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Abstract: Cancer is a multistage process resulting in an uncontrolled and abrupt division of cells
and is one of the leading causes of mortality. The cases reported and the predictions for the near
future are unthinkable. Food and Drug Administration data showed that 40% of the approved
molecules are natural compounds or inspired by them, from which, 74% are used in anticancer
therapy. In fact, natural products are viewed as more biologically friendly, that is less toxic to normal
cells. In this review, the most recent and successful cases of secondary metabolites, including alkaloid,
diterpene, triterpene and polyphenolic type compounds, with great anticancer potential are discussed.
Focusing on the ones that are in clinical trial development or already used in anticancer therapy,
therefore successful cases such as paclitaxel and homoharringtonine (in clinical use), curcumin
and ingenol mebutate (in clinical trials) will be addressed. Each compound’s natural source,
the most important steps in their discovery, their therapeutic targets, as well as the main structural
modifications that can improve anticancer properties will be discussed in order to show the role of
plants as a source of effective and safe anticancer drugs.
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1. Introduction

Although cancer is the most devastating disease, causing more deaths than all coronary heart
diseases or all strokes, with 14.1 million new cases and 8.2 million deaths in 2012 [1], there is a register
of a continuous decline in cancer death rates that has resulted in an overall drop of 23% since 1991 [2].
Despite this progress, there is a register of 8.8 million deaths globally in 2015, and cancer is now the
leading cause of death in 21 states of the United States of America [2]. The total annual economic
cost of cancer in 2010 was approximately $1.16 trillion [3]. This burden is further expected to rise,
with over the predicted 20 million new cancer cases expected globally by 2025 [4]. Moreover, incidence
and death rates are increasing for several cancer types, for example liver and pancreas [2]. In the
low- and middle-income countries, the picture is even darker, where approximately 70% of deaths are
due to cancer diseases and where only one in five countries have the necessary data to drive cancer
policy [3,5]. Advancing the fight against cancer requires both increased investment in cancer pathology
research and in new safe, effective, inexpensive and minimal side effect anticancer agents.

For millennia, indigenous cultures around the world have used traditional herbal medicine to
treat a myriad of maladies. Plants constitute a common alternative for cancer treatment in many
countries, and more than 3000 plants worldwide have been reported to have anticancer properties [6,7].
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Although a recent study suggests that nowadays, the traditional medicines are less used, even in
populous middle-income countries [8], herbal medicine use is still common in oncology therapy
worldwide [6,7,9–11]. In the last two decades, the use of herbal remedies has also been widely
embraced in many developed countries as complementary and alternative medicine, but following
tight legislation and under surveillance [12]. Natural products have garnered increasing attention in
cancer chemotherapy because they are viewed as more biologically friendly and consequently more
co-evolved with their target sites and less toxic to normal cells [13]. Moreover, there is evidence that
natural product-derived anticancer drugs have alternative modes of promoting cell death [14,15].
Based on these facts, many researchers are now centering their investigations on the plants’ potential
to deliver natural products that can become useful to the pharmaceutical industry [16–18]. In fact,
the utilization of natural products as the background to discover and develop a drug entity is still a
research hot point. From small molecules approved for cancer chemotherapy between 1940 and 2014,
around 49% are natural products [19].

In spite of all the beneficial potential of medicinal plants and consequently of their products,
many continue without adequate monitoring to guarantee their effectiveness and safety [20,21].

The following sections offer an overview of compounds from plants that have been found to
exhibit activity against different types of cancer and are now on the market as anticancer drugs or
are involved in clinic trials, which means they are involved in the last stage of the development of a
clinical drug. Therefore, these compounds, which constitute successful cases in cancer therapy, will be
briefly discussed.

2. Secondary Metabolites from Plants as Anticancer Agents

Throughout history, plants have been a rich source of affordable natural compounds, explicitly
the secondary metabolites, that possess sufficient structural complexity so that their synthesis is
difficult or at this time not yet accomplished and exhibit a broad spectrum of bioactivities including
antitumor activity [22,23]. Secondary metabolites are mostly small organic molecules, produced
by an organism, that are not essential for its growth, development and reproduction. They can be
classified based on the pathway by which they are synthesized [24]. Additionally, a simple classification
includes three main groups: terpenoids (polymeric isoprene derivatives and biosynthesized from
acetate via the mevalonic acid pathway), phenolics (biosynthesized from shikimate pathways,
containing one or more hydroxylated aromatic rings) and the extremely diverse alkaloids (non-protein
nitrogen-containing compounds, biosynthesized from amino acids such as tyrosine, with a long history
in medication) [24,25]. Several new cytotoxic secondary metabolites are isolated from plants each year
and constitute a source of new possibilities to explore in order to fight against cancerous diseases.

