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Abstract: Somatic embryogenesis (SE) is a widely studied process due to its biotechnological
potential to generate large quantities of plants in short time frames and from different sources
of explants. The success of SE depends on many factors, such as the nature of the explant, the
microenvironment generated by in vitro culture conditions, and the regulation of gene expression,
among others. Epigenetics has recently been identified as an important factor influencing SE outcome.
DNA methylation is one of the most studied epigenetic mechanisms due to its essential role in gene
expression, and its participation in SE is crucial. DNA methylation levels can be modified through
the use of drugs such as 5-Azacytidine (5-AzaC), an inhibitor of DNA methylation, which has been
used during SE protocols. The balance between hypomethylation and hypermethylation seems to be
the key to SE success. Here, we discuss the most prominent recent research on the role of 5-AzaC
in the regulation of DNA methylation, highlighting its importance during the SE process. Also, the
molecular implications that this inhibitor might have for the increase or decrease in the embryogenic
potential of various explants are reviewed.

Keywords: somatic embryogenesis; DNA methylation; 5-Azacytidine; epigenetics; hypomethylation;
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1. Introduction

With more than seven billion people to feed, the need for food and energy has become an urgent
problem to resolve. The worldwide population needs healthier and safer food, and one way to do this
is by increasing crop production. Plant tissue culture (PTC) is a set of biotechnological techniques to
establish, maintain and multiply cells, tissues, organs and even whole plants under controlled and
aseptic conditions to generate more plants in a shorter period than conventional methods. PTC has
been used with great success in the agricultural industry to produce fruit, ornamental and medicinal
plants, and even forest-dwelling species. Therefore, PTC represents the most promising area of
application today and offers a perspective for the future [1].

Two of the most common PTC methods for the regeneration of plant structures are organogenesis
and somatic embryogenesis (SE). Organogenesis refers to the generation of monopolar structures
(shoots, leaves or roots) that may arise directly from the meristem or indirectly from the undifferentiated
cell masses called callus [2]. On the other hand, SE is a process that generates bipolar structures (shoot
apical meristem and root apical meristem), similar to a zygotic embryo, developed from a non-zygotic
cell with no vascular connection to the original tissue [3,4]. Both organogenesis and SE can be obtained
directly or indirectly; it means that organs or somatic embryos can be developed directly from the
explant or the callus, respectively [5]. Regardless of the morphogenic pathway (direct or indirect),
SE can produce genetically identical individuals to the donor of the explant, which is a significant
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advantage in when controlling the quality and selection of plants [6]. It is important to highlight
that for study purposes, and from an economic point of view, it is necessary to have the capacity to
differentiate between different callus types, mainly embryogenic callus (callus that generates somatic
embryos [7]) and non-embryogenic callus (callus that does not generate somatic embryos). By being
able to identify the embryogenic callus from the non-embryogenic ones, we avoid selecting callus
under in vitro conditions that will not generate the necessary number of somatic embryos.

Thanks to the study of SE, it has been possible to isolate genes, proteins, and metabolites
involved in the process of cell differentiation. These discoveries have led to a better understanding
of differentiation, as well as the genetic mechanisms involved in the transition from one stage to the
next. It has highlighted the importance of continuing to study SE in all aspects (biochemical, genetic
and transcriptomic) to accelerate the discovery, isolation, and characterization of genes involved in
different cellular processes [8–10].

SE can be triggered in the explant by applying specific conditions such as stress (mechanical,
osmotic, chemical, heavy metals, hypoxia, temperature and ultraviolet light) as well as by both
endogenous and exogenous plant growth regulator (PGR) levels [11–13]. The PGR most used to
induce SE is the exogenous auxin 2,4-Dichlorophenoxyacetic acid (2,4-D) [14]. The different conditions
(endogenous or exogenous to the explant) can influence the metabolic patterns, gene expression and
epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) of the explant,
provoking a cell (or a group of cells) to change its nature (Figure 1). A somatic cell can develop into a
totipotent, undifferentiated and embryogenic cell and the embryogenic cell can generate all the cells
forming a somatic embryo, which later becomes a complete and functional plantlet (Figure 1).
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Figure 1. In plant somatic embryogenesis, genetic (green) and epigenetic (yellow) mechanisms induce
the development of embryogenic cells from any explant (cells isolated from the leaves, shoots or roots).
Due to the totipotentiality properties of plant cells, a group of embryogenic cells can develop into a
complete and functional plantlet.

The SE process can be divided into two significant steps: induction and development (Figure 2).
The induction stage has three phases: dedifferentiation, totipotency, and acquisition of the embryogenic
competence [15]. In the dedifferentiation step, mature explant cells lose their specific fate to become
meristematic cells. In the totipotency step, the cells acquire the potential to generate any plant
cell [16]. In the last step, the acquisition phase of embryogenic competence, the cells reach a state of
somatic-embryogenic transition and only require a minimum exogenously applied stimulus to become
an embryogenic cell [17]. Morphologically, competent cells already show similar characteristics
to those in meristematic cells or zygotes, such as small size and rounded shape with abundant
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cytoplasm and small vacuoles [18]. Next follows the second major stage of the SE process, in which
the establishment of the first proembriogenic phases initiates with the transition of the embryogenic
forms. These forms are different in dicotyledons and monocotyledons. For instance, in dicotyledonous
plants, the embryogenic structures are globular, heart-shaped, torpedo and cotyledonar, while those of
monocotyledonous plants are globular, scutellar and coleoptilar (Figure 2).
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In recent years, numerous reports have demonstrated that SE is a process strongly regulated
by epigenetic mechanisms (DNA methylation, posttranslational modifications of histones and
miRNAs), which induce chromatin remodeling [7,11,19]. DNA methylation and histone modification
are epigenetic changes that can reorganize chromatin architecture during the in vitro culture of
plants [20,21]. Since the 1980’s, it has been proposed and reported that embryogenic capacity could be
conditioned by DNA methylation levels [22]. Currently, it is known that DNA methylation plays an
essential role in the regulation of gene expression during development. Methylation states in the DNA,
resulting from in vitro cultures, are often related to the control of SE and the regeneration process
through the modulation of gene expression [19,23]. By changing the methylation profile, it is possible
to alter gene expression, and this can be applied to produce a large number of high-quality plants or to
improve the agronomic characteristics leading to the improvement of a crop [24]. By understanding
how methylation alterations influence the acquisition of the developmental cell fate during in vitro
cultures, we would be able to develop new strategies to enhance the embryogenic capability and
totipotency in recalcitrant plant species and genotypes.

