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Abstract: Glioma growth is often accompanied by a hypoxic microenvironment favorable for the
induction and maintenance of the glioma stem cell (GSC) phenotype. Due to the paucity of cell
models of Isocitrate Dehydrogenase 1 mutant (IDH1mut) GSCs, biology under hypoxic conditions
has not been sufficiently studied as compared to IDH1 wildtype (IDH1wt) GSCs. We therefore grew
well-characterized IDH1mut (n = 4) and IDH1wt (n = 4) GSC lines under normoxic (20%) and hypoxic
(1.5%) culture conditions and harvested mRNA after 72 h. Transcriptome analyses were performed
and hypoxia regulated genes were further analyzed using the expression and clinical data of the
lower grade glioma cohort of The Cancer Genome Atlas (LGG TCGA) in a confirmatory approach
and to test for possible survival associations. Results show that global expression changes were more
pronounced in IDH1wt than in IDH1mut GSCs. However, when focusing on known hypoxia-regulated
gene sets, enrichment analyses showed a comparable regulation in both IDH1mut and IDH1wt GSCs.
Of 272 significantly up-regulated genes under hypoxic conditions in IDH1mut GSCs a hypoxia-related
survival score (HRS-score) of five genes (LYVE1, FAM162A, WNT6, OTP, PLOD1) was identified by
the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm which was able to predict
survival independent of age, 1p19q co-deletion status and WHO grade (II vs. III) in the LGG TCGA
cohort and in the Rembrandt dataset. Altogether, we were able to identify and validate a novel
hypoxia-related survival score in IDH1mut GSCs consisting of five hypoxia-regulated genes which
was significantly associated with patient survival independent of known prognostic confounders.

Keywords: lower grade glioma; glioma stem cells; isocitrate dehydrogenase mutation; hypoxia gene
signature; The Cancer Genome Atlas

1. Introduction

The discrimination of glioma into IDH1wt and IDH1mut tumors has marked an important
milestone due to its profound clinical impact [1]. Whereas patients developing glioblastoma (GBM),
the most common and malignant glioma in adults, have a dismal prognosis and usually die after
about 15 months with the current standard of care (maximal safe surgical resection, followed by
radiotherapy plus concomitant and adjuvant chemotherapy with temozolomide), lower grade glioma
(LGG) patients show a much better clinical course [2–5]. To understand the differences in underlying
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tumor biology the international consortium ‘The Cancer Genome Atlas’ (TCGA) used genome-wide
data from multiple platforms to identify molecular subtypes for GBM and LGG with prognostic
relevance [6,7]. The main distinction is the IDH mutation which has a very high incidence within
LGG patients of up to 80% and is virtually absent in primary GBM [7]. This gain of function mutation
leads to the production of the onco-metabolite 2-hydroxyglutarate (2HG) which interferes with many
pathways and its opposing appearance suggests that IDHmut and IDH1wt glioma are in fact biologically
different tumor types [8,9].

As a consequence, the traditional WHO classification has been revisited in 2016 and has
implemented molecular markers in addition to histology [10]. Among IDHmut gliomas, the WHO
classification system distinguishes three grades (◦II-IV) based on histopathologic features. Within each
grade, IDHmut gliomas have a significantly better prognosis compared with their IDHwt counterparts.
Although the underlying mechanisms have not been fully elucidated the discovery of the IDH mutation
had a fundamental impact on glioma research [7,11–13].

There is a large body of evidence that a subpopulation of tumor cells which are reminiscent
of normal neural stem cells and therefore called glioma stem cells (GSCs) are driving tumor
formation and resistance to chemoradiation [14–17]. Moreover, their microenvironment seems to
profoundly contribute to the observed treatment resistance which especially applies to the effect
of low oxygen tension [18]. Hypoxia has been shown to promote and stabilize stem cell-like
properties, such as invasiveness, differentiation, proliferation, self-renewal capacity, and resistance
to radiochemotherapy and is found in solid tumors where growth outruns vessel supply and
oxygenation [19–25]. This translates into a significant survival disadvantage in cancers of the uterine
cervix, head and neck, and soft tissue sarcomas [26–30]. In lower and high grade-glioma stratification
for IDH1 status showed conflicting results. While some investigators report a transcriptional activation
of hypoxia-related genes, others describe the opposite effect most likely due to different methodological
approaches [31–35]. Since IDH1 is part of the tricarboxylic acid (TCA) cycle and plays a major role
in energy and oxygen metabolism, it is crucial to understand how hypoxia alters the phenotype of
IDHmut glioma cells as compared to its wildtype counterpart [9].