Although some natural compounds have unique anticancer effects, their use in clinical practice
is not possible due to their physico-chemical properties (e.g., limited bioavailability) and/or their
toxicity. On the other hand, plant occurring secondary metabolites often can be excellent leads for drug
development. Thus, modifying the chemical structure of these more promising compounds is one
strategic way to increase their anticancer action and selectivity, improve their absorption, distribution,
metabolism and excretion properties and decrease their toxicity and side effects [26,27]. Herein we will
present the most significant achievements in the area of plant secondary metabolites, some already in
clinical use and others in clinical trials as anticancer agents, as well as their most efficient derivatives
obtained by structural modifications.

2.1. Metabolites Used in Cancer Therapy

During the last few decades, a wide range of cytotoxic agents was discovered from plants,
but very few of these managed to reach clinical use after successfully running through the entire long,
selective, expensive and bureaucratic process from their chemical identification to their effectiveness in
therapeutic cancer treatment. Each of these compounds has their histories of success and limitations,
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which has been told by many authors and which are hereinafter counted in a historical, molecular,
pharmaceutical and clinical point of view.

2.1.1. Vincristine

Vincristine (1) has a non-symmetrical dimeric structure, composed of a two indole-type nucleus
linked by a carbon–carbon bond, the vindoline portion and the catharanthine type portion (Figure 1).
In 1963, the Food and Drug Administration (FDA) approved its clinical use to treat cancer. In fact, it was
one of the first plant-derived anticancer agents approved by this agency [19]. It is a naturally-occurring
alkaloid extracted from the leaves of Catharanthus roseus (L.) G.Don (formerly Vinca rosea L.) and
has been used in chemotherapy in adult, but mainly in pediatric oncology practice against acute
lymphoblastic leukemia. Its incorporation in the treatment regimen increases the survival rate to
eighty percent [28]. It is also used to treat rhabdomyosarcoma, neuroblastoma, lymphomas and
nephroblastoma [29,30].
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repress cell growth by altering the microtubular dynamics.

The large interest in vincristine contrasts with its low natural occurrence, and consequently,
its extraction is very expensive. This situation has stimulated an intense research effort aiming to find
promising strategies to increase vincristine (and other vinca alkaloids) production. Selected enzymes’
manipulation by genetic engineering to raise the metabolic flow rate toward vincristine and the use of
elicitors to activate genes involved in vincristine metabolic pathways are effective strategies to increase
the biotechnological production of this compound [30,31]. However, some improvements are needed
before these processes become economically viable. Another possibility to obtain more vincristine is
the application/optimization of high yield extraction methodologies like negative-pressure cavitation
extraction [32].

Vincristine, in a concentration-dependent manner, can affect cells’ division. However, the most
well-known mechanism of vincristine antitumor activity involves interaction with tubulin, the basic
constituent of mitotic spindle microtubules, inhibiting its polymerization and resulting in the
suppression of mitosis. Therefore, it disrupts the assembly of the mitotic spindle, which in turn
leads to the demise of actively-dividing cells [33]. Some authors report that at the lowest effective
concentration, the anti-proliferative effect is due to a subtly change in the addition and loss of tubulins
at the mitotic spindle microtubule and thus stabilizes the mitotic spindle assembly and disassembly
processes that lead to metaphase arrest [30]. Once microtubule dynamics, and therefore cell division,
can be perturbed by blocking the polymerization or depolymerization of tubulin in microtubules and
thus impairing the mitotic spindle assembly, it seems that vincristine can act by both mechanisms
depending on the concentration level. Moreover, a molecular docking study showed some evidence
suggesting each part of the vincristine dimeric structure exhibits a specific role on its anticancer activity
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once the vindoline nucleus binds tubulin heterodimers, while the catharanthine nucleus provides a
cytotoxic effect [34].

