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Abstract: To overcome the drawbacks of conventional drug delivery system, nanoemulsion have
been developed as an advanced form for improving the delivery of active ingredients. However,
safety evaluation is crucial during the development stage before the commercialization. Therefore,
the aim of this study was to evaluate the cytotoxicity of two types of newly developed nanoemulsions.
Turmeric extract-loaded nanoemulsion powder-10.6 (TE-NEP-10.6, high content of artificial surfactant
Tween 80), which forms the optimal nanoemulsion, and the TE-NEP-8.6 made by increasing the
content of natural emulsifier (lecithin) to reduce the potential toxicity of nanoemulsion were cultured
with various cells (NIH3T3, H9C2, HepG2, hCPC, and hEPC) and the changes of each cell were
observed followed by nanoemulsion treatment. As a result, the two nanoemulsions (TE-NEP-10.6
and TE-NEP-8.6) did not show significant difference in cell viability. In the case of cell line (NIH3T3,
H9C2, and HepG2), toxicity was not observed at an experimental concentration of less than 1 mg/mL,
however, the cell survival rate decreased in a concentration dependent manner in the case of primary
cultured cells. These results from our study can be used as a basic data to confirm the cell type
dependent toxicity of nanoemulsion.
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1. Introduction

Emulsions are small-sized droplets dispersed using two immiscible solutions with appropriate
surfactants and are called nanoemulsion if the size of the droplet is at nano-scale. Since nanoemulsions
can be fabricated in many different forms (liquids, creams, sprays, gels, aerosols, and foams),
they can be employed in a variety of applications, including food and pharmaceuticals [1,2].
For instance, bioavailability can be significantly improved through the encapsulation of poorly soluble
active ingredients, thus providing improved applicability [3,4].

Turmeric extract powder (TEP) used in this study for the production of curcumin nanoemulsion,
is a mixture containing a number of commercially available vegetable supplements [5]. Among them,
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the pharmacological activity of curcumin, an index substance of turmeric, has been reported through
many studies [6–8]. However, curcumin, a yellow hydrophobic polyphenolic component extracted
from turmeric has limited applications due to poor solubility and toxicity at high concentrations [9–11].
Moreover, its low bioavailability in the body remains as a major issue. To solve these problems,
curcumin nanoemulsion was prepared by using TEP to increase applicability and bioavailability
of curcumin.

Although nanotechnology have emerged as a technology that could positively modify or
control the functionality, stability, and usefulness of the active substances for high value-added
products [12–14], the regulation of nanotechnology incorporation varies in different countries
and methods as well as procedures for safety evaluation of nano-substances are also being
implemented [15–19]. For example, the toxicity of the nano-sized materials cannot be completely
identified in the human body, which is one of the major obstacle for commercialization (e.g., food,
cosmetics or drugs) [20,21]. Therefore, the safety evaluation of the nano-materials is crucial.

In this study, the toxicity of nanoemulsion as a carrier to improve the bioavailability of bioactive
substances such as curcumin (extracted from TEP), and the possibility of its application has been
verified through evaluating the potential toxicity. Two types of oil-in-water nanoemulsions containing
curcumin were prepared as shown in Figure 1 and Table 1. TE-NEP-8.6 was produced by lowering the
ratio of synthetic emulsifier (tween 80). The toxicity of each emulsion was evaluated at the cellular level
(3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase
(LDH) assay, Live/dead assay, and comet assay).
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Figure 1. Schematic of o/w nanoemulsion including curcumin. Turmeric extract-loaded nanoemulsion
powder (TE-NEP) was prepared using Turmeric extract powder (TEP). TE-NEP-10.6 has a HLB value
of 10.6, and TE-NEP-8.6 has a HLB value of 8.6. Abbreviations: o/w, oil in water; HLB, hydrophilic
lipophilic balance.

Table 1. Composition of turmeric extract-loaded nanoemulsion powder (TE-NEP).