In the present study we cultivated GSCs derived from human IDH1mut and IDHwt tumor tissues
instead of cells where IDH mutations were artificially introduced and thus did not represent the
natural genetic background. This allowed us to gain relevant insights on a whole transcriptomic level
and to identify a gene set of five hypoxia-regulated genes in IDHmut GSCs prognosticating patient
survival independent of known confounders such as age, codel-subtype or WHO grade.

2. Results

2.1. Distinct Response to Hypoxia of IDH1mut and IDH1wt Glioma Stem Cells

To analyze the effect of hypoxia on the transcriptome of IDH1mut glioma in comparison to IDH1wt

GBM we made use of human IDH1wt (n = 4) as well as of IDH1mut (n = 4) GSC lines (Supplementary
Materials Figure S1, Table 1). All four IDH1wt GSCs were derived from primary GBM. As for IDH1mut

GSCs, one cell line was established from an anaplastic oligodendroglioma and three from secondary
GBM. A maintained 2HG secretion in the supernatant of all IDH1mut GSCs as a result of the IDH1
mutation could be confirmed by an enzymatic assay with concentrations ranging from 9.4–1792.1 µM,
whereas in IDH1wt GSCs 2HG levels were below the detection limit (Table 1) [36]. To induce hypoxic
conditions, we cultivated the cells for 72 h under oxygen deprivation (1.5% O2) while cultivating
control cells under standard normoxic conditions (~20% O2).

To analyze the transcriptome changes in response to hypoxia we conducted mRNA microarrays
followed by a principal component analysis (PCA, Figure 1A). Interestingly, the hypoxic as well as the
normoxic samples of the same GSC line showed only small differences in the principal component
(PC) 1, which represents the highest variance in the data, regardless of their IDH1 status. This suggests
that the individual genetic background of each glioma cell line causes larger transcriptomic changes
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than the IDH1 status or the oxygen levels (Figure 1B). Nevertheless, PC2 clearly distinguishes IDH1mut

(upper area) and IDH1wt cells (lower area). However, when analyzing the difference in the PC2 we
found a uniform increase of PC2 in hypoxia in IDH1wt cells, whereas IDH1mut cells showed only
a small shift which was significantly lower as compared to IDH1wt GSCs (Figure 1C, p = 0.028).
This suggests that the global transcriptome of IDH1mut GSCs seems to react to oxygen levels to a much
lesser extent than in IDH1wt GSCs. This hypothesis was sustained when we analyzed the differentially
regulated genes in response to hypoxia in IDH1mut and IDH1wt GSCs (Figure 2A,B). Here, we found
519 hypoxia-regulated genes in IDH1mut GSCs (p = 0.01, n = 272 up, n = 247 down, Figure 2E) while in
IDH1wt GSCs as much as 4365 genes were regulated under hypoxic conditions (n = 1603 up, n = 2762
down, Figure 2E).

Table 1. Description of glioma stem cell lines.

GSC Line Histology IDH1 Status 2HG (µM) Gender Age

NCH551b sGBM mut 139.6 m 48
NCH612 Oligo III mut 40.2 m 47
NCH620 sGBM mut 9.4 f 35
NCH645 sGBM mut 1792.1 m 66

NCH421k pGBM wt b.d.l. m 77
NCH601 pGBM wt b.d.l. m 84
NCH644 pGBM wt b.d.l. f 74