Despite the long history of vincristine clinical application in fighting cancer, there are
three factors that diminish its impact in therapeutics: (i) its antitumor mechanism is cell-cycle-specific,
and the duration of its exposure to tumor cells can significantly affect its antitumor activity;
(ii) the pharmacokinetic behavior of vincristine in human blood is described by a bi-exponential
elimination pattern with a very fast initial distribution half-life followed by a longer elimination
half-life, and it has a large volume of distribution, suggesting diffuse distribution and tissue
binding [35]; (iii) it may cause temporary or permanent peripheral neuropathy, which is a
dose-dependent side effect influenced by several variables such as age, race, genetic profile and
administration method, and older children, in particular Caucasian, seem to be more susceptible [36].
Some of these factors could be mitigated by encapsulation of vincristine into liposomes, which is
intended to increase the circulation time, optimize delivery to target tissues and facilitate dose
intensification without increasing toxicity [35].

In 2012, the FDA approved the use of sphingomyelin/cholesterol (SM/Chol) liposomal vincristine
(Marqibo®) to treat adults with relapsed acute lymphoblastic leukemia (New Drug Application: 202497).
Vincristine can be loaded into conventional liposomes like SM/Chol liposomes, but other types of
liposomes, for example PEGylated liposomes, were already tested, although SM/Chol liposomal
vincristine displays a relatively long circulation time, a reduced leakage rate from liposomes and an
improved antitumor effect compared to PEGylated liposomal vincristine [33]. Clinical trials involving
Marqibo® are underway to pediatric patients with relapsed or chemotherapy-refractory solid tumors
and leukemia (ClinicalTrials.gov Identifier: NCT01222780). Moreover, other vincristine encapsulated
formulations are involved in clinical studies in which they are tested against other types of cancer
such as small-cell lung cancer (ClinicalTrials.gov Identifier: NCT02566993), advanced cervical cancer
(ClinicalTrials.gov Identifier: NCT02471027) and liver cancer (ClinicalTrials.gov Identifier: NCT00980460).

Vincristine generally exhibits better efficacy when administered in combination with other
antitumor agents. In fact, combined chemotherapy can not only enhance the destruction of tumor
cells, but also decrease toxicity and drug resistance with drugs exhibiting different mechanisms
of action. Therefore, open clinical trials are in progress involving combined vincristine therapy
(e.g., NCT02879643; NCT01527149). Very recently, a case report was done of infantile fibrosarcoma
treated by adjuvant therapy after excision, using vincristine and dactinomycin, where the duration
of chemotherapy was determined according to tumor response. At the end, there was no functional
impairment and no evidence of recurrence at 18 months after therapy [37].

2.1.2. Paclitaxel

The discovery of novel natural structures with significant biological relevance and with new
action mechanisms have tremendous impact on the pharmaceutical industry. The discovery of (2) is an
excellent example. Its high activity and its novel mechanism of action, tubulin-assembly promotion, is a
milestone of a new era in anticancer drug discovery. Paclitaxel, isolated from the bark of Taxus brevifolia
Nutt. (Pacific Yew) and sold under the brand name Taxol® since 1993, is a complex molecule that
has become one of the most active cancer chemotherapeutic drugs known [38,39]. It is a tricyclic
diterpenoid, occasionally considered as a pseudo alkaloid, that contains a complex 6,8,6-tri-cycle-fused
skeleton, named the “taxane” ring system, linked to a four-member oxetane ring and having alcohol,
ester, ketone and amide functions (Figure 2).
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Paclitaxel is a non-ionic molecule with high lipophilicity (log P = 3.20) that is practically insoluble
in aqueous medium (aqueous solubility ~0.3–0.5 µg/mL) [40]. Due to this hydrophobicity its
administration is performed in a solution containing alcohol and polyoxyethylated castor oil to
enhance its delivery. The biosynthetic pathway of paclitaxel is a complex process that starts with
precursor geranylgeranyl diphosphate and involves 19 steps regulated by several enzymes, and some
were already characterized, but the process is not yet fully understood [41].

Although the medicinal use of paclitaxel has been achieved exclusively with purified compound
from the bark of Pacific Yew, the plant’s low content and the ecological impact of its harvesting
have prompted extensive searches for alternative sources. The total synthesis of paclitaxel was not
successful until 1994 [42], and even after several improvements [43,44], it remains a laborious work
that prevents its industrial viability. More sustainable alternatives are being used: (i) the fermentation
technology with microbes or plant cell culture [45]; (ii) protein engineering to elevate catalytic fitness for
paclitaxel production [46]; (iii) semisynthesis from baccatin III (3, Figure 2) [47] or 10-deacetylbaccatin
III (4, Figure 2) [48], two paclitaxel precursor molecules, which are non-cytotoxic and are found in
much higher quantities and readily available from the needles of Taxus baccata, Taxus brevifolia and
other Taxus species [49]. The last approach is the one employed by the pharmaceutical industry.

