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Supplementary Figure S1. Accumulation level analysis of PSV-P RNAs and satRNA in 
N. benthamiana plants infected with PSV-P and PSV-P+satRNA. N. benthamiana plants 
were infected with biologically infectious transcripts of PSV-P (blue boxes) or PSV-
P+satRNA (orange boxes). The RT-qPCR analysis was done to show changes in the levels of 
PSV-P genomic strands (RNA 1 – q1, RNA 2 – q2a and q2b, RNA 3 – q3a and qCP, and 
satRNA) between plants infected with virus and satRNA, and virus alone. The error bars 
represent standard errors; * - statistically significant results. 
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Supplementary Protocol S1. Samples preparation and RT-qPCR procedures. 

Total RNA was extracted from the harvested plants using Tri Reagent solution (Thermo 
Fisher Scientific, Waltham, MA, USA) followed by genomic DNA digestion as previously 
described [1]. One μg of purified RNA was reverse transcribed using RevertAid Reverse 
Transcriptase (Thermo Fisher Scientific) with a random-sequence primer (5’-NNNNNN-3’, 
Thermo Fisher Scientific). The resulted cDNA samples (20 µL) were diluted with 20 µL 
DNase-free water and used for RT-qPCR. The reactions were completed in a LightCycler 480 
(Roche, Basel, Switzerland). The reaction was conducted in a 10-µL solution using iTaq™ 
Universal SYBR® Green Supermix (BioRad, Hercules, CA, USA) with 0.5 µM forward and 
reverse primers, and 1 μl of diluted cDNA. The reaction profile consisted of an initial 
denaturation step at 95 °C for 3 min, followed by 40 cycles of 95 °C for 20 s, an annealing 
step for 20 s (temperatures listed in supplemental tables), and 72 °C for 20 s. 
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Supplementary Protocol S2. Mass spectrometry procedure 

Each sample was analyzed via LC-MS/MS on an Ultimate 3000 RSLC nano LC (Thermo 
Fisher Scientific) in-line connected to a Q Exactive mass spectrometer (Thermo Fisher 
Scientific). The peptides were first loaded on a trapping column (made in-house, 100 μm 
internal diameter (I.D.) × 20 mm, 5 μm beads C18 Reprosil-HD (Dr. Maisch, Ammerbuch-
Entringen, Germany). After flushing the trapping column, peptides were loaded in solvent A 
(0.1% formic acid in water) on a reverse-phase column (made in-house, 75 µm I.D. x 250 
mm, 1.9 µm Reprosil-Pur-basic-C18-HD beads, Dr. Maisch, packed in the needle) and eluted 
by an increase in solvent B (0.1% formic acid in acetonitrile) in a linear gradient from 2% 
solvent B to 55% solvent B in 120 minutes, followed by a 5-min washing step with 99% 
solvent B, all at a constant flow rate of 300 nl/min. The mass spectrometer was operated in 
data-dependent, positive ionization mode, automatically switching between MS and MS/MS 
acquisition for the 5 most abundant peaks in a given MS spectrum. The source voltage was set 
at 4.1 kV and the capillary temperature at 275°C. One MS1 scan (m/z 400−2,000, AGC target 
3 × 106 ions, maximum ion injection time 80 ms), acquired at a resolution of 70,000 (at 200 
m/z), was followed by up to 5 tandem MS scans (resolution 17,500 at 200 m/z) of the most 
intense ions fulfilling predefined selection criteria (AGC target 5 × 104 ions, maximum ion 
injection time 80 ms, isolation window 2 Da, fixed first mass 140 m/z, spectrum data type: 
centroid, under-fill ratio 2%, intensity threshold 1.3xE4, exclusion of unassigned, 1, 5-8, >8 
positively charged precursors, peptide match preferred, exclude isotopes on, dynamic 
exclusion time 12 s). The HCD collision energy was set to 25% Normalized Collision Energy 
and the polydimethylcyclosiloxane background ion at 445.120025 Da was used for internal 
calibration (lock mass). 
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Supplementary Table S1. Primers used for virus and satellite detection/accumulation 
measurements by RT-qPCR. 