NCH660h pGBM wt b.d.l. f 81

p/sGBM = primary/secondary glioblastoma, Oligo = Oligodendroglioma, mut = mutant, wt = wildtype, m = male,
f = female, b.d.l. = below detection limit.
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Figure 1. Transcriptome analysis of IDH1mut and IDH1wt glioma stem cells (GSCs) cultured in
normoxia and hypoxia. (A) Principal component analysis of global expression changes of IDH1mut (blue
symbols) and IDH1wt (red symbols) GSCs. Different geometric forms (triangles, squares, diamonds,
circles) represent different cell lines. Hypoxia: light, normoxia: dark colors. (B) Absolute difference
between hypoxic and normoxic samples in PC1 and (C) significant larger difference in PC2 in IDH1wt

cells compared to IDH1mut GSCs (* p < 0.028).

Next we used gene set enrichment analyses (GSEA) to test if we can reproduce the low hypoxic
response of IDH1mut GSCs by analyzing published hypoxia gene signatures. To this end we assessed
the concerted change of functionally related genes forming a set by the Gene Set Variation Analysis
(GSVA) algorithm which computes enrichment scores for every sample (Table 2, Figure 2C,D).
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Interestingly, this analysis revealed in IDH1wt and IDH1mut GSCs, in contrast to the PCA and the
numbers of differentially expressed genes, a comparable response to hypoxia in all four previously
published hypoxia associated gene sets [37–40]. This finding suggests that even though response to
hypoxia of IDH1mut GSCs is indeed less pronounced on the transcriptome level those genes that have
been observed to be regulated are specific for hypoxic conditions. However, the intersection study of
the regulated genes revealed only a small overlap of differentially expressed genes between IDH1mut

and IDH1wt GSCs (Figure 2E). Only 18/1857 (1.0%) were commonly up- and 9/3000 (0.3%) commonly
downregulated. These results again highlight the fundamental difference in biology of IDH1mut and
IDH1wt gliomas.
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Figure 2. (A,B) Volcano plots of differentially up- and downregulated genes in IDH1mut (blue) and
IDH1wt (red) GSCs. (C,D) Gene set enrichment analysis (GSE) of known hypoxia signatures as
published by Fardin et al. (Set 1) [37], Semenza et al. (Set 2) [39], Liberzon et al. (Set 3) [38], and Qi et al.
(Set 4) [40] for IDH1mut (blue) and IDH1wt (red) GSCs. A higher GSE score indicates a better correlation
with the published gene set and considered significant if p < 0.05 (paired Student’s t-Test, * p < 0.05;
** p < 0.01) (n = number of genes in set). (E) Venn diagrams showing the overlap of differentially
expressed genes in hypoxia of IDHmut and IDH1wt GSCs.
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Table 2. Gene set enrichment analysis (GSEA) by known hypoxia sets.

Gene Enrichment Set Fardin (n = 62) Semenza (n = 36) Liberzon (n = 200) Qi (n = 140)

IDH1mut

mean normoxia −0.553 −0.364 −0.236 −0.185
mean hypoxia 0.166 0.024 −0.036 −0.018

difference in mean −0.719 −0.389 −0.200 −0.167
p-value 0.003 0.021 0.048 0.031

IDH1wt

mean normoxia −0.112 0.012 −0.060 −0.073
mean hypoxia 0.398 0.258 0.273 0.239

difference in mean −0.510 −0.246 −0.333 −0.313
p-value 0.017 0.005 0.006 0.008

n = number of genes in signature.