Sample HLB Value MCT Oil (g)
Surfactant (g)

DW (mL) TEP (g) Dextrin (g)
Lecithin Tween 80

TE-NEP-8.6 8.6 500 400 100 9000 107.41 1107.41
TE-NEP-10.6 10.6 750 412.5 337.5 8500 161.11 1661.11

Abbreviations: HLB, hydrophile-lipophile balance; MCT, Medium-chain triglyceride; DW, distilled water;
TEP, turmeric extract powder, TE-NEP-8.6, turmeric extract-loaded nanoemulsion powder with HLB value of
8.6; TE-NEP-10.6, turmeric extract-loaded nanoemulsion powder with HLB value of 10.6.
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2. Results

Cytotoxicity of Turmeric Extract-Loaded Nanoemulsion

To assess the cell viability activity of turmeric extract-loaded nanoemulsion powder (TE-NEP)
against various cell types (NIH3T3, H9C2, HepG2, hCPC, and hEPC, respectively), MTT assay was
performed to evaluate the cell metabolic activity of living cells. Both cell lines and primary cells were
incubated with different concentrations of TE-NEP, TE-NEP-10.6, and TE-NEP-8.6 (0–20 mg/mL).
Cell viability was determined after 24 h of incubation. As can be seen in Figure 2, some of the
extracts induced cell cytotoxicity in certain concentrations. In all cell types, TEP induced cytotoxicity
in proportion to its concentration. In the case of cell lines, toxicity was not observed after the
treatment with two nanoemulsions except for H9C2 at a concentration of 5 mg/mL (Figure 2a–c).
The two nanoemulsion samples showed toxicity in proportion to the concentration of the sample at
concentrations above 0.25 mg/mL for hCPC and above 0.5 mg/mL for hEPC (Figure 2d,e). The results
of positive control are shown in Figure S2. Since the curcumin content varied between three groups
(turmeric extract and two nanoemulsions), the MTT assay was performed by matching the content
of curcumin to evaluate the toxicity according to its exact content. As a result, the toxicity of
the TEP decreased (Figure S3). The NIH3T3 cell line showed cell viability of less than 85% at
the concentrations of 3.248 and 16.24 µg/mL in TEP and two nanoemulsion samples, respectively
(Figure S3a). On the other hand, the cell viability of H9C2 cells tended to decrease in proportion to the
concentration of curcumin. At the concentration of 0.812 µg/mL, all of the sample groups showed
cell viability below 85% (Figure S3b). In the case of human hepatocytes (HepG2), TE-NEP-10.6 and
TE-NEP-8.6 showed cell viability of 66 ± 2.7% and 27 ± 3.7% at concentration of 32.48 µg/mL,
respectively (Figure S3c). In contrast, human-derived primary cells showed dosage-dependent
cytotoxicity in all groups (Figure S3d,e). Compared with the results obtained by adjusting the content
of curcumin, the high toxicity of TEP when treated with the same concentration of powder is due to
the high concentration of curcumin which is toxic to the cells.Int. J. Mol. Sci. 2018, 19, 280 4 of 12 
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The viability of each cells was visualized by fluorescence staining (Figure 4). Live cells and dead 
cells were stained with calcein-AM and EthD-1, respectively. TEP was cytotoxic in a concentration-
dependent manner in all cell types. The number of dead cells increased, and the viability decreased 
significantly at the highest concentration of 5 mg/mL. In NIH3T3 and HepG2, cells showed low 

Figure 2. Evaluation of cell viability by MTT assay on (a) NIH3T3 cell line, (b) H9C2 cell line, (c) HepG2
cell line, (d) hCPC primary cell, (e) hEPC primary cell treated with Turmeric extract powder (TEP)
and turmeric extract-loaded nanoemulsion powder with HLB values of 10.6 (TE-NEP-10.6) and 8.6
(TE-NEP-8.6), respectively. Cells were incubated with nanoemulsion samples (0.025, 0.05, 0.1, 0.25,
0.5, 1 and 5 mg/mL) for 24 h. Experiments were repeated 3 times independently. *, **, *** p < 0.05,
compared to the control.
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In addition, the cytotoxicity of the samples (TEP, TE-NEP-8.6, and TE-NEP-10.6) was assessed
by LDH assay, which assessed cell damage by LDH released from damaged cells. In all cell lines,
the LDH assay results of TEP and two nanoemulsion samples were similar to MTT assay results,
but in HepG2, TEP showed toxicity at concentrations above 1 mg/mL (Figure 3a–c). Concentration
dependent cytotoxicity was detected at hCPC treated TEP and the two nanoemulsions were toxic only
at the highest concentration of 5 mg/mL (Figure 3d). On the other hand, hEPC showed high toxicity
results regardless of concentration in TEP, and concentration-dependent toxicity was confirmed at
higher than 0.5 mg/mL of two nanoemulsions (Figure 3d). Figure S4 shows the results of positive
control according to each cell types. When the content of curcumin was matched, the LDH analysis
results were similar to that of MTT assay (Figure S5). Overall, NIH3T3 and H9C2 showed high levels
of cytotoxicity at 16.24 and 8.12 µg/mL, respectively (Figure S5a,b). In the case of HepG2, TEP showed
a concentration-dependent cytotoxicity from 3.248 µg/mL, and the two nanoemulsions showed
cytotoxicity at the highest concentration of 32.48 µg/mL (Figure S5c). For hEPC, the nanoemulsion
showed concentration dependent cytotoxicity from 0.812 to 32.48 µg/mL, while for hCPC, the highest
toxicity was observed at 8.12 µg/mL nanoemulsion concentration (Figure S5d,e).
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Figure 3. The cytotoxicity effects of TEP, TE-NEP-10.6 and TE-NEP-8.6 (0.025, 0.05, 0.1, 0.25, 0.5, 1 and
5 mg/mL) on (a) NIH3T3, (b) H9C3, (c) HepG2, (d) hCPC and (e) hEPC. Cell death was measured
with the LDH assay after 24 h. Experiments were repeated 3 times independently. *, **, *** p < 0.05,
compared to the control.