The introduction of paclitaxel in the last few decades has expanded the therapeutic options, mainly
due to its powerful anticancer activity, and great successes in the treatment of breast, ovarian and lung
cancers have been achieved [39]. Moreover, its success is also due to effectiveness on both solid and
disseminated tumors and a broad spectrum of antitumor activity predicted by its unique mechanism
of action, which targets the very basic elements of the cancer phenotype like cell proliferation and
DNA repair [38]. In fact, paclitaxel skeleton functional groups are at special positions and ensure that
β-tubulin is targeted in order to prevent the dynamic microtubule disassembly process required for
proper mitotic spindle assembly and chromosome segregation during cell division. Consequently,
cell death is caused in a time- and concentration-dependent manner [38].

The continuous research on the mechanism of action of paclitaxel together with the structure
activity relationship (SARs) and quantitative SAR (QSAR) revealed and assigned the pharmacophores,
as well as structural parts that should not be modified (Figure 3). This allowed the design of
novel derivatives with the best efficacy and fewer side effects [26,50]. Based on this knowledge,
two semi-synthetic derivatives were developed with great success, docetaxel (5) and cabazitaxel
(6) (Figure 3). They were obtained by structural modifications restricted to the variable sections of the
original structure and are now available for clinical use (Figure 3).
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Although paclitaxel has been applied effectively to treat many cancer diseases, its therapeutic efficacy
is starting to be limited due to multidrug resistance (MDR) development [51,52]. Although the cellular
mechanisms involved in the MDR are not fully understood, it appears that the overexpression of ABCB1
(also called P-glycoprotein) and ABCC10 (also named multidrug resistance protein 7) efflux transporters,
the α-/β-tubulin mutations and/or alterations in the binding regions are the main cause [51,52].

The development of new drug delivery systems and new formulations allowed paclitaxel to find
its way to the tumor tissue for more direct and safe anticancer activity and to overcome paclitaxel’s
multidrug resistance, its poor aqueous solubility, clinical neurotoxicity and neutropenia [53–55].
For example, Lipusu®, the first paclitaxel lecithin/cholesterol liposome injectable, has been on
the Chinese market since 2006 and is used in the treatment of ovarian, breast, non-SCLC, gastric
and head and neck cancers [39]. This liposomal formulation Lipusu® exhibited similar antitumor
effects to paclitaxel, but its toxicity is lower than that of paclitaxel under the same dosage [39,56].
Another example is Abraxane®, an injectable nanoparticle albumin-bound paclitaxel, also named
nab-paclitaxel developed to improve the solubility of paclitaxel, which was approved in 2005 by FDA
and in 2012 by European Medicines Agency (EMA) (EMA/99258/2015, EMEA/H/C/000778) [57].
Higher doses of nab-paclitaxel can be administered over a shorter infusion time, and consequently,
there is an improvement in neuropathy side effects after the therapy discontinuation [57],
although peripheral sensory neuropathy occurred more frequently with nab-paclitaxel compared
to paclitaxel [55].

The development of paclitaxel-mimics, with a simplified structure, also allowed the discovery
of docetaxel (5, Figure 3), on the market since 1995 under the trade name Taxotere®, a drug that has
fewer side effects and improved pharmaceutical properties [58]. It is obtained by semisynthesis from
10-deacetylbaccatin-III and shares with paclitaxel the same mechanism of action and identical ABCB1
affinity, but with different pharmacokinetics and side effects [49]. It is structurally different from
paclitaxel only at the C-10 (acetyl group removed) and C-3′ positions (the N-C(O)Ph group is replaced
for an N-tert-butyl acetate group), (Figure 3) alterations that increase its water solubility and lower
its lipophilicity (log P = 3.20). It belongs to the first generation of taxanes, used for the treatment of
breast, ovarian, prostate and non-SCLCs, and exhibits a longer half-life, more rapid cellular uptake
and longer intracellular retention than paclitaxel [59].