As early as the 1980s, an essential role in the control of gene expression was attributed to
5-methylcytosine [25]; thereafter, the focus was on molecular analogs to methyl derivatives of cytosine
such as 5-Azacytidine (5-AzaC). 5-AzaC was first used as an anticancer agent, acting as an analog of
cytidine and incorporated into DNA, where, due to the nitrogen at the 5′-position of the pyrimidine
ring, it could not be methylated [26,27]. The first pieces of evidence that 5-AzaC could induce the
expression of silenced genes was carried out on transformed avian and animal virus cell lines. It was
observed that when the animal cells (different tissues of mouse and chicken) were treated with
this drug, DNA demethylation was detected a short time later (48–96 h) [28–30]. At that time, it
was suggested that 5-AzaC was incorporated into DNA, causing methylation to be inhibited and
positively affecting gene expression and differentiation [26]. However, there is evidence that this
analog might be incorporated into DNA to cause demethylation and, in the first round of replication,
lead to the appearance of hemimethylated DNA. Only after the second round of DNA replication
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do completely unmethylated strands appear through the action of the methylation maintenance
system. In fact, a 5-AzaC residue incorporated into DNA leads to vast stretches of DNA becoming
unmethylated, apparently due to long-term inhibition of the 5-DNA-methyltransferase enzymes and
its mode of processing action [26,31,32]. There are other DNA hypomethylating analogs such as
ethionine, 2-amino-5-ethoxycarbonyl-pyrimidine-4 (3H) (ECP) [21], and zebularine [33]. Currently, the
most widely used and studied hypomethylating drug is 5-AzaC, and very interesting studies are being
carried out to study its effects and the relationship it has on the expression of genes that are important
for the SE process [34]. In this review, we will discuss the most recent and important works that have
used 5-AzaC to modify the methylation patterns in SE protocols to increase the embryogenic potential
and at the same time understand the effect of methylation levels on this process.

2. DNA Methylation: A Key Player During Somatic Embryogenesis

It is widely known that embryogenic potential is higher in explants obtained from young
tissue constituted mostly of cells with a low level of differentiation, such as zygotic embryos
or meristems, unlike other tissues composed of well-differentiated cells such as fundamental,
conduction or epidermic tissues [4,35–37]. A couple of years ago, it was revealed that the state of
differentiation of plant tissues is strongly controlled by DNA methylation [38], so that the embryogenic
or non-embryogenic response between both types of tissues could be determined epigenetically.

DNA methylation is an epigenetic mechanism that plays critical roles in genome integrity, genomic
imprinting, X chromosome inactivation, suppression of transposons and retroviruses, and gene
expression [39–43]. DNA methylation occurs after DNA synthesis, and it is catalyzed by enzymes
known as DNA cytosine methyltransferases (DCMTases). DCMTases transfer a methyl group of
the S-adenosyl-L-methionine molecule to the carbon 5′ of the pyrimidine ring of the cytosines.
In mammals, this methylation occurs only in cytosines adjacent to guanines (CpG) [44]. However,
in plants, the methylation not only occurs at the CpG sites but also in the symmetric CpHpG and
asymmetric CpHpH sequences (where H is A, T or C) [45]. Based on sequence homology within the
enzyme′s C-terminal catalytic domains, most DCMTases can be grouped into four distinct families,
omitting fungal DCMTases [46]. Plants have four classes of DCMTases: Methyltransferase (MET),
Domains Rearranged Methyltransferase (DRM), DNA Nucleotide Methyltransferase 2 (DNMT2) and
Chromomethylase (CMT, appearing to be unique to plants), while other eukaryotic organisms have
only two or three classes [21]. Additionally, there are two types of methylation: maintenance: (1) this
occurs in hemimethylated sites, and is inherited from generation to generation and (2) de novo, which
arises spontaneously in places where there was no methylation before [47].

MET1 (DNMT1, ortholog in animals) catalyzes both maintenance and de novo methylation at
CpG sites, while that CMT3 catalyzes maintenance methylation at CpHpG and CpHpH sites [48–51].
In addition, DRM2 (DNMT3A, ortholog in animals) catalyzes de novo methylation at CpG, CpHpG and
CpHpH sites, and is related to the RdDM mechanism—RNA-directed DNA methylation [41,49]. It has
been reported that although Arabidopsis met1 mutant plants are viable, they are entirely lacking in
CpG methylation [41,45,52–54]. DRM2 and DNMT3A structures are not identical to each other, and yet
the overall folding is similar in both enzymes, which could explain the structure’s conservation in its
functions in both plants and animals [43]. The fact that the plant-only DRM2 contains a rearrangement
similar to a DNMT3A in its catalytic domain suggests that this rearrangement may have occurred
during the early stages of plant evolution [55]. In Arabidopsis thaliana, the impact of DNA methylation
on SE was analyzed [34], and it was found that a decrease in global DNA methylation (GDM) during
SE contrasted with the positive regulation of the genes MET1 and CMT3 that codify DNA methylases,
and the down-regulation of genes ROS1, DME and DML2 (DNA demethylases). Therefore, the
level of GDM seemed to correlate with the transcriptional activity of the coding genes of DNA
methylases/demethylases.
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2.1. Hypomethylation Promotes Embryogenic Capacity