The viability of each cells was visualized by fluorescence staining (Figure 4). Live cells
and dead cells were stained with calcein-AM and EthD-1, respectively. TEP was cytotoxic in
a concentration-dependent manner in all cell types. The number of dead cells increased, and the
viability decreased significantly at the highest concentration of 5 mg/mL. In NIH3T3 and HepG2,
cells showed low toxicity against nanoemulsion. On the other hand, in the case of H9C2, it was
confirmed that most of the cells were dead at 5 mg/mL. The primary cultured cells, hCPC, indicated
definite concentration dependent cytotoxicity. hEPC showed significantly reduced cell density, similar
to H9C2, due to the depletion of dead cells at a concentration of 5 mg/mL. Figure S6 implied
quantification data for living cells. The live/dead test results for all experimental concentrations
are shown in Figure S7.
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Figure 4. Representative fluorescence live/dead images of NIH3T3, H9C3, HepG2, hCPC, and hEPC.
Each cell was stained with calcein-AM (green)/ethidium homodimer (red) LIVE/DEAD assay after the
sample (TEP, TE-NEP10.6 and TE-NEP-8.6) treatment (24 h). Scale bar = 200 µm.

3. Discussion

Mouse fibroblasts (NIH3T3), rat heart myoblasts (H9C2) were selected as representative animal
cell line. Since the liver is a detoxifying organ where bulk of nutrients are received [22], HepG2
was chosen as representative of human-derived cell lines. Once received, metabolized nutrients are
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then released back into blood stream through the blood vessel, and blood is pumped throughout the
body from the heart [23]. Therefore, human cardiac progenitor cells (hCPC) and human endothelial
progenitor cells (hEPC) were selected as representative of primary human cells. In particular, it would
be possible to evaluate more reliable toxicity towards humans by using various human-derived
primary cells [24].

The TEP is a mixture containing a number of commercially available vegetable supplements [5].
Among them, the pharmacological activity of curcumin, an index substance of turmeric, has been
reported through research [6–8]. Curcumin, a yellow hydrophobic polyphenolic component extracted
from turmeric has limited applications due to low solubility and availability [9–11]. Moreover, its low
bioavailability in the body remains as a major issue. To solve these problems, curcumin nanoemulsion
was prepared by using TEP to increase applicability and bioavailability of curcumin. Nanoemulsions
are widely applied in drug delivery systems and food applications due to their biocompatibility and
permeability enhancing properties [25,26]. In addition, the materials used to make the nanoemulsion,
water, oil (Medium-chain triglyceride (MCT) oil), and surfactant (Lecithin and Tween-80), have been
approved for food use [27,28]. In particular, MCT oil is a vegetable oil, and lecithin is a component
extracted from soybeans. According to the Material Safety Data Sheet (MSDS), both substances
are highly safe food ingredients not classified as hazardous/hazardous substances. Tween 80 is
a hydrophilic emulsifier and is the most widely used emulsifier to make oil in water nanoemulsion [29].
However, Tween 80 have been reported to be toxic in some cases and therefore the allowable amount of
Tween 80 used as a food additive is 11.8 g/kg for nutritional supplement and 1 g/kg for non-standard
processed food. The Tween 80 content of the nanoemulsion (TE-NEP) was 337.5 g/10 L, and after
mixing with dextrin powder, the final Tween 80 contained in the dried powder (TE-NEP) was about
37 g/kg (3.7%) (Table 1).