Primer 
name 

Primer sequence (5’-3’) 
Annealing 

temp. 
[�C] 

Function 

PSVq1 

F: 
CTTCTGCCCTCGTTGATAAAG 

57 
Detection of PSV 1a protein ORF 
in RT-qPCR [2] R: 

CATACCGATTTCGAATCACTT 

PSVq2
a 

F: 
CTTCTAGGTATCCCCGTAAG 

60 
Detection of PSV 2a protein ORF 
in RT-qPCR [2] R: 

CAAGCACATTGATACCCTATC 

PSVq2
b 

F: 
CTCMTATCCTCCCAGCTAYAC 

53 
Detection of PSV 2b protein ORF 
in RT-qPCR [2] R: 

GAATAACTRCCCTCACACCAC 

PSVq3
a 

F: 
CTAGTCGGACTTTAACACAAC 

56 
Detection of PSV 3a protein ORF 
in RT-qPCR [2] R: 

ACGCTCATATATCCCTTAGAC 

PSVqC
P 

F: 
ACACATACACTTCGTTGGATG 

55 
Detection of PSV coat protein ORF 
in RT-qPCR [2] R: 

CCTCWTCTTCGGAAATTCAG 

PARN
A 

1: 
GGGAGGGCGGGCGTTCGTAG
TG 60 satRNA detection in RT-qPCR [2] 

2: GCCGTGGCCTTTCGTGGTC 

NbAct 

A: 
GTGAAGGAGAAGTTGGCTTA
C 60 β actin amplification in RT-qPCR 

[3] 
2: 
CTTCTGGGCAGCGGAATCTC 

NbEF1
a 

F: 
CACCATTGATATTGCCTTGTG 

53 
elongation factor 1α amplification 
in RT-qPCR [4] R: 

GTTCTTGATAAAGTCCCTGTG 
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Supplementary Table S2. Primers used for validation of chosen transcripts from (phospho)proteomic results (* - primers for 40S 
ribosomal protein S6 and tetratricopeptide repeat (TPR)-like superfamily protein genes, which hits were found to be statistically significant in 
both proteomic and phosphoproteomic analysis). 

Primer 
name 

Primer sequence (5’-3’) 
Annealing 
temp. [�C] 

Amplicon 
length [bp] 

Gene annotation with SolGenomics accession 
number 

Proteome validation 

NbAGO4 

F: 
TGAAGAAAAAGGCGGCTC
TA 

61 119 
protein argonaute 4 
(Niben101Scf05519g01007.1) R: 

GTGTCCATCCACATTGGTC
A 

NbBIP 

F: 
GCTGAAGACAAAGCCTCTG
G 

61 119 
heat shock-related 70 kDa protein 2 
(Niben101Scf03115g02008.1) R: 

TCCTCCTCTGCAAACTCCT
C 

NbERG3 

F: 
GGAAGGGTTGTGAACCTG
AA 

61 113 
elicitor-responsive protein 3 
(Niben101Scf09044g01005.1) R: 

GAAGTCGTCTTCGCCTACA
GA 

NbGRP2 

F: 
ATTCGGTACATACGGCGAA
G 

56 115 
glycine-rich RNA-binding protein 2 
(Niben101Scf03214g00006.1) R: 

AGCATCCCTCATGCATTTC
T 

NbMCA F: 57 120 metacaspase-4 (Niben101Scf01376g04029.1) 
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CAAATCCTTGCCTCTTTCC
A 
R: 
GGACTAGCATCTTCGCCAA
A 

NbPR2B 

F: 
CCCAATTCAGATGTGAAGC
A 

56 124 
glucan endo-1,3-beta-glucosidase B 
(Niben101Scf01934g02004.1) R: 