DNA methylation plays a vital role in cell dedifferentiation, redifferentiation and the growth and
development of plants [56]. In SE, DNA methylation regulates and maintains the gene expression
programs of several genes; however, due to the previously reported critical implications for the
embryogenic process in plants, a group of genes has been especially studied (Figure 1): Leafy Cotyledon
1 (LEC1), Wuschel (WUS), Somatic Embryogenesis Receptor Kinase (SERK), Pickle (PKL) and Baby Boom
(BBM) [20,23,57]. For instance, the manipulation of methylation in specific genes, such as LEC1 [58]
and Wuschel (WUS) [59], drastically affects the regulation of the differentiation of plant explants.
In the SE process of Coffea canephora, it was reported that between 21 and 28 days after induction
(dai) there was a reduction of GDM that coincided with the formation of the first proembryogenic
masses. Subsequently, a gradual increase of GDM was observed between 28 and 49 dai. During this
same period, somatic embryos appeared and developed from the globular stage to the torpedo stage.
Finally, the pronounced increase in GDM between 49 and 56 dai coincided with the transition from
somatic embryos in the torpedo phase to the cotyledon phase. These observations support the idea that
a decrease in global DNA methylation could be a critical step in triggering cell dedifferentiation and
acquiring cell totipotency in somatic cells. We can also suggest that the epigenetic cell reprogramming
through dynamic changes in DNA methylation promotes the embryogenic route and the development
of somatic embryos [60].

In Boesenbergia rotunda (L.) Mansf., the expression of the SERK, BBM, LEC2 and WUS genes was
studied, and also the gene-specific methylation by bisulfite sequencing data of these genes. Based on
these results, it was suggested that relatively higher expression and lower level of DNA methylation of
SERK, BBM, LEC2, and WUS are associated with somatic embryogenesis and plant regeneration [23].
Recently it was reported in cotton that the inhibition of methylation by the use of zebularine activated
the transcription of hormone-related genes (IAA14, CKX6, LBD1/3, LOX1, CRF4.1) and may promote
SE [33].

In Theobroma cacao, it was reported that the methylation profiles of explants with a lower level
of differentiation that generated embryogenic callus (staminoids) were different from the more
differentiated tissue profiles (leaves of the explant tree and regenerated plants). It was speculated
that these differences could be in the states of differentiation [61]. This information suggests that
less differentiated tissues have lower levels of methylation, and are more likely to generate somatic
embryos, than those with a higher level of differentiation and higher DNA methylation. A similar
hypothesis was formulated for Daucus carota, in which it was found that non-embryogenic vacuolar
cells contained the highest levels in GDM (25.7%), while meristematic cells (embryogenic tissue)
had lower GDM (21.9%) [62]. This work reported that after differentiation and during aging and
cell growth, the leaves become more methylated, going from 18.5% in the seedling to 24.0% in the
adult plant. Furthermore, it seems that the relationship between hypomethylation and embryogenic
potential happens not only in plants but also in trees. Such is the case of three embryogenic cell lines
of Pinus nigra Arn. ssp. Austriaca with different embryogenic potentials (high, medium or low) [63].
It was found that the line considered to be the most embryogenic (with the capacity to develop the
whole embryogenic program and produce plants) showed the lowest levels of DNA methylation, while
the least embryogenic line had the highest level of methylation. In another woody species, Quercus alba,
the methylation levels in embryogenic and non-embryogenic tissues were analyzed [64] and the results
were similar to those found in P. nigra [63]. The percentage of DNA methylation was significantly
lower in embryogenic cells than in non-embryogenic cells, which suggested that DNA methylation
decreased during induction of SE. Differences in levels of GDM that depended on the type of tissue
(embryogenic or non-embryogenic) have also been reported [64,65]. The analysis showed a lower
GDM in somatic embryos, unlike non-embryogenic cell nuclei. Different GDM levels depending on
the embryogenic potential suggested that they could be used as markers of early embryogenesis [64].
Furthermore, in Castanea sativa [66], it was reported that only the fertilized ovules suffer a decrease in
DNA methylation, while the ovules that are not fertilized do not experience this reduction in DNA
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methylation. Only the ovules that hypomethylated after fertilization are capable of generating zygotic
embryos, which suggests that hypomethylation is a pre-requirement to activate the development of
zygotic embryos.

Taken together, these reports prompt the hypothesis that if we can find a strategy to manipulate
GDM levels, we could improve embryogenic induction in species that have a high level of GDM and
low embryogenic potential. Global DNA methylation could be used not only as a marker for the
embryogenic capacity of the explant but also to monitor the gradual changes of embryo development.
In carrot, globular somatic embryos generate when a reduction in GDM occurs, and this reduction
starts to increase during the development and maturation of the somatic embryos [65]. Also in carrot,
but using a different system, it was reported that the methylation levels decrease during the change
from the somatic to the embryogenic program and in the early stages of the embryos [67]. In later
stages of the process, DNA methylation gradually increases. Furthermore, in C. sativa, the increase in
GDM was also reported during the development of the embryos [66]. Another study found that low
levels of GDM were related to the emergence of the proembryogenic mass in C. canephora during the SE
process, which was also strongly related to the expression of genes involved in cell differentiation [60].

Based on these findings about DNA methylation and SE response, it is possible that more
species follow the same pattern of the dynamics of DNA methylation in different tissues during the
process of SE in plants (Figure 3). In summary, it is known that the level of methylation in explants
with higher embryogenic potential (usually undifferentiated tissues such as meristems, zygotic or
anther embryos) is lower than in explants with less or no embryogenic potential (differentiated plant
organs such as stems, roots or leaves). In other words, the embryogenic potential of an explant is
inversely proportional to the DNA methylation and the level of tissue differentiation (Figure 3A).
Furthermore, the evidence shows that the level of methylation in embryogenic callus is lower than
in non-embryogenic callus (Figure 3B) and, when the explants are established in the culture medium
(before the induction process), GDM is relatively low. During the induction process, the lowest
GDM is observed around the time of the appearance of the first proembryogenic masses/structures.
In proembryos and early somatic embryos (preglobular, globulars) there is a gradual increase of GDM.
When the embryos are in the late stages (heart and cotyledonar), the GDM is higher and when the
embryos germinate and develop into seedlings, the highest level of GDM is achieved (Figure 3C).
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2.2. The Role of Auxins in DNA Methylation