Cabazitaxel (Jevtana®) (6, Figure 3) was approved by the FDA in 2010 for the treatment of
patients with hormone-refractory metastatic prostate cancer and tumors that are docetaxel- or
paclitaxel-resistant [60]. It is also obtained by semisynthesis and is a dimethoxyl derivative of docetaxel,
a structural change that increases its lipophilicity (log P = 3.90) and consequently its cell penetration
through passive influx associated with alteration of the P-gp affinity [61]. This allows the drug



Int. J. Mol. Sci. 2018, 19, 263 7 of 22

to accumulate intracellularly at greater concentrations than docetaxel and explains its improved
cytotoxicity and effectiveness in taxane-resistant patients [27,49].

Paclitaxel is already a blockbuster of the pharmacy industry not only due to the development of
new delivery systems in cancer therapy [62] and its application in combination with other anticancer
drugs (e.g., ClinicalTrials.gov Identifier: NCT02379416, NCT00584857 and NCT01288261) [63,64],
but also due to its use in clinical trials for other treatments such as psoriasis [65] and botulinum
neurotoxin inhibiting [66], just to mention a few examples that ensure this compound’s success.

2.1.3. Homoharringtonine

Homoharringtonine (7) is an alkaloid with a cephalotaxine nucleus named cephalotaxine
4-methyl-2(R)-hydroxy-2-(4-hydroxy-4-methylpentyl)succinate (Figure 4). It was first isolated from
Cephalotaxus harringtonii (Knight ex J.Forbes) K.Koch and Cephalotaxus fortunei Hook. trees, whose bark
extracts were used in Chinese traditional medicine to treat cancer. Homoharringtonine and other
cephalotaxine derivatives can also be found in leaves, bark and seeds of other Cephalotaxus species [67].
In fact, the cephalotaxine itself is very abundant in Cephalotaxus species leaves which can be isolated and
transformed by a simple esterification into homoharringtonine, and thus, this procedure constitutes a
semisynthetic methodology used for homoharringtonine industrial production [50,68].
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The interest in homoharringtonine started when its potent antiproliferative activity against
murine P-388 leukemia cells with IC50 values of 17 nM was demonstrated [69]. In fact, since the 1970s
homoharringtonine or a mixture of cephalotaxine esters has been used in China to treat hematological
malignancies [70]. However, only after the development of the above-mentioned semisynthetic
procedure did homoharringtonine attract the attention of Western medicine.

Homoharringtonine is a first-in-class protein translation inhibitor, which means that it inhibits
the elongation step of protein synthesis. In fact, homoharringtonine binds to the A-site of the large
ribosomal subunit, an action that blocks the access of the charged tRNA and consequently the peptide
bond formation [71]. Since this drug does not target specific proteins, its success is mainly due to the
fact that it can disturb proteins with rapid turnover such as the leukemic cells’ upregulated short-lived
oncoproteins BCR-ABL1 and antiapoptotic proteins (Mcl-1, Myc) leading to cells apoptosis [71].
Recently, other mechanisms indicated that it could also affect signaling pathways, like the Jak-stat5
pathway, by regulating protein tyrosine kinase phosphorylation [72] and by activating the TGF-β
pathway through phosphorylation of smad3 [73].

The identification of several natural cephalotaxine esters structurally similar to
homoharringtonine and other derivatives obtained by semisynthesis allowed establishing
some structure activity relationships, which were recently reviewed and discussed by Chang et al. [69].
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The most important SAR are: (i) the cephalotaxine nucleus is much less active against the P388 cell line
than its esters derivatives; (ii) an aliphatic side chain bonded to the hydroxyl group at C-3 seems to be
necessary to enhance the activity; (iii) the presence of hydroxyl groups at C-11 or C-3′ decreases the
activity; (iv) a free carboxylic acid at C-4′ abruptly decreases the activity; however, the methyl group
can be replaced by other alkyl groups, even bulky ones, without the loss of the activity and in some
cases enhancing it; (v) bulky groups bonded to 8′-OH are also tolerated; (vi) substituents bonded at
2′-OH imply a significant loss of activity (Figure 4).

There is a long track record of the clinical efficacy and safety of homoharringtonine use in the
treatment of chronic myeloid leukemia. Currently, the focus is on its use in patients that experienced
resistance or intolerance to multiple tyrosine kinase inhibitors (sorafenib and imatinib target) [74] and in
patients carrying the T315I mutation, a variant that is unresponsive to tyrosine kinase inhibitors [74–76].
In fact, homoharringtonine was approved by the FDA in 2012 (sold under the trade name Synribo®) to
be used in the treatment of chronic myeloid leukemia in patients with resistance and/or intolerance
to two or more tyrosine kinase inhibitors, and it is the only natural therapeutic agent approved as a
commercial drug to treat chronic myeloid leukemia.