The content of curcumin, which is a target substance contained in the nanoemulsion,
was confirmed by HPLC. The curcumin content of TEP was 32.48 µg/mL, and the curcumin contents of
TE-NEP-10.6 and TE-NEP-8.6 were 1.83 and 1.64 µg/mL, respectively (Table 2). TEP has about 17 times
higher curcumin content than nanoemulsion. Since curcumin can induce cell death according to its
concentration, as well as exhibit various pharmacological activities [30] (e.g., antioxidation [27,31,32],
antiinflammation [33,34], and antitumor effects [35–37]), our results showing cytotoxicity at high TEP
with a high curcumin content can be explained. Furthermore, based on the No Observed Adverse Effect
Level (NOAEL) value of curcumin (250–320 mg/kg bw/day), international expert scientific committee
JECFA (joint FAO/WHO Expert Committee on Food Additives) have proposed an acceptable daily
intake (ADI) of 3 mg/kg bw/day for insoluble curcumin. [38].

Table 2. Content of curcumin in TE-NEP.

Sample AVE (µg/mL) STD

TE-NEP-8.6 1.64 0.01
TE-NEP-10.6 1.83 0.02

TEP 32.48 0.46

AVE: Average; STD: Standard deviation.

Applied nanoemulsions can potentially induce toxicity which may be caused by their small
size [20]. For example, nanoparticles can penetrate the body through various pathways and remain in
the system because they can escape phagocytosis through macrophages, as opposed to micro-sized
particles. These residual nanoparticles with artificially created new chemical and physical properties
can cause toxicity due to the ongoing body reaction and active state [39–41]. Also, due to their
physico-chemical properties, such as their composition and concentration, particle size distribution,
electrical properties, and interfacial properties, toxicities may change in nano-sized materials even if
they were proven not to be toxic in micro- or macro-scales [20,42]. In addition, the toxicity test was
performed by matching the curcumin content of TEP with the two types of nanoemulsion samples
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(TE-NEP-10.6 and TE-NEP-8.6), and cytotoxicity of the nanomaterial was confirmed. The nanoemulsion
(TE-NEP-10.6 and TE-NEP-8.6) used in this study showed an average diameter of 196.93 ± 4.80 nm and
202.11 ± 4.21, respectively (Figure S1). The structure of nanoemulsion was confirmed by SEM analysis.
There are three reasons why emulsion sizes are observed to be smaller in representative SEM images:
(1) Particle size measured using dynamic light scattering technology can be changed by the angle of
light reflection or the mobility of the nanoemulsion in the solvent [43,44]. (2) The dispersed emulsion
can easily aggregate with one another and the size of the emulsion can be seen to be larger when
measured in the coagulated state [44–46]. Finally, (3) the sample is dried during sample preparation
for SEM analysis, at which time the size of the emulsion can be reduced.

Since DNA damage is one of the important factors in tumor formation, there have been concerns
regarding potential genotoxicity of the substance aimed for food or drug applications [47,48]. Previous
research reports have shown that nanomaterials can cause direct or indirect DNA damage [49,50].
For instance, it has been reported that curcumin itself may cause DNA damage induced by oxidative
stress at high doses (>8 µg/mL) in HepG2 cell lines [38,51]. These previous results support the genetic
toxicity results induced by TE-NEP in this study. In our study, genotoxic effects were determined
by comet assay to evaluate DNA damage of cells (NIH3T3, H9C2 and hCPC). This assay allows
DNA damage quantification in highly efficient manner with good sensitivity. In particular, hCPC and
hEPC showed higher cytotoxicity according to MTT, LDH and live/dead assay when comparing the
results from the cell lines (Figure 2). Specifically, the comet assay results of hCPC showed significant
differences in tail DNA% at all experimental concentrations (Figure S8b). This can be due to the fact that
various cells have different characteristics such as growth environment, proliferation, and membrane
properties. In general, primary cultured cells require stringent conditions such as various growth
factors for cell culture and are difficult to survive in normal environments required for cell lines [24,52].
Tumor cells are also more likely to survive in harsh environments that can be caused by nanomaterials,
due to their proliferative properties [53]. In addition, these cell specificities can explain relatively low
cytotoxicity at several concentrations of HepG2, a tumor cell line, identified in MTT (Figure 2c) and
LDH (Figure 3c) assays. Several studies also confirmed that the cytotoxicity of nanomaterials was
relatively lower in the case of HepG2 compared to other cell lines [54–56]. In this study, the cellular
toxicity of the prepared nanoemulsion was evaluated. Genetic toxicity assessment using comet assay
was also performed. However, in the case of genotoxicity, further experiments such as micronucleus
assay and gH2AX staining are required to produce more reasonable result. Ultimately, for practical
applications in food and drug delivery systems, animal-level toxicity testing should be essential before
the final application.