Several studies have described the relationship between DNA methylation and embryogenic
responses, which in some cases depend on the in vitro culture conditions, but mostly are related to
the kind and concentration of PGR added to the culture medium [20,65,68,69]. Auxins, especially
2,4-D, are an essential PGR used at the beginning of the SE process. They are known to induce many
molecular and metabolic changes that promote the reactivation of cell division and proliferation. 2,4-D
is essential in most SE protocols and cannot be removed early in the process; it has been used alone
or combined with other PGRs in more than 65% of the protocols for inducing SE [14]. The effect of
type and concentration of auxins on genome-wide methylation levels has been studied in several
embryogenic cultures. In D. carota, it was found that an increase in 2,4-D concentration promotes
higher GDM levels [65]. In this work it was reported that SE does not occur when 2,4-D is in the
culture medium; however, when it is removed from the medium, the development of somatic embryos
is stimulated [65]. A similar process happens in C. canephora, but with a different auxin; in this case the
plantlets used as a source of explants require a pretreatment period with naphthaleneacetic acid (NAA)
and kinetin for two weeks, after which the auxin is removed from the media in order to induce SE [70].

It has been suggested that 2,4-D can modify GDM in SE by the accumulation or depletion of
S-adenosylmethionine (SAM) and S-adenosylcysteine (SAH) [69]. The removal of 2,4-D produces
a reduction in ethylene production (Figure 4), which increases the accumulation of SAM and the
SAM/SAH ratio, which in turn causes an increase in DNA methylation [69]. It was observed that an
increase in the SAM level is needed to facilitate an increase in the SAM-consuming processes that are
necessary for the development of somatic embryos (e.g., SAM-dependent methylations and polyamine
biosynthesis), so the availability of SAM may be necessary for the acquisition of embryogenic potential
and, later, for the control of embryonic development [71]. Recently, other protocols of SE have
reported similar requirements for 2,4-D; e.g., in the date palm [72,73], Kalopanax septemlobus [74] and
Coriandrum sativum [75].
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Figure 4. Global DNA methylation, SAM and ethylene dynamics when 2,4-D and 5-AzaC are added to
the culture media during the SE process. SAM: S-adenosylmethionine. 2,4-D: 2,4-Dichlophenoxyacetic
acid. GDM: global DNA methylation. The purple arrow represents the dynamics of GDM. The red
arrow represents the amount of 2,4-D added into the culture medium. The green arrow represents
the decrease in endogenous ethylene reported in different studies. The orange arrow represents the
increase in the accumulation of endogenous SAM reported in different studies.

It is likely that the effects observed in the increase or decrease of the embryogenic potential
are caused by the up-regulation of genes that encode the transcription factors (TFs) that have a
regulatory function in auxin biosynthesis, as reported in the explants of Arabidopsis thaliana treated
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with trichostatin A, an inhibitor of histone deacetylases [76]. Inhibition of methylation caused by
5-AzaC might also alter the expression of TFs involved in auxin or any other PGR biosynthesis,
degradation or signaling pathway.

3. The Use of 5-Azacytidine During Somatic Embryogenesis

5-AzaC has been used in many protocols of SE for different species of plants (Table 1), among
which there have been cases where the embryogenic response has been unquestionably positive, such
as in Pinus pinaster, Brassica napus, Hordeum vulgare and Theobroma cacao. In P. pinaster (Ait.), embryonal
masses were exposed to 5-AzaC in different concentrations and durations. When embryonal masses
were exposed for 9 days to 5-AzaC, their growth was inversely proportional to the increase in drug
concentration. The highest amounts of somatic embryos were obtained at levels of 10 and 15 µM of
5-AzaC [77]. In Brassica napus and Hordeum vulgare [78], induction of embryos increased with four days
of treatment with 5-AzaC (2.5 µM). Similar effects were found in both species, indicating that DNA
demethylation promotes the reprogramming of gene expression, acquisition of totipotency and the
initiation of embryogenesis in microspores. Embryo differentiation probably requires higher levels of
GDM or de novo DNA methylation to acquire a specific pattern of gene expression. In Theobroma cacao
(cocoa), the embryogenic potential and GDM were analyzed during the long-term secondary SE use as
explants from young somatic embryos (12 months of age), aged (36 months of age) and extended SE
(39 months), and higher methylation levels were detected in aged somatic embryos [79]. High levels of
GDM in long-term SE in cocoa induced a decrease in embryogenic potential, but this decrease was
reversed by the addition of 5-AzaC.

Although 5-AzaC has been proven to have positive effects on SE, both the amount and the stage
when it is applied need to be taken into consideration to avoid damaging results on the embryogenic
process. In C. canephora, it was found that when 5-AzaC was added to the culture media in the first
seven days of the SE process, the embryogenic response was inhibited [60]. However, when 5-AzaC
was added after 21 days of induction, positive effects were observed. The results obtained in this work
suggest that the impact of 5-AzaC (mainly at 20 µM) added at day 21 dpi not only synchronized the
embryogenic process but also reduced the maturation of the embryo. In hybrid larch (Laris x euroleis),
the addition of 5-AzaC (100 µM) after one week, in multiplication medium, decreased the levels of
GDM (from 45.8% to 41.3%) and significantly reduced the relative growth rate of embryonal masses
(from 6.3 to 1.8). The value of relative growth rate was obtained by the following formula: ((FWt+1

− FWt)/FWt), where FW is fresh weight and t is time [98]. In another conifer, Picea omorika, 5-AzaC
(12.3 µM) was added one week before the transfer of the embryogenic explant from the medium
of maturation to the proliferation medium [102]. In this case, the numerical values of differential
methylation of cytosines (DMC) were obtained by the program ‘RAPD distance 1.04′ and using the
algorithm for estimating DNA sequence divergence based on a comparison of restriction endonuclease
digests. The DMC value of medium with 5-AzaC (0.267) decreased to 19% compared to the same
medium without 5-AzaC (0.323). However, at the end of the experiment, the total number of embryos
developed was not significantly different between the control and the treatment with 5-AzaC (181 and
189, respectively).