2.2. Hypoxia Score Prognosticates Survival in LGG Patients Independent of 1p19q Co-Deletion Status, WHO
Grade and Age

Since hypoxia has often been related to the outcome of patients we sought to develop a
hypoxia-related gene signature in LGG patients. Because this has already been extensively studied
in IDH1wt GSCs we solely focused on the 272 genes up-regulated in hypoxia in IDH1mut GSCs
(Supplementary Materials Table S1). To this end, we used the machine learning technique LASSO
which at the same time selects unsupervised from the 272 input genes the most informative ones
and fits a Cox ph regression model with an optimal prediction power for all 395 IDH1mut patients
in the LGG TCGA dataset, regardless of their 1p19q co-deletion status and WHO grade (II and III).
The process of elimination of non-informative genes is visualized by the cross-validation error curve in
Figure 3A, where all genes are included on the left side and the prediction error drops to a minimum
(black dotted line) with only the five most important genes left in the model (Figure 3A).
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Interestingly, LASSO selected genes with negative and positive coefficients implicating that 
namely LYVE1 and FAM162A are associated with a better survival when up-regulated, whereas 
WNT6, OTP, and PLOD1 are associated with a worse survival (Figure 3B). We could not find 
classical hypoxia response elements in the promoter sequences of these genes, but CHIPseq analysis 
to identify HIF2a binding sites revealed an association to OTP [41]. Noteworthy, PLOD1, mediating 
crosslinking of collagen fibers, is the only commonly up-regulated gene in both IDHmut and IDH1wt 
GSCs under hypoxia and has shown to be regulated by HIF1alpha in breast cancer cells leading to 
increased invasion and metastasis [42]. The survival associations could be validated on a single gene 

Figure 3. Development of a five gene hypoxia score in the lower grade glioma cohort of The Cancer
Genome Atlas (LGG TCGA) dataset. (A) The cross-validation error curve shows the regularization
path of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. The elimination of
non-informative genes is visualized by the decreasing prediction error to a minimum (black dotted line)
with only the five most important genes left in the Cox ph model (grey shaded area = 5–95% confidence
interval). (B) These five genes have negative and positive coefficients, implicating that namely LYVE1
and FAM162A correlate with a better survival when up-regulated, whereas WNT6, OTP, and PLOD1
correlate with a worse survival.

Interestingly, LASSO selected genes with negative and positive coefficients implicating that
namely LYVE1 and FAM162A are associated with a better survival when up-regulated, whereas WNT6,
OTP, and PLOD1 are associated with a worse survival (Figure 3B). We could not find classical hypoxia
response elements in the promoter sequences of these genes, but CHIPseq analysis to identify HIF2a
binding sites revealed an association to OTP [41]. Noteworthy, PLOD1, mediating crosslinking of
collagen fibers, is the only commonly up-regulated gene in both IDHmut and IDH1wt GSCs under
hypoxia and has shown to be regulated by HIF1alpha in breast cancer cells leading to increased
invasion and metastasis [42]. The survival associations could be validated on a single gene level by
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log-rank tests after classifying the patients into high or low mRNA expression according to the median
(Supplementary Materials Figure S2). Based on these selected genes we created a hypoxia-related
survival score (HRS-score), which incorporates the expression changes of all five candidate genes to
prognosticate the survival for a given patient.

Next, we confirmed in univariate Kaplan-Meier analyses that the HRS-score predicts the survival
of IDHmut LGG patients independent of molecular and clinical covariates such as 1p19q co-deletion
status, WHO grade (II and III) and patient age at diagnosis for the used LGG TCGA cohort (Figure 4).
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When including age, codel subtype and WHO grade in a multivariate Cox ph analysis we found
that a high HRS-score is a highly significant predictor of shorter patient survival independent of age,
codel status and WHO grade (Figure 5; HR 5.85 [95% CI 2.89, 11.83] vs. 1.92 [1.16, 3.17], 1.12 [0.65, 1.93],
and 1.65 [0.96, 2,82], respectively). To validate the HRS-score in an independent dataset we applied it to
120 IDHmut LGG patients from the Rembrandt database. Here, we could again confirm the prognostic
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value of the HRS-score (Figure 5; HR 5.25 (95% CI 0.64, 1.59) vs. 2.1 (1.36, 3.25), 0.83 (0.49, 1.40),
and 1.01 (0.64, 1.59), respectively).
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Figure 5. Clinical, histological and molecular confounders were analyzed together with the continuous
HRS-score in a multivariate Cox ph model in the TCGA and Rembrandt dataset. A high HRS-score
proved to be a highly significant predictor of shorter patient survival independent of age, histology,
codel status, and WHO grade in both datasets.

Taken together, the analysis of differentially expressed genes under hypoxia in IDHmut GSCs
yielded five genes, whose incorporation into the HRS-score could predict patient survival in the LGG
TCGA and Rembrandt cohort independent of prognostic confounders.

