtain an
association score for each circRNA-disease pair and then rank all the prediction association scores. If a
score value is greater than the pre-set threshold, we determine that the corresponding disease-circRNA
is associated. With the change of the threshold, we can get a variety of true positive rates (TPRs)
and false positive rates (FPRs), which can be used to draw the Receiver Operating Characteristic
Curve (ROC) curve. In the end, we have compared our prediction method with other computational
prediction methods [27,28]. The results can be found in Figure 1 and show that our proposed method
outperforms the existing prediction methods.

Figure 1. Comparison of Path Weighed method for predicting CircRNA-Disease Associations (PWCDA)
with other models by leave one out cross validation (LOOCV). FPR, false positive rate.

2.3. Five-Fold Cross Validation

In order to further illustrate the performance of our proposed method, we have adopted five-fold
cross validation verification method as well for investigating the prediction performance. In our
study, we divide all disease-circRNA associations into 5 parts. Each time we pick up one part as the
test dataset and the remaining four parts consist of the training set. Then we can obtain the scores
of all circRNA-disease associations. Similarly, we follow the same procedure as LOOCV to draw
the AUC curve based on five-fold cross validation. What’s more, we have compared our proposed
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computational method with other prediction methods [27,28]. Our method gets more outstanding
result than other methods, which is shown in the Figure 2.

Figure 2. Comparison of PWCDA with other computational methods via five-fold cross validation.

2.4. Case Studies

Here, we also have conducted some case studies, which can help us further understand the
associations between circRNAs and diseases. In this study, we choose three common diseases as
prediction targets of our case studies, which are Breast Cancer [29], Gastric Cancer [30] and Colorectal
Cancer [31]. In order to prove the prediction accuracy of our proposed method, we have used
circRNA-disease database, and associations between circRNAs and diseases—which have been
experimentally verified in the published articles [32].

Breast cancer is one the common cancers all over the world now [33], and breast cancer causes
thousands of deaths every year. With the development of deep sequencing technology, circRNAs
are confirmed to be biomarkers for diagnosing breast cancer. Based on our computational method,
we have succeeded in predicting 29 of top 30 candidate circRNAs. For example, circpvt1 (top1) can be
worked as miRNA spouse to regulate miRNA by moderating let-7 activity selected [30], and circRNA
hsa_circ_104689 wasn’t predicted by our method and the predicting result have been presented in
Table 3.

Table 3. The top 30 breast cancer related candidates circRNAs.

Breast Cancer

Rank circRNA Name/id Evidences Rank circRNA Name/id Evidences

1 circpvt1/hsa_circ_0001821 PMID:279280058 16 hsa_circ_0001667 circRNAdisease
2 circ-foxo3 circRNAdisease 17 hsa_circ_0085495 circRNAdisease
3 hsa_circ_0001313/circccdc66 PMID:28249903 18 hsa_circ_0086241 circRNAdisease
4 hsa_circ_0007534 PMID:29593432 19 hsa_circ_0092276 circRNAdisease
5 hsa_circ_0000284/circhipk3 PMID:27050392 20 hsa_circ_0003838 circRNAdisease
6 hsa_circ_0011946 PMID:29593432 21 circvrk1 PMID:29221160
7 hsa_circ_0093869 PMID: 29593432 22 circbrip PMID: 29221160
8 hsa_circ_0001982 circRNAdisease 23 circola PMID: 29221160
9 hsa_circ_0001785 circRNAdisease 24 circetfa PMID: 29221160
10 hsa_circ_0108942 circRNAdisease 25 circmed13 PMID: 29221160
11 hsa_circ_0068033 circRNAdisease 26 circbc111b PMID:28739726
12 circamot11/hsa_circ_0004214 circRNAdisease 27 circdennd4c circRNAdisease
13 hsa_circ_0006528 circRNAdisease 28 hsa_circ_103110/hsa_circ_0004771 circRNAdisease
14 hsa_circ_0002113 circRNAdisease 29 hsa_circ_104689/hsa_circ_0001824 unconfirmed
15 hsa_circ_0002874 circRNAdisease 30 hsa_circ_104821/hsa_circ_0001875 circRNAdisease

Gastric cancer [34] causes a high mortality rate in human. It can be produced in any tissue of
the human stomach. These tumors in the stomach are usually malignant tumors, and they can also
destroy the surrounding nervous tissue. With our computational method, there are 25 of top 30
candidate circRNAs that have been confirmed by another database, circRNA disease. For example,
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hsa_circ_0076304 (top1) and hsa_circ_0076305 (top2) are identified to downregulate in a group of
gastric cancer [35]. circpvt1 (top3) can be regarded as the sponge of the miR-125 family [13], which can
upregulate in the gastric cells. The more details of results are shown in Table 4.