Recently, a completely inhibitory effect on SE was reported in the model plant A. thaliana [34].
In this study, it was reported that in the treatments with 5-AzaC (10 µM) explants produced massively
non-embryogenic callus, while in the control (without 5-AzaC) the formation of somatic embryos was
fast and efficient. The addition of 5-AzaC reduced the efficiency and productivity of SE and, as a result,
only 5% of the explants could undergo SE induction. Since no signs of tissue lethality were observed in
the treated cultures, it was hypothesized that the inhibition of SE was not a result of the toxic effect of
5-AzaC on cellular metabolism, but was a consequence of the impact associated with hypomethylation
of DNA at the beginning of the process.
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Table 1. Techniques used to evaluate DNA methylation and the effect of methylation inhibitors on the somatic embryogenesis (SE) of different species of plants.

Species Family Detection of DNA
Methylation (Method)

DNA Methylation
Inhibitor Used Effects of Inhibitor References

Acca sellowiana Myrtaceae CRED-RA NA NA [80]

HPLC 5-AzaC

5-AzaC (50 µM) induced an increase in GDM and improved
the induction of SE. However, in the conversion phase,
somatic embryos had a deregulatory effect during the

formation of autotrophic plants, resulting in significantly
lower conversion rates

[81]

Arabidopsis thaliana Brassicaceae ELISA 5-AzaC

Explants treated with 5-AzaC (10 µM) showed a drastic
inhibition of SE and the explants produced massive

non-embryogenic callus, whereas in non-treated-explants
they formed somatic embryos quickly and efficiently

[34]

Araucaria angustifolia Araucariaceae HPLC NA NA [82]

Bactris gasipaes Arecaceae HPLC NA NA [83]

Brachypodium
distachyon Poaceae TUNEL 5-AzaC

At a concentration of 50 µM of 5-AzaC, induction of
embryogenic masses (EM) was totally inhibited, while in 5

µM of 5-AzaC 10% of explants (zygotic embryos)
developed callus with EM.

[84]

Brassica napus Brassicaceae ELISA 5-AzaC
Induction of embryos increased when explants were treated

four days in 5-AzaC (2.5 µM). In longer treatments with
5-AzaC the formation of somatic embryos decreased

[78]

Castanea sativa Fagaceae HPCE NA NA [66]

Citrus paradise Rutaceae MSAP NA NA [85]

Coffea canephora Rubiaceae HPLC 5-AzaC

Embryogenic process was strongly inhibited when 5-AzaC
was added earlier. However, this negative effect was not
observed when added to the 35 days post induction (dpi).
The effect of 5-AzaC (20 µM) added at day 21 dpi not only
synchronized the embryogenic process but also reduced the

maturation of somatic embryos

[60]

MSAP NA NA [86]
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Table 1. Cont.

Species Family Detection of DNA
Methylation (Method)

DNA Methylation
Inhibitor Used Effects of Inhibitor References

Cucurbita pepo Cucurbitaceae MSAP 5-AzaC

Addition of 5-AzaC (12.3 µM) to the basal medium
(MSC) with or without 2,4-D did not significantly alter

the proportion of embryos in different stages
compared to that found in the same medium without
5-AzaC. In the MSC medium with 2,4-D and 5-AzaC,

most embryos remained in the early stages of
development; however, some developed to more

mature stages

[87]

CRED-RA/MSAP 5-AzaC
5-AzaC had no effects (global DNA methylation or

capacities for the development and regeneration) on
embryogenic cultures

[88]

Daucus carota Apiaceae HPLC 5-AzaC/ECP

When ECP is added, SE is immediately blocked.
Isolated mutant line that is resistant to the

hypomethylating activity of ECP and 5-AzaC shows a
higher level of endogenous indole acetic acid (IAA)
and a different metabolism of IAA, suggesting the

endogenous synthesis of IAA in the habituated tissue
could be the reason for its low sensitivity to

methylation inhibitors

[65]

Immunodetection 5-AzaC
5-AzaC suppresses embryogenesis but does not

prevent the proliferation of dedifferentiated cells from
cells in suspension.

[89]

5-AzaC

When 5-AzaC (0.41 µM) was added to the medium,
somatic embryos were formed to the same extent as in
the control without 5-AzaC. When 5-AzaC (20.5 µM)

was supplemented for 3 days after the 24-hour
treatment with 2,4-D, the formation of somatic

embryos was severely inhibited

[90]

HPLC NA NA [62]

Elaeis guineensis Arecaceae HPLC/MSAP NA NA [91]



Int. J. Mol. Sci. 2018, 19, 3182 11 of 20

Table 1. Cont.

Species Family Detection of DNA
Methylation (Method)

DNA Methylation
Inhibitor Used Effects of Inhibitor References

HPLC NA NA [92]

Eleuterococcus senticosus Araliaceae HPLC/MSAP NA NA [93]

Freesia hybrida Iridaceae MSAP NA NA [94]

Gentiana pannonica Gentianaceae HPLC NA NA [95]

Hordeum vulgare Poaceae MS-AFLP NA NA [96]

ELISA NA NA [67]

ELISA 5-AzaC

Induction of embryos increased with four days of treatment
with 5-AzaC (2.5 µM), the response was associated with a
decrease in DNA methylation. In contrast, longer 5-AzaC

treatments decreased embryo generation

[78]

HPLC/MS-AFLP NA NA [97]

Laris x eurolepis Pinaceae HPLC 5-AzaC/Hydroxy-urea
5-AzaC (100 µM) altered the overall DNA methylation

status of embryogenic cultures and significantly reduced
their relative growth rate and embryogenic potential

[98]

Medicago truncatula Fabaceae MSAP 5-AzaC

5-AzaC (100 µM) stopped the generation of somatic
embryos in the embryogenic line and the proliferation of

callus in the non-embryogenic line. Analysis with
restriction enzymes sensitive to total DNA methylation

extracted from the untreated 5-AzaC-treated callus showed
a decrease in DNA methylation levels

[99]

Ocotea catharinensis Lauraceae MSAP NA NA [100]

Pennisetum purpureum Poaceae HPLC/MSAP NA NA [101]

Picea omorika Pinaceae MS-RAPD 5-AzaC

DNA methylation decreased by 19% compared to the same
medium without 5-AzaC (12.3 µM). However, the total

number of embryos developed in the subsequent transfer to
the maturation medium was not significantly different (182

and 190 somatic embryos, respectively)

[102]
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Table 1. Cont.