3. Discussion

The discovery of mutations in IDH genes in glioma as compared to their IDH wildtype counterpart
has marked a fundamental milestone in the understanding of glioma biology [1]. While different
oxygen tensions have been extensively studied in IDH1wt glioma cells, due to the wide availability
of cell culture models, there is a paucity of IDH1mut glioma models limiting the analysis of hypoxic
conditions profoundly. Most experimental models have synthetically introduced the IDH1 mutation
into commonly used IDHwt cell lines such as U87MG or U251. A subsequent increase in HIF1alpha
expression suggests a possible oncogenic mechanism of the IDH1 mutation by mimicking the
tumorigenic effect of the hypoxic microenvironment [31–33,43]. In contrast, other groups have
demonstrated that HIF1alpha or HIF1alpha-responsive genes are either not affected by an IDH
mutation or even showed a decrease in the mRNA or protein expression [34,35,44–46]. Regarding
these heterogeneous results, we sought to add further knowledge by culturing human IDH1mut and
IDH1wt GSCs in hypoxia and analyze their transcriptome in their natural genomic background.

Comparative differential gene expression analysis between IDH1wt and IDH1mut GSCs suggested
that hypoxia has a bigger impact on IDH1wt GSC on the whole transcriptome than on IDH1mut

GSCs. However, after having performed a gene set enrichment analysis of several well-established
hypoxia gene signatures, a significant and specific enrichment has been found in IDH1mut GSCs
similar to IDH1wt GSCs. This finding suggests that IDH1mut GSCs seem to react to changes in
oxygen level in a more specific way than IDH1wt GSCs do. Interestingly, when looking at the list of
differentially regulated genes of IDH1mut and IDH1wt GSCs, only 18/1857 (1.0%) were commonly up-
and 9/3000 (0.3%) commonly downregulated. The fact that there is only a small fraction of overlapping
regulated genes shared by IDH1mut and IDH1wt GSCs further corroborates fundamental differences in
their biology.

To clarify the clinical relevance of hypoxia in IDHmut glioma, we further assessed whether the
differentially up-regulated genes in GSCs in hypoxia translate into useful clinical parameters using the
LGG TCGA dataset. Using the LASSO algorithm, we were able to create a hypoxia-related survival
score incorporating the regulation of five genes, whose upregulation (WNT6, OTP, and PLOD1) and
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downregulation (LYVE1 and FAM162A) show a worse survival in all molecular and histological
subgroups (1p19q co-deletion status and WHO II/III, Supplementary Materials Figure S2). Among
these, FAM162A and PLOD1 have been listed in the aforementioned gene sets by Fardin et al. (Set 1)
and additionally in the gene sets of Liberzon et al. (Set 3) and Qi et al. (Set 4) respectively. FAM162A
has further been shown to be HIF1alpha responsive and a mediator of the mitochondrial apoptotic
pathway [47]. Its elevated expression has been observed in gastric and uterine carcinoma [48–50].
PLOD1, the only commonly up-regulated gene in IDH1mut and IDH1wt GSCs under hypoxia, mediates
crosslinking of collagen fibers and has shown to be regulated by HIF1alpha in breast cancer cells
leading to increased invasion and metastasis [42]. The combination of WNT6 expression with the
expression of hypoxia pathway proteins identified a subgroup of hepatocellular carcinoma patients
predictive of poor survival [51]. LYVE1 is known to be an endothelial receptor crucial for dendritic
cells to enter lymph vessels by hyaluronan-mediated docking. Targeted deletion of LYVE1 resulted in
a decrease of the capability of dendritic cells to prime CD8+ T cell responses in skin-draining lymph
nodes [52]. OTP has shown to play an important role in the development of the neurosecretory system
in the hypothalamus and in terminal differentiation of neuroblasts [53]. Only recently, OTP has been
found to be a highly specific marker for pulmonary carcinoid tumors [54–56]. As for both LYVE1 and
OTP, to our knowledge this study presents the first evidence of hypoxia-related regulation and clinical
correlation in IDH1mut glioma patients.