Table 4. The top 30 gastric cancer related candidates circRNAs.

Gastric Cancer

Rank circRNA Name/id Evidences Rank circRNA Name/id Evidences

1 hsa_circ_0076305 circRNAdisease 16 circma0138960/hsa-circma7690-15 circRNAdisease
2 hsa_circ_0076304 circRNAdisease 17 hsa_circ_0000181 circRNAdisease
3 circpvt1/hsa_circ_0001821 circRNAdisease 18 hsa_circ_0000745 circRNAdisease
4 hsa_circ_0001649 unconfirmed 19 hsa_circ_0085616 circRNAdisease
5 hsa_circ_0000284/circhipk3 unconfirmed 20 hsa_circ_0006127 circRNAdisease
6 hsa_circ_0014717 circRNAdisease 21 hsa_circ_0000026 circRNAdisease
7 cdr1as/cirs-7/hsa_circ_0001946 unconfirmed 22 hsa_circ_0000144 circRNAdisease
8 hsa_circ_0003195 circRNAdisease 23 hsa_circ_0032821 circRNAdisease
9 hsa_circ_0000520 circRNAdisease 24 hsa_circ_0005529 circRNAdisease
10 hsa_circ_0074362 circRNAdisease 25 hsa_circ_0061274 circRNAdisease
11 hsa_circ_0001017 circRNAdisease 26 hsa_circ_0005927 circRNAdisease
12 hsa_circ_0061276 circRNAdisease 27 hsa_circ_0092341 circRNAdisease
13 circ-zfr unconfirmed 28 hsa_circ_0001561 unconfirmed
14 circma0047905/hsa_circ_0047905 circRNAdisease 29 circlarp4 circRNAdisease
15 circma0138960/hsa_circ_0138960 circRNAdisease 30 hsa_circ_0035431 circRNAdisease

Colorectal cancer [36] is one of the three most frequent cancers for women. Even though the
incidence of colorectal cancer has been declined for a long time, a large proportion of patients die
each year from colorectal cancer. In this study, we have succeeded in predicting 24 of top 30 candidate
circRNAs. For example, hsa_circ_0001649 (top1) [31] has been identified to downregulate in colorectal
cancer tissue. hsa_circ_0007534 (top2) [37] can upregulate in the different colorectal cancer cells.
The more details of results are presented in Table 5.

Table 5. The top 30 colorectal cancer related candidates circRNAs.

Colorectal Cancer

Rank circRNA Name/id Evidences Rank circRNA Name/id Evidences

1 hsa_circ_0001649 PMID:29421663 16 has-circ_0006174 circRNAdisease

2 hsa_circ_0007534 PMID:29364478 17 hsa_circ_0008509 circRNAdisease

3 cdr1as/cirs-7/
hsa_circ_0001946 circRNAdisease 18 hsa_circ_0084021 circRNAdisease

4 hsa_circ_0000284/
circhipk3 PMID:27050392 19 circ_banp circRNAdisease

5 hsa_circ_0001313/
circccdc66 circRNAdisease 20 hsa_circrna_103809 circRNAdisease

6 ciritch/hsa_circ_0001141/
hsa_circ_001763 unconfirmed 21 hsa_circrna_104700 circRNAdisease

7 hsa_circ_0014717 PMID:29571246 22 hsa_circ_0000069 circRNAdisease

8 hsa_circ_0000567 PMID:29333615 23 hsa_circ_001988/
hsa_circ_0001451 circRNAdisease

9 hsa_circ_000984/
hsa_circ_0001724 circRNAdisease 24 hsa_circ_0000677/

hsa_circ_001569/circabcc circRNAdisease

10 hsa_circ_0020397 circRNAdisease 25 circ_kldhc10/
hsa_circ_0082333 PMID:26138677

11 hsa_circ_0007031 circRNAdisease 26 circ_stxbp51 unconfirmed

12 hsa_circ_0000504 circRNAdisease 27 circ-shkbp1 unconfirmed

13 hsa_circ_0007006 circRNAdisease 28 circ-fbxw7 unconfirmed

14 hsa_circ_0074930 circRNAdisease 29 hsa_circ_0046701 unconfirmed

15 hsa_circ_0048232 circRNAdisease 30 circttbk2/hsa_circ_0000594 unconfirmed
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3. Materials and Methods