Species Family Detection of DNA
Methylation (Method)

DNA Methylation
Inhibitor Used Effects of Inhibitor References

Pinus nigra Pinaceae CRED-RA NA NA [63]

Pinus pinaster Pinaceae HPLC 5-AzaC

Embryonal masses grew when they were exposed 9
days to 5-AzaC. Growth was inversely proportional to

the increase in drug concentration. The highest
amounts of somatic embryos were obtained at the 10
and 15 µm concentrations of 5-AzaC, the treatments

with the highest levels of methylation (19.5% and
21.3%, respectively)

[77]

Quercus alba Fagaceae ELISA NA NA [64]

Quercus suber Fagaceae HPCE/Immunolocalization NA NA [103]

Rosa hybrida Rosaceae MS-AFLP NA NA [104]

Solanum tuberosum Solanaceae MS-AFLP NA NA [105]

Theobroma cacao Malvaceae MSAP NA NA [61]

MSAP NA NA [106]

HPLC 5-AzaC

GDM increased as SE proceeded and during the
extended SE the aged somatic embryos could recover
embryogenic potential when treated with 5-AzaC (20

µM). The results of this study suggested that
long-term SE in cocoa induced a decrease in

embryogenic potential, but that it could be reversed
by 5-AzaC supplementation

[79]

Triticosecale Poaceae HPLC NA NA [107]

Vitis vinifera Vitaceae MSAP NA NA [108]

Zea mays Poaceae MSAP NA NA [109]

meDIP NA NA [110]

5-AzaC 5-Azacytidine, CRED-RA Coupling of Restriction Enzyme and Random Amplification, ELISA Enzymatic-Linked Immunosorbent Assay, HPCE Hight-Performance Capillary
Electrophoresis, HPLC High-Performance Liquid Chromatography, meDIP Methylated DNA Immunoprecipitation, MS-AFLP Methylation Sensitive—Amplification Fragment Length
Polymorphism, MS-RAPD Methylation Sensitive—Random Amplification of Polymorphic DNA, MSAP Methyl-Sensitive Amplification Polymorphism, TUNEL Terminal deoxynucleotidyl
transferase dUTP Nick End Labeling, ECP 2-amino-5-ethoxycarbonyl-pyrimidine-4 (3H), NA Not Applied.
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5-AzaC and 2,4-D Can Work Together During SE

There are important but contradictory studies that describe the effects of the application of 5-AzaC
along with 2,4-D in SE protocols. For instance, the addition of 20.5 µM of 5-AzaC + 4.52 mM of 2,4-D
in the first 24 h of the SE protocol in D. carota generated the same rate of somatic embryo formation
as in the control (with the same concentration of 2,4-D but without 5-AzaC) at the end of the process
(day 14) [90]. In the same study, it was reported that the formation of somatic embryos at day 14 was
severely inhibited when 5-AzaC was applied (without 2,4-D) for three days after the 24-hour treatment.
In Cucurbita pepo a similar result was reported: the addition of 12.3 µM of 5-AzaC to the basal culture
medium (MSC) + 2,4-D caused a statistically significant decrease in DNA methylation in the DEC
line (producer of somatic embryos in early stages) and a non-significant reduction in the PEDC line
(producer of pro-embryogenic cells). The HEC line (producer of an equal proportion of embryos in
all different stages) showed a slight increase in the level of DNA methylation after the addition of
5-AzaC to MSC. The addition of 5-AzaC to MSC with or without 2,4-D did not significantly alter
the proportion of embryos in different stages compared to that found in the same medium without
5-AzaC [87]. On the other hand, in Acca sellowiana, the effect of 5-AzaC and 2,4-D on GDM during SE
showed that a pulse of 2,4-D (200 µM) + AzaC (50 µM) generates an increase in GDM and improves
the induction of SE [81].

We broadly discussed above that auxins are hypermethylating substances, while 5-AzaC has a
hypomethylating effect. However, because both substances have been used in different concentrations,
in different proportions (2,4-D/5-AzaC) and at different times (without mentioning the difference
between SE protocols and species studied), it is difficult to determine the optimal balance to obtain the
greatest embryogenic potential in SE protocols. One aspect that we can highlight in the three studies
cited above (D. carota, C. pepo, and A. sellowiana) is the moment where 5-AzaC was added. In C. pepo
5-AzaC was added to the medium where the embryogenic calluses already induced were established
before they formed somatic embryos. In Acca sellowiana, 5-AzaC was added as a pretreatment and had
positive effects on embryo generation. In the first two studies (D. carota and C. pepo) where 5-AzaC
was added late to the process, the results were visibly adverse. On the other hand, in A. sellowiana,
5-AzaC was added at the beginning of the process and had positive effects. This suggests that the time
at which 5-AzaC is added is determining in the outcome of the process: the earlier it is added, the less
negative the effects on SE will be.

Therefore, based on the SE systems in which the use of 5-AzaC is reported, one needs to do
some preliminary experiments to ensure reproducible results with the literature. These are the most
important:

• Test the effects of different concentrations of 5-AzaC to know the minimum levels to observe the
differential impact and maximum concentrations so that they are not toxic to the explants.

• Select the timing of the process for adding the inhibitor, as the effect could make the embryogenic
process more efficient or inhibit it, depending on whether 5-AzaC is applied before/during the
induction or development of the somatic embryos.

• If the culture medium includes reagents that sequester substances, such as activated carbon [111],
higher concentrations of the inhibitor should be applied than in culture media without this type
of reagent. Another option is to use a pre-treatment with the inhibitor for a specific time and then
transfer the explant to the conventional culture medium if it contains activated charcoal.