Most importantly in the multivariate analysis the continuous HRS-score proved to be more robust
in prognosticating survival than WHO grade or 1p19q co-deletion subtype in the LGG TCGA cohort
as well as in the Rembrandt validation cohort. Despite these encouraging results, a limitation of the
present study might be that the transfer of our in vitro results to expression data of the LGG TCGA
cohort does not represent the oxygenation status of the tumors in vivo. But since we established our
cell culture models unbiased from synthetic genetic alterations, we believe that this study was able
to reflect hypoxic areas of the tumor as close as an in vitro study can offer and therefore might be of
value in better understanding IDH1mut glioma biology in the context of hypoxia. However, functional
experiments investigating selected genes for their causality to tumorigenesis or the IDH mutation
would be highly interesting and should be addressed in further studies. Taken together, this study
presents five hypoxia-associated genes whose expression can be incorporated in a novel HRS-score
with profound prognostic implications for the survival of IDHmut glioma patients. We hope that the
HRS-score could be used to further stratify IDH1mut glioma patients into high and low risk patients in
order to better guide treatment timing and estimate their aggressiveness.

4. Materials and Methods

4.1. Glioma Stem Cell Culture

Four IDH1wt and four IDH1mut patient-derived GSC lines were cultivated as described
(Table 1) [54]. In brief, cells were grown as floating neurospheres in DMEM/F-12 medium containing
20% BIT serum-free supplement, basic fibroblast growth factor (bFGF) and epidermal growth factor
(EGF) at 20 ng/mL each (all Provitro, Berlin, Germany). To study expression changes, IDH1mut

and IDH1wt GSCs were grown under normoxic (~20% O2) and hypoxic conditions (1.5% O2) as
previously reported [24,57]. Hypoxic conditions (1.5% O2, 5% CO2, 93.5% N2) were established in
an O2- and CO2-controlled tissue culture incubator (Nunc, Langenselbold, Germany) as previously
described [58]. mRNA was harvested after 72 h using the Qiagen Allprep RNA isolation kit according
to the manufacturer’s instructions.

The expression of several stem cell markers including CD133, SOX2, CD44, CSPG4, CD90,
and nestin in the IDH1mut GSCs has been shown by Kohanbash et al. [59]. Also for IDH1wt GSCs
elevated clonogeneity as well as expression of certain stem cell markers has been shown in previous
publications from our laboratory [19,60].
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4.2. (D)-2-Hydroxyglutarate Measurements

(D)-2-hydroxyglutarate levels were measured in the cell culture supernatant of IDH1mut GSCs
as decribed by Balss et al. [36]. In brief (d)-2-hydroxyglutarate dehydrogenase (HGDH) catalyzes the
reduction of NAD+ to NADH by oxidation of (d)-2-hydroxyglutarate to α-ketoglutarate. NADH is
then detected by a diaphorase/resazurin system which in turn can be measured by the fluorescent
product resorufin which is exited at 540 nm and detected at 610 nm.

4.3. Microarray Analysis and Data Normalization

1 µg of total RNA from normoxic and hypoxic cells was submitted to the Genomics Core
Facilities of the German Cancer Research Center (DKFZ, Heidelberg, Germany) for microarray analysis.
After purification, reverse transcription into cDNA and labeling according to the Illumina protocol,
samples were hybridized to Human HT-12 V.4.0 arrays (Illumina, San Diego, CA, USA). Raw data
can be accessed in the NCBI GEO repository under the accession number GSE118683. Raw intensity
data were obtained after image analysis of the fluorescent spot intensity reads. All preprocessing
and normalization steps were performed in the “R” programming environment (available online:
www.r-project.org). Inter-array normalization was conducted using vsn normalization in the vsn
package. Differential gene expression was assessed by a paired test with the limma package. Survival
analysis was conducted within the survival package. Gene set enrichment analysis for hypoxia related
gene sets in the C2 (curated gene sets) and C5 (GO gene sets) collections of the MSigDB library was
conducted by the GSVA package.