3.1. Human circRNA-Disease Associations Network

All the circRNA-disease associations are downloaded from the website of circR2Disease
database [16] (http://bioinfo.snnu.edu.cn/CircR2Disease/). This initial dataset contains 739
associations between 661 circRNA entities and 100 disease entities that are found based on three
main species—human, mouse and rat. In this study, we select 541 circRNA entities and 83 human
disease entities from our initial dataset, which includes Gastric cancer, Breast cancer, Colorectal cancer,
etc. Finally, we obtain 592 circRNA-disease associations, which have experimentally been verified.
These make up our circRNA-disease association network with adjacency matrix M. If there is a verified
association between disease i and circRNA j, the entry M(i, j) is equal to 1, otherwise it is equal to 0.

3.2. CircRNA Semantic Similarity

For calculating circRNA semantic similarity, we download circRNA and its related gene targets
dataset from circR2Disease. To measure circRNA semantic similarities, we also need to obtain
gene related annotation terms that can be downloaded from Human Protein Reference Database
(HPRD) database [38] (http://www.hprd.org/). Reviewing previous literature [39–41], there are some
methods that can be referred to calculate the circRNA-related gene GO terms semantic similarities,
including path-length-based methods, information-content-based methods, common-term-based
methods and hybrid methods. In this study, we utilize a common-term-based method to measure
circRNA similarity scores based on JACCARD index. In the previous studies [21,42], genes have
been widely adopted to infer RNA similarity. Thus, the more gene related terms were shared by
two circRNA Ci and Cj, the higher the similarity score they get. Denote CS as the circRNA semantic
similarity matrix, and its entry CS(i, j) can be calculated by the following formula:

CS(i, j) =

∣∣Gi ∩ Gj
∣∣∣∣Gi ∩ Gj
∣∣ (1)

where Gi/Gj denotes the GO terms that circRNA Ci/Cj target genes related.

3.3. Disease Functional Similarity

We adopt disease related gene annotations to measure disease functional similarities. These gene
annotations are being extracted from two online databases. The first one is DisGeNET [43]
(http://www.disgenet.org/web/DisGeNET/menu), which collects 381,056 gene-disease associations
(GDAs) between 16,666 genes and 13,172 diseases. In addition, we also download disease phenotype
data from OMIM [44]—Online Mendelian Inheritance in Man. OMIM is a biological database that
is updated daily. We use the OMIM_2018_04_24 version. Then we integrate multiple annotation
resources of diseases related genes, which help us get a more reliable performance.

There are also some methods for calculating disease similarities from previous studies[45].
The common methods include annotation-based measurements, function-based measurements and
topology-based measurements [46–49]. We have adopted annotation-based methods to obtain disease
similarities. We apply the JACCARD index, which is a standard method for computing similarities
based on two collections of finite numbers of elements so as to estimate the similarity scores between
diseases. Let gdi be a collection of annotations of a gene associated with disease di. We calculate the
functional similarity score of two diseases di and dj based on the JACCARD similarity coefficient score
of gdi and gdi. Denote DS as the disease functional similarity matrix, then its entry DS(i, j) can be
calculated by the following formula:

DS(i, j) =

∣∣∣gdi
∩ gdj

∣∣∣∣∣∣gdi
∪ gdj

∣∣∣ (2)

http://bioinfo.snnu.edu.cn/CircR2Disease/
http://www.hprd.org/
http://www.disgenet.org/web/DisGeNET/menu
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We have constructed circRNA semantic similarity matrix based on their related GO terms and
disease functional similarity based on its related annotating genes. However, one essential weakness
that cannot be ignored is that the aforementioned similarity matrices are sparse, which indicates
similarity of many pairs of diseases (or circRNAs) are unable to be calculated in their functional
(or semantic) similarity matrices. To alleviate this weakness, the Gaussian interaction profile (GIP)
kernel similarity [50,51] is adopted in this study to get additional information about the similarity of
diseases and circRNAs.

3.4. CircRNA GIP Kernel Similarity

There is an assumption that the more similar the circRNA is, the more likely similar
patterns of association and non-association with diseases. The GIP kernel similarity is adopted to
calculate similarity based on the topological features of the known associations network widely,
such miRNA-disease associations network [52], lncRNA-disease associations networks [53] and
drug-target association network [54]. Accordingly, GIP kernel similarity is also used in this study
to calculate the similarity of circRNA and disease. According to previous literature [54], we use a
binary vector C(i) to indicate whether circRNA i is associated with diseases. The GIP kernel similarity
between circRNA C(i) and C(j) can be computed by the following formula:

KC(i, j) = exp(−γc‖C(i)− C(j)‖2) (3)

To overcome the shortcomings that the disease functional similarity matrix and circRNA semantic
matrix are sparse matrices, the parameter γc is to adjust the kernel bandwidth, which can be calculated
by the following formula:

γc = γ′c

/
(

1
nc

nc

∑
i
‖C(i)‖2) (4)

where nc is the number of circRNAs in our finial dataset. The parameter γ’c is set as 1 based on the
previous study [54], which has obtained a better performance.