TGATTTCATTCCCAACAGC
A 

NbPSB 

F: 
CTTCTTGGTGCAAGTGGTG
A 

57 106 
proteasome subunit beta 
(Niben101Scf15836g03007.1) R: 

GACCCAAAGAGTTCCCATC
A 

Phosphoproteome validation 

NbAGO1B 

F: 
AGACAACCACTGGGTGAA
GG 60 152 

protein argonaute 1B 
(Niben101Scf05146g06007.1) 

R:TTCAGAAGCTGGCTCAC
AAA 

NbBSL3like 

F: 
GATGGATGGCTTTGAACGA
T 

60 150 
serine/threonine protein phosphatase family 
protein (Niben101Scf04699g00014.1) R: 

GGTGGCAATGGGTGAATA
AG 

NbECT5 
F: 
CCCGTGGACTCTGGAAGAT

60 152 
evolutionarily conserved C-terminal region 5 
(Niben101Scf08176g00008.1) 
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A 

R: 
GAATAATGCCTGGCTGAGG
A 

NbEIF5 

F: 
AGGAAGATGGTTCGCAGCT
A 

60 192 
eukaryotic translation initiation factor 5 
(Niben101Scf01393g01005.1) R: 

TCCAGATTGGGGAGAGTTT
G 

NbFBP2like 

F: 
CCTAAAACAATGGCCGAA
GA 

60 154 
polyribonucleotide nucleotidyltransferase 
(Niben101Scf00394g03001.1) R: 

GAGCACCATCAGGAGGAG
AG 

NbPGM1 

F: 
AAAGGTGCTACGCTTGTGG
T 

60 149 
phosphoglucomutase-1 
(Niben101Scf01697g23018.1) R: 

ACAGCTGATACGGCAGGA
GT 

NbPMI1 

F: 
CTCGCTCACATTGGTAAGC
A 

60 156 
plastid movement impaired1 
(Niben101Scf03738g00006.1) R: 

TCTGGATGGCATGGTTTGT
A 

NbPPC1 
F: 
AGCGTGGCAGCTGTATAAG
G 

63 151 
phosphoenolpyruvate carboxylase 1 
(Niben101Scf25430g00015.1) 
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R: 
TGTATCGGGTGGTTGAGAC
A 

NbRPN10 

F: 
CGAGTTTCAATGGAGGAG
GA 

60 152 
26S proteasome non-ATPase regulatory subunit 
4 homolog (Niben101Scf06856g00007.1) R: 

GCCTTGTTTTCAGGTTCAG
G 

NbRS6* 

F: 
ATCGACGACGACCAGAAA
CT 

63 147 
40S ribosomal protein S6 
(Niben101Scf01293g03017.1) R: 

TCCCTGCTTCATTGGAAAA
C 

NbTPR-
like1320* 

F: 
GGACAAAACCGTTCATTTG
G 

60 149 
tetratricopeptide repeat (TPR)-like superfamily 
protein (Niben101Scf02283g00007.1) R: 

GCCTTCGTCTTCGTCCATA
G 

NbTSJT1 

F: 
TCCGAACAATGAGACAGC
AG 

63 151 
aluminium induced protein with YGL and LRDR 
motifs (Niben101Scf10940g04023.1) R: 

CCTGGGAAGAAGAGGGTT
TT 
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Supplementary Table S4. (Phospho)proteins found exclusively in one of the conditions 
during pairwise comparisons. PSV-P-responsive, PSV-P+satRNA-responsive, and satRNA-
responsive (phospho)proteins extracted by comparison of (phospho)proteomes of PSV-P with 
MOCK, PSV-P+satRNA with MOCK, and PSV-P+satRNA with PSV-P, respectively. 

Treatment 
Proteome   Phosphoproteome   

Phosphoproteome 
after normalization 

UP DOWN   UP DOWN   UP DOWN 

PSV-P-responsive 68 32   4 205   5 161 
PSV-P+satRNA-

responsive 
33 28 

 
15 10 

 
1 7 

satRNA-responsive 40 168   203 7   165 5 
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