• Take into consideration the pH and temperature of the culture medium at the time the inhibitor is
applied. It has been reported that 5-AzaC is moderately stable in acidic solutions while rapidly
decomposing in alkaline media and that degradation is accelerated dramatically with increasing
temperature [112].
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Based on all of the information previously discussed, we propose an optimal time to add 5-AzaC
(Figure 4). Because there is a direct relationship between the development of SE and the levels
of GDM, it is essential to know the three common phases in which GDM has the most significant
influence. Before the SE induction process starts, explants exhibit elevated levels of GDM (probably
due to the high concentrations of 2,4-D used in the culture media to induce SE, which also affects the
endogenous production of ethylene and the SAM/SAH ratio [69]). Then, during the induction process
(specifically in the phase of acquisition of embryogenic competence), GDM reaches its lowest levels in
pro-embryogenic cells. Finally, GDM gradually increases from the phase of globular somatic embryos
to the seedling phase. Thus, we can hypothesize that 5-AzaC addition could help to reduce GDM in
the induction phase, promoting the establishment of an optimal level of methylation (mostly low).
This would trigger in the explant cells the acquisition of embryogenic competence. As SE progressed,
5-AzaC would be assimilated and later degraded, so that the normal increase of GDM required for SE
would follow its ordinary path in advanced developmental stages.

4. Conclusions

Low levels of DNA methylation are related to high embryogenic potential in explants during the
induction of the SE. However, it is still necessary to generate more information on other SE protocols
(by direct and indirect pathways) and make a more methodical comparison between mono- and
dicotyledonous plants to corroborate this pattern.

When such SE studies are available, it would be beneficial to study the biochemical, molecular
and epigenetic changes that accompany the acquisition or loss of morphogenic competence. In these
protocols (as in the vast majority of protocols that have been reported over the years in various
species), cultures need a high concentration of 2,4-D in the induction process. This auxin needs to be
reduced (or totally removed) to promote the development of somatic embryos. Moreover, the 5-AzaC
addition helps to reduce GDM in the induction phase, improving the establishment of an optimal level
of methylation (low) to be carried out in the explant cells’ acquisition of embryogenic competence.
With the use of 5-AzaC in SE protocols, it is possible to demonstrate that DNA methylation plays
a significant role in the acquisition of embryogenic competence of plant cells. In the near future,
there will be more accurate information about cellular processes that are directly affected by DNA
methylation during SE.

The DNA methylation level in several systems that have been used 5-AzaC to promote SE has been
determined with different methods such as HPLC, ELISA, MSAP and others (Table 1). However, the
selected methodology depends on the kind of DNA methylation to be analyzed and the information
that is needed to answer a specific biological question. Each method can give information about
DNA methylation such as global DNA methylation, regional DNA methylation, genome analysis,
methylation analysis DNA sequencing, detection of particular methylation patterns and individual
CpG analysis (Table 1) [21].

Author Contributions: Conceptualization, C.D.-l.-P. and P.O.-M.; Writing—Original Draft Preparation, P.O.-M.;
Writing—Review & Editing, C.D.-l.-P. and L.S.-C.; Supervision, C.D.-l.-P.; Project Administration, C.D.-l.-P.

Funding: This work was supported financially by a grant from Consejo Nacional De Ciencia Y Tecnologiaía
(CONACYT) to C.D. (285898) and L.S.C. (129717), and a CONACYT-scholarship to P.O.M. (438057).

Acknowledgments: We want to thank Carlos Torrecilla-Rodríguez for the support in the graphic design of
the images.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2018, 19, 3182 15 of 20

References

1. Shahzad, A.; Sharma, S.; Parveen, S.; Saeed, T.; Shaheen, A.; Akhtar, R.; Yadav, V.; Upadhyay, A.; Ahmad, Z.
Historical perspective and basic principles of plant tissue culture. In Plant Biotechnology: Principles and
Applications; Springer: Singapore, Singapore, 2017; pp. 1–36.

2. Hussain, A.; Qarshi, I.A.; Nazir, H.; Ullah, I.; Leva, A.; Rinaldi, L. Recent advances in plant in vitro culture.
Chapter 2012, 1, 1–28.

3. Von Arnold, S.; Sabala, I.; Bozhkov, P.; Dyachok, J.; Filonova, L. Developmental pathways of somatic
embryogenesis. Plant Cell Tissue Organ Cult. 2002, 69, 233–249. [CrossRef]

4. Thorpe, T.A.; Stasolla, C. Somatic embryogenesis. In Current Trends in the Eembryology of Angiosperms;
Springer: Dordrecht, The Netherlands, 2001; pp. 279–336.

5. Williams, E.; Maheswaran, G. Somatic embryogenesis: Factors influencing coordinated behaviour of cells as
an embryogenic group. Ann. Bot. 1986, 57, 443–462. [CrossRef]

6. Jain, S.M.; Gupta, P. Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Springer:
Cham, Switzerland, 2018; pp. i–xvi.

7. Lee, K.; Seo, P.J. Dynamic Epigenetic Changes during Plant Regeneration. Trends Plant Sci. 2018. [CrossRef]
[PubMed]

8. Loyola-Vargas, V.M. The History of somatic embryogenesis. In Somatic Embryogenesis: Fundamental Aspects
and Applications; Springer: Cham, Switzerland, 2016; pp. 11–22.

9. Heringer, A.S.; Santa-Catarina, C.; Silveira, V. Insights from proteomic studies into plant somatic
embryogenesis. Proteomics 2018, 18, 1700265. [CrossRef] [PubMed]

10. Góngora-Castillo, E.; Nic-Can, G.I.; Galaz-Ávalos, R.M.; Loyola-Vargas, V.M. Elaboration of Transcriptome
During the Induction of Somatic Embryogenesis. In Plant Cell Culture Protocols; Humana Press:
New York, NY, USA, 2018; pp. 411–427.