3.5. Disease GIP Kernel Similarity

We also calculate the GIP kernel similarity score between disease i and j as follows:

KD(i, j) = exp(−γd‖d(i)− d(j)‖2), (5)

γd = γ′d

/
(

1
nd

nd

∑
i
‖d(i)‖2), (6)

where d(i) and d(j) are the association profiles of diseases i and j, respectively, nd is the number of
diseases in our finial dataset, γ’d is also set to 1 based on previous studies.

3.6. Combine Multiple Similarity (circRNA and Disease)

We integrate the GIP kernel similarity for circRNAs with the semantic similarity of circRNAs to
construct the circRNA similarity network. Specifically, the elements of the adjacency matrix of this
network is calculated as follows:

ICS(i, j) =

{
CS(i, j), i f CS(i, j) 6= 0

KC(i, j), otherwise
. (7)

We also integrate the GIP kernel similarity for diseases with the functional similarity diseases to
construct the diseases similarity network. Specifically, the elements of the adjacency matrix of this
network is calculated as follows:
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IDS(i, j) =

{
DS(i, j), i f DS(i, j) 6= 0

KD(i, j), otherwise
(8)

3.7. Constructing Heterogeneous Network

After we obtain the final disease similarity scores and circRNA similarity scores. We can construct
an initial heterogeneous network, which is composed of disease similarity network, circRNA network
and disease-circRNA associations network.

In this initial heterogeneous network, there are some small weighted edges, which may represent
noises. Therefore, to weaken the effect of those unimportant or noisy edges, we set a threshold
γ (γ is equal to 0.5 based on previous studies [26] and our experiment) to remove them. Specifically,
let Pfinal and Pinitial be the adjacency matrices of the final and heterogeneous network, respectively,
then we have:

Pf inal(i, j) =

{
Pinitial(i, j) Pinitial(i, j) ≥ γ

0 otherwise
. (9)

3.8. Perfomance Metrics

In this study, we adopt the AUC value to measure the prediction results. The AUC is the area
under the ROC curve, which depicts the true positive rate (TPR) verse the false positive rate (FPR).
The following equations are adopted to calculate the TPR and FPR:

TPR =
TP

TP + FN
(10)

FPR =
FP

TN + FP
(11)

where TP are positive samples (known associations), which are identified correctly, and TN are negative
samples (unknown associations), which are identified correctly. FP are positive samples which are
identified incorrectly while FN are negative samples, which are identified incorrectly.

3.9. PWCDA

In this study, we proposed a novel computational model called PWCDA (a Path-Weighted
CircRNA-Disease Associations method) to predict potential associations between circRNAs and
diseases. The framework of our method is depicted in Figure 3. The computational method PWCDA
traverses each node in each pathway without repeating based on heterogeneous network. To avoid
traversing the same node repeatedly, we adopt the depth-first search (DFS) algorithm and mark the
traversed nodes during each turn. Depth first search is implemented as a recursive function traversing
the graph moving along the edge. We modify it to mark nodes, because they are accessed in recursion,
and then delete tags before returning from recursive calls. In this study, we set the maximum searching
length η as 3 steps according to previous studies [26], i.e., for circRNA i and disease j, there are
several pathways, such as circRNA i connecting disease j directly, circRNA i’s neighbor circRNA
connecting with disease j or circRNA i connecting with disease j’s neighbor diseases, circRNA i’s
neighbor circRNAs connecting with disease j’s neighbor diseases directly. The choice of these paths is
based on a hypothesis that the larger similarity score is between two circRNAs, the higher probability
that they have the same associations is. Thus, after the weight of each circRNA-disease pair within all
three paths are summed up. We can obtain the final scores between each circRNA-disease pair.
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Figure 3. The flowchart of PWCDA is illustrated by five main steps. Step 1: Calculate circRNA semantic
similarity and disease similarity scores, respectively. Step 2: Calculate GIP Kernel similarity scores
for circRNAs and diseases. Step 3: Integrate circRNA (disease) semantic (functional) similarity with
circRNA/disease GIP Kernel similarity, respectively. Step 4: Construct the heterogeneous network.
Step 5: Calculate an association score for each circRNA-disease pair.