4. Materials and Methods

4.1. Sample Preparation

Turmeric extract powder (TEP) was provided by Ottogi Co., Ltd. (Anyang, Gyeonggi-do, Korea).
Two types of turmeric extract-loaded nanoemulsion powder (TE-NEP-8.6 and TE-NEP-10.6) were
provided by J.T. Kim (Keimyung University, Daegu, Korea). Briefly, oil phase was prepared by
dissolving 20% (w/w based on MCT) TEP in MCT oil containing soy lecithin. The aqueous phase
was prepared by mixing tween 80 and distilled water. The amount of soy lecithin and tween 80 were
adjusted to the hydrophilic lipophilic balance (HLB) values of 10.6 and 8.6. The coarse emulsion
was prepared by magnetic stirring under ambient temperature for 2 h. Then, nanoemulsions were
prepared by further homogenizing the coarse emulsion through high speed homogenization (HSH)
(HG-15D, Daihan Scientific Co., Ltd., Wonju, Korea) at 5000 rpm for 10 min, ultrasonication (US) with
a Vibra Cell (VCX-750, Sonics & Materials, Inc., Sandy Hook, CT, USA) for 15 min, and high-pressure
homogenization under 10,000 psi for 3 cycles. TE-NEP-10.6 and TE-NEP-8.6 indicate the turmeric
extract-loaded nanoemulsion with HLB values of 10.6 and 8.6, respectively. Control NE was prepared
by using the same method without turmeric extract powder. TE-NEP was prepared by spray drying
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(KL-8, Seo Gang Engineering Co., Ltd., Cheonan, Korea) with TE-NE solution and dextrin. The spray
drying conditions were as follows: inlet temperature at 120 ◦C, flow rate at 50 mL/min, and outlet
temperature at 180 ◦C.

4.2. Cell Culture

4.2.1. Cell Lines

Mouse fibroblasts (NIH3T3), rat heart myoblasts (H9C2), and human hepatoblastoma (HepG2)
cells were purchased from Korean Cell Line Bank (KCLB, Seoul, Korea). Cells were cultured in
high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM; Welgene, Daegu, Korea) supplemented
with 10% fetal bovine serum (FBS, Welgene) and 1X penicillin/streptomycin (P/S, Welgene). Cells
were routinely incubated under humidified atmosphere containing 5% CO2 at 37 ◦C and subcultured
when 85% confluent.

4.2.2. Primary Cells

Human endothelial progenitor cells (hEPCs) and Human cardiac progenitor cells (hCPCs) were
kindly provided by S.M. Kwon (Pusan University, Pusan, Korea, IRB number: 05-2015-133). The hEPCs
were cultured on 1% gelatin coated dishes in EC basal medium 2 (EBM-2MV, Lonza, Walkersville,
MD, USA) supplemented with 5% FBS, EGM-2-MV BulletKit and 1X P/S. The hCPCs were cultured
in Ham’s F12 medium (Hyclone, Logan, UT, USA) containing 10% FBS, 1X P/S, 0.005 U/mL human
erythropoietin (hEPO, R&D system, Minneapolis, MN, USA), 5 ng/mL human basic fibroblast growth
factor (hbFGF, PeproTech, Rocky Hill, NJ, USA) and 0.2 mM L-glutathione reduced (Sigma-Aldrich,
St. Louis, MO, USA). All of the cells were cultured under standard cell culture condition using 5% CO2

incubator at 37 ◦C and subcultured when 85% confluent.