11. Fehér, A. Somatic embryogenesis—Stress-induced remodeling of plant cell fate. Biochim. Biophys. Acta 2015,
1849, 385–402. [CrossRef] [PubMed]

12. Jiménez, V.M. Involvement of Plant Hormones and Plant Growth Regulators on in vitro Somatic
Embryogenesis. Plant Growth Regul. 2005, 47, 91–110. [CrossRef]

13. Zavattieri, M.A.; Frederico, A.M.; Lima, M.; Sabino, R.; Arnholdt-Schmitt, B. Induction of somatic
embryogenesis as an example of stress-related plant reactions. Electron. J. Biotechnol. 2010, 13, 12–13.
[CrossRef]

14. Karami, O.; Aghavaisi, B.; Mahmoudi Pour, A. Molecular aspects of somatic-to-embryogenic transition in
plants. J. Chem. Biol. 2009, 2, 177–190. [CrossRef] [PubMed]

15. Elhiti, M.; Stasolla, C.; Wang, A. Molecular regulation of plant somatic embryogenesis. In Vitro Cell. Dev.
Biol. Plant 2013, 49, 631–642. [CrossRef]

16. Verdeil, J.-L.; Alemanno, L.; Niemenak, N.; Tranbarger, T.J. Pluripotent versus totipotent plant stem cells:
Dependence versus autonomy? Trends Plant Sci. 2007, 12, 245–252. [CrossRef] [PubMed]

17. Toonen, M.A.; Hendriks, T.; Schmidt, E.D.; Verhoeven, H.A.; van Kammen, A.; de Vries, S.C. Description of
somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta
1994, 194, 565–572. [CrossRef]

18. Fehér, A. Why somatic plant cells start to form embryos? In Somatic Embryogenesis; Springer: Berlin, Gerlin,
2005; pp. 85–101.

19. Mahdavi-Darvari, F.; Noor, N.M.; Ismanizan, I. Epigenetic regulation and gene markers as signals of early
somatic embryogenesis. Plant Cell Tissue Organ Cult. 2015, 120, 407–422. [CrossRef]

20. Kumar, V.; Van Staden, J. New insights into plant somatic embryogenesis: An epigenetic view.
Acta Physiol. Plant. 2017, 39, 194. [CrossRef]

21. De-la-Peña, C.; Nic-Can, G.I.; Galaz-Ávalos, R.M.; Avilez-Montalvo, R.; Loyola-Vargas, V.M. The role of
chromatin modifications in somatic embryogenesis in plants. Front. Plant Sci. 2015, 6, 635. [CrossRef]
[PubMed]

22. Bhojwani, S.S.; Razdan, M.K. Plant Tissue Culture: Theory and Practice; Elsevier: Amsterdam, The Netherlands,
1986; Volume 5, pp. 91–112.

http://dx.doi.org/10.1023/A:1015673200621
http://dx.doi.org/10.1093/oxfordjournals.aob.a087127
http://dx.doi.org/10.1016/j.tplants.2017.11.009
http://www.ncbi.nlm.nih.gov/pubmed/29338924
http://dx.doi.org/10.1002/pmic.201700265
http://www.ncbi.nlm.nih.gov/pubmed/29369500
http://dx.doi.org/10.1016/j.bbagrm.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25038583
http://dx.doi.org/10.1007/s10725-005-3478-x
http://dx.doi.org/10.2225/vol13-issue1-fulltext-4
http://dx.doi.org/10.1007/s12154-009-0028-4
http://www.ncbi.nlm.nih.gov/pubmed/19763658
http://dx.doi.org/10.1007/s11627-013-9547-3
http://dx.doi.org/10.1016/j.tplants.2007.04.002
http://www.ncbi.nlm.nih.gov/pubmed/17499544
http://dx.doi.org/10.1007/BF00714471
http://dx.doi.org/10.1007/s11240-014-0615-0
http://dx.doi.org/10.1007/s11738-017-2487-5
http://dx.doi.org/10.3389/fpls.2015.00635
http://www.ncbi.nlm.nih.gov/pubmed/26347757


Int. J. Mol. Sci. 2018, 19, 3182 16 of 20

23. Karim, R.; Tan, Y.S.; Singh, P.; Khalid, N.; Harikrishna, J.A. Expression and DNA methylation of SERK, BBM,
LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf. Physiol. Mol. Biol. Plants 2018,
24, 741–751. [CrossRef] [PubMed]

24. Karim, R.; Nuruzzaman, M.; Khalid, N.; Harikrishna, J. Importance of DNA and histone methylation in
in vitro plant propagation for crop improvement: A review. Ann. Appl. Biol. 2016, 169, 1–16. [CrossRef]

25. Razin, A.; Riggs, A.D. DNA methylation and gene function. Science 1980, 210, 604–610. [CrossRef] [PubMed]
26. Taylor, S.M.; Jones, P.A. Mechanism of action of eukaryotic DNA methyltransferase: Use of

5-azacytosine-containing DNA. J. Mol. Biol. 1982, 162, 679–692. [CrossRef]
27. Jones, P.A.; Taylor, S.M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980, 20, 85–93.

[CrossRef]
28. Niwa, O.; Sugahara, T. 5-Azacytidine induction of mouse endogenous type C virus and suppression of DNA

methylation. Proc. Natl. Acad. Sci. USA 1981, 78, 6290–6294. [CrossRef] [PubMed]
29. Hoffmann, J.; Steffen, D.; Gusella, J.; Tabin, C.; Bird, S.; Cowing, D.; Weinberg, R. DNA methylation affecting

the expression of murine leukemia proviruses. J. Virol. 1982, 44, 144–157. [PubMed]
30. Groudine, M.; Eisenman, R.; Weintraub, H. Chromatin structure of endogenous retroviral genes and

activation by an inhibitor of DNA methylation. Nature 1981, 292, 311–317. [CrossRef] [PubMed]
31. Hepburn, A.; Clarke, L.; Pearson, L.; White, J. The role of cytosine methylation in the control of nopaline

synthase gene expression in a plant tumor. J. Mol. Appl. Genet. 1983, 2, 315–329. [PubMed]
32. Santi, D.V.; Garrett, C.E.; Barr, P.J. On the mechanism of inhibition of DNA-cytosine methyltransferases by

cytosine analogs. Cell 1983, 33, 9–10. [CrossRef]
33. Li, J.; Wang, M.; Li, Y.; Zhang, Q.; Lindsey, K.; Daniell, H.; Jin, S.; Zhang, X. Multi-omics analyses reveal

epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation (SRA)
process. Plant Biotechnol. J. 2018. [CrossRef] [PubMed]
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