4.4. Lower Grade Glioma TCGA and Rembrandt Datasets

RNAseq data from the TCGA Lower Grade Glioma cohort were downloaded from firehose
(available online: https://gdac.broadinstitute.org). Raw data were voom normalized by the help of
the limma package. Of 515 patients, only IDHmut cases were considered for further clinical analysis
(n = 395). In line with The Cancer Genome Atlas Research Network, we analyzed survival in the
following IDH mutated subgroups: LGG with 1p/19q co-deletion (n = 159), LGG without 1p19q
co-deletion (n = 236) and LGG WHO◦ II (n = 214) and WHO◦ III (n = 181) (Supplementary Materials
Figure S3). The microarray raw data of Rembrandt were downloaded from the ArrayExpress archive
(accession number: E-MTAB-3073). CEL files were processed with the affy package and vsn normalized
in R. Clinical annotation data were retrieved from the G-DOC database (available online: https://gdoc.
georgetown.edu/gdoc/). Based on the clinical data we selected patients with either astrocytoma or
oligodendroglioma and completed survival data.

4.5. Statistics

LASSO (least absolute shrinkage and selection operator) is a linear regression which performs both,
variable selection and regularization in a given dataset to fit a model that describes a linear correlation
of a response variable (here survival) and several explanatory variables (here genes) [61]. This machine
learning algorithm is very powerful and fits better models than conventional Cox ph analyses if there
are many explanatory variables and a relatively low amount of samples. Nowadays this represents a
typical problem for datasets generated by high throughput techniques [62]. The assumption of LASSO
is that there is a reduced subset of explanatory variables within the population of all explanatory
variables which is highly informative to model the dependent variable. To select this subset LASSO
starts a process in which it iterates over a range of penalty factors (lambda) which is applied to
the coefficients of the explanatory variables. This forces some of the coefficients to become zero
which removes them effectively from the linear equation leading to the result of such a model [61].
To find the best value of lambda, LASSO is used in combination with the widely used cross-validation,
which divides a population into training and test samples. The training samples are used to fit a model
whose prediction accuracy is then tested on the test samples. The lambda with the lowest prediction

www.r-project.org
https://gdac.broadinstitute.org
https://gdoc.georgetown.edu/gdoc/
https://gdoc.georgetown.edu/gdoc/
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error represents the best model and remaining explanatory variables and their respective coefficients
can be extracted [61].

Furthermore, LASSO was adopted to fit Cox ph survival models and is implemented in the
broadly used glmnet package within the statistical software environment R [62]. Gene selection
for survival prediction of LGG TCGA patients was done by the cv.glmnet function within the
glmnet package (family = cox, alpha = 1). 20-fold cross-validation was used to assess the prediction
error for the regularization path. As recommended in the glmnet vignette we used the minimum
of the prediction error curve to select lambda and extracted the corresponding genes and their
coefficients [63]. Expression data were z-normalized prior to LASSO regression using the scale function.
Hypoxia-related survival scores (HRS-score) of TCGA and Rembrandt samples were predicted using
the predict.cv.glmnet function of the glmnet package based on the previously fitted model as follows:

HRS-score = ZLYVE1 × − 0.175 + ZFAM162A × − 0.021 + ZWNT6 × 0.100 + ZOTP × 0.132 + ZPLOD1 × 0.132 (1)

“Z” depicts the z-normalized raw expression values obtained by subtracting the population mean from
an individual expression value and then dividing the difference by the population standard deviation.

Statistical analyses in boxplots were performed using the “Prism 5” software (GraphPad, La Jolla,
California). p values for differences in survival between the groups were calculated with the log-rank
(Mantel Cox) test, whereas the median of expression was used to dichotomize the cohort and to define
“high” vs. “low”. Univariate and multivariate Cox regression analyses were performed to determine
the prognostic significance of selected candidate genes and the hypoxia score. A p-value ≤ 0.05 was
considered significant. Student’s t-Test was performed for the gene set enrichment analysis between
GSCs cultured in normoxia and hypoxia for IDH1mut and IDH1wt.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/10/
2903/s1.
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