4.3. Cytotoxicity Assay

4.3.1. MTT Assay

The cytotoxicity of cells was observed by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazoliumbromide (MTT, Duchefa, Haarlem, The Netherlands) assay. Briefly, cells
were seeded on a 96-well plate and cultivated for 24 h at 37 ◦C (5% CO2). The appropriate cell density
was selected according to the cell type. HepG2 at a cell density of 2 × 104 cells, all other cells at
1 × 104 cells per 100 µL medium were seeded into each well of the 96-well plates. Afterwards, the cells
were exposed to the TEP, TE-NEP-10.6, TE-NEP-8.6 at the several concentrations (0–20 mg/mL),
respectively and incubated for 1 day. Negative control was prepared by adding single-wall carbon
nanotube (SWCNT) at concentrations of 0.025, 0.05, 0.1, 0.25, 0.5, 1, and 5 mg/mL. After the
exposure, medium was changed followed by the addition of 5 µL of MTT reagent (5 mg/mL
stock). The cells were incubated for 3 h at cell culture condition, and lysed in DMSO (100 µL per
well). The development of color was measured spectrophotometrically using Epoch microplate
spectrophotometer (BioTek Instruments, Winooski, VT, USA) at 570 nm. All absorbance values
were corrected against blank wells. The cell viability was calculated by the following formula
(A = absorbance):

Cell viability (%) =
Asample − Ablank

Acontrol − Ablank
× 100

4.3.2. Live/Dead Assay

A LIVE/DEAD Viability/Cytotoxicity Kit for mammalian cells (Thermo Fisher Scientific,
Walthan, MA, USA) was used according to the manufacturer’s instructions to visualize cell viability.
Briefly, 20 µL of 2 mM ethidium homodimer-1 (EthD-1) stock solution and 5 µL of 4 mM calcein-AM
solutions were diluted in 10 mL of sterile and prewarmed Dulbecco’s Phosphate-Buffered Saline
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(DPBS, Welgene). The mixture was then mixed and distributed to cells in 96-well plates, followed by
incubation for 45 min at room temperature. After the staining procedure, stained cells were imaged
using fluorescent microscope (Nikon, ECLIPSE Ts2, Tokyo, Japan).

4.3.3. Lactate Dehydrogenase (LDH) Assay

Lactate dehydrogenase (LDH) leakage into the culture medium from dead cells was measured
using EZ-LDH Cell Cytotoxicity Assay Kit (Daeil Lab Service, Seoul, Korea). The LDH release assay
was used according to the manufacturer’s direction. In brief, cells were seeded in 96-well plates.
Optimal cell density was selected for each cell through the cell optimization step. Cells were treated
with a range of concentrations (0–20 mg/mL) of each sample (TEP, TE-NEP-8.6 and TE-NEP-10.6) for
24 h. CNT was used a positive control and group without cells were prepared as a blank. After the
incubation with treated sample for 1 day, the cultures were centrifuged at 600 g for 5 min. The high
control, which was the maximum amount of LDH that could be released from a cell by artificially
killing the cells, was combined with the lysis buffer before the collection of the supernatant and reacted
for 5 min at room temperature. Following the centrifugation, 10 µL of the supernatant was transferred
to new 96-well plate and 100 µL of LDH reaction mixture was added to each well and mixed carefully.
The mixture was reacted at room temperature for 30 min in dark. Absorbance was measured at 450 nm
using the microplate spectrophotometer after shaking gently. The percentage of total cellular LDH
released was determined using the following equation:

Cytotoxicity = (A − B)/(C − B) × 100

where A indicates the OD value of Experimental LDH release, B is OD value of spontaneous LDH
release, and C stands for OD value of maximal LDH release (high control).

4.4. Statistical Analysis

The statistical evaluations of results were analyzed by GraphPad Prism 5.0 (GraphPad Prism
Software, Inc., San Diego, CA, USA). The values are expressed as mean ± standard deviation (SD).
For comparison of multiple groups, one-way analysis of variance (ANOVA) with a post-hoc Bonferroni
test was applied. For all analyses, p < 0.05 was considered as statistically significant. The significance
of differences between two groups was performed by unpaired two-tailed Student t test.

5. Conclusions

Cell-level toxicity studies (MTT, LDH, Live/dead assay) were conducted for applications in food
or drug delivery of nanoemulsions. Overall, the toxicity of the nanoemulsion did not significantly
affect its composition and increased in a concentration-dependent manner. Results obtained from this
study provide a basic knowledge of the cytotoxicity of nanoemulsion on various cell types and can be
used as a basis for future animal experiments.

Supplementary Materials: The following are available online at www.mdpi.com/1422-0067/19/1/280/s1.
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