The more the number of paths between circRNA j and disease i exists, the greater the predictive
score they obtain. Accordingly, the path set that connects circRNA Cj to disease di can be represented
as {p1, p2, . . . , pm}, where m is the number of the paths that connect disease di and circRNA Cj with
the length less than η. The final predictive scores of Cj and di can be calculated as follows:

score(di, Cj) =
m

∑
k=1

(Spath(pk))
fweak(len(pk)) (12)

where Spath(Pk) is the score of the path pk = {e1, e2, . . . , en} [42] can be calculated as follows:

Spath(pk) =
n

∏
t=1

Wet (n ≤ η) (13)

The longer the path is, the smaller the contribution it is made, which means that the longer
path would have less effect on predicting potential circRNA-disease associations than the shorter one.
Therefore, the decaying function is an exponential function to reduce the influence of long path on
final prediction scores, which can be represented as Equation (14):

fweak(len(pk)) = α× exp(len(pk)) (14)

where α is a constraint factor and len(pk) is the length of path pk.
An example for calculating the score between circRNA c1 and disease d2 is shown in Figure 4.

In the Figure 4, three paths {c1-c4-d2}, {c1-c3-d1-d2} and {c1-c5-d3-d2}, which are marked as red, are used
to calculate the score between c1 and d2. Therefore, the score of c1 and d2 can be calculated as follows:
Score (c1, d2) = {c1-c4-d2} (w2 × w5)3*exp(2) + {c1-c3-d1-d2} (w1 × w4 × w7)3*exp(3) + {c1-c5-d3-d2} (w3 × w6

× w8)3*exp(3). There are also some other paths that can connect c1 with d2. Because the length of those
paths, such as {c1-c2-c5-d3-d2}, are more than 3, we don’t consider this path.



Int. J. Mol. Sci. 2018, 19, 3410 10 of 13

Figure 4. The path between c1 and d2 is within the maximum path length.

4. Conclusions

With the increasing number of diseases related to circRNAs being discovered, more and
more researchers have been paying attention to investigate diseases-related circRNAs. Although,
experimental methods can find potential circRNA-disease associations with a high precision,
the process is not only time-consuming, but also expensive. Here, we have proposed an effective
computational method called PWCDA, which can predict potential circRNA-disease associations.
Firstly, we calculate disease/circRNA similarities by combining their functional/semantic similarity
and GIP kernel similarity. Secondly, we build a heterogeneous network, including the circRNA-disease
association sub-network, the disease similarity sub-network and the circRNA similarity sub-network.
PWCDA searches all the paths within three steps to compute an association score for each
circRNA-disease pair to determine if a circRNA-disease pair is associated.

To thoroughly investigate the performance of our proposed method, we adopt LOOCV and
five-fold cross validation. Furthermore, we have also compared our method with two state-of-the-art
prediction methods. The comparison results illustrate that our methods work much better than other
methods. The AUC value of five-fold cross validation is 0.884. Moreover, we apply our method to
three diseases: Breast Cancer, Gastric Cancer, Colorectal Cancer for case studies.

There are several significant factors, which may explain why our proposed method can get a
better performance than other computational models. Firstly, we have taken into account the sparsity
of disease/circRNA similarity sub-networks. Thus, we have integrated disease functional similarity
scores and circRNA semantic similarity scores with their corresponding GIP kernel similarity scores.
Secondly, according to previous studies, we just use the paths within three steps, which can reduce
the noisy information. Although we have combined different similarity scores, there is still some
information unavailable. Therefore, we set a threshold to remove those edges whose weights are less
than the predefined threshold.

Although we get a much better performance than other computational models, we can’t ignore
the limitation. The prediction of associations between circRNAs and diseases is a relatively new
research field, and the amount of data that we can use is limited. The ratio of positive samples to
negative samples of circRNA-disease association is seriously unbalanced. To solve this problem,
we may have two main solutions. One is that we can update the circRNA-disease database to obtain
new data. The other is that we can extract the same number of positive samples as that of negative
samples. Furthermore, our computational method tends to predict those circRNA-disease associations
that are covered in the known associations’ dataset, and it just predicts fewer novel circRNA-disease
associations. Thus, we will adopt more biological data to overcome this weakness. As a future topic,
we can apply this work to the disease diagnosis based on network biomarkers [55–57] and disease
prediction based on dynamic network biomarkers [58–60] in an accurate and reliable manner.
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