The commercial approval of homoharringtonine and continued preclinical and clinical
investigations of this compound indicate opportunities for its use in other hematological malignancies.
For instance, the produced durable hematologic and cytogenetic responses regardless of mutational
status [76,77] exhibit the ability to effectively kill stem/progenitor cells [77,78] and have a role in acute
myeloid leukemia [79].

The homoharringtonine therapeutic efficiency continues to be evaluated, and its use is expect in
the near future in other hematologic malignancies. It is being evaluated in 20 clinical trials, in mono
and combined therapy, involving, for example, patients with newly-diagnosed acute myelogenous
leukemia (NCT01873495), with relapsed/refractory acute myeloid leukemia carrying FLT3-ITD
(NCT03170895), with myelodysplastic syndrome (NCT02159872), and in combined therapy with
imatinib mesylate (NCT00114959), with quizartinib (NCT03135054) and with cytarabine and idarubicin
(NCT02440568). Moreover, the subcutaneous administration of homoharringtonine does not influence
its bioavailability (NCT00675350) [80] and allowed decreasing its cardiac toxicity [77]. Additionally,
the FDA in 2014 approved its administration at home by the patient or a caregiver, which is indeed
an improvement because patients have the opportunity to self-administer their therapy and due to
homoharringtonine’s stability [81].

Although homoharringtonine treatment may result in some hematologic toxicity such as
myelosuppression, this should not prevent the use of this drug, once the benefits exceed the
damage and the latter can be limited mainly by adequate dose adjustment and patient training
for symptoms [82]. All these data show a large number of scenarios where homoharringtonine use is
applied and suggest many others where it can receive approval in the near future, showing that its
long history in cancer therapy is far from over.

2.2. Metabolites in Clinical Trials

In September 2007, a total of 91 plant-derived compounds was in clinical trials [83], whereas at
the end of 2013, there were 100 unaltered natural products plus their derivatives involved in clinical
trials, with a majority being in oncology [68].

Several semisynthetic derivatives from the plant-derived compounds camptothecin
(e.g., gimatecan), combretastatin A (e.g., fosbretabulin tromethamine; combretastatin A1
diphosphate), rohitukine (e.g., alvocidib, riviciclib), triptolide (e.g., minnelide) and daidzein
(e.g., phenoxodiol) [50,68,83] are in clinical trials, while the lead compounds are not involved in any
clinical studies as an anticancer agent, although they exhibit relevant cytotoxic properties. Only the
plant-derived lead compounds are presently in clinical trials as anticancer agents, and their derivatives
are discussed below.
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2.2.1. Ingenol Mebutate

The phytochemical study of Euphorbia peplus L. latex sap yielded several macrocyclic
diterpenes [84], including ingenol mebutate (8, Figure 5) (also known as PEP005, ingenol-3-angelate
and 3-ingenyl angelate), which was later on identified as the most active antitumor component [85].
In fact, the Euphorbia peplus sap has been shown, in a recent phase I/II clinical study, to be effective
against human non-melanoma skin cancer [86]. This ingenene-type diterpene (Figure 5) can also
be isolated from other Euphorbia species such as Euphorbia paralias L., Euphorbia millii Des Moul.,
Euphorbia palustris L., Euphorbia marginata Pursh and Euphorbia helioscopia L., and especially in the
lower leafless stems of Euphorbia myrsinites L., where it is found in high quantity (547 mg/kg of dry
weight) [68,87]. Ingenol mebutate has been prepared by semisynthesis using ingenol, which is isolated
from the seeds of Euphorbia lathyris L. (yield ∼100 mg/kg). The methodology involves a selective
esterification of the hydroxyl group at position 3 with (Z)-2-methylbut-2-enoic acid (angelate nucleus)
(Figure 5) [88]. Some efforts have been made to accomplish the ingenol total synthesis, but they are
not suitable for application in the pharmaceutical industry, so the ingenol mebutate total synthesis
remains undone. Ingenol mebutate is a monoester considered, in pharmacological terms, a small
molecule. Its stability is pH dependent and can undergo facile acyl migration involving the hydroxyl
groups, mainly the 5- and 20-OH (Figure 5). This characteristic is important from the biological activity
point of view, because the free hydroxyl groups and the ester moiety at position 3 are required for the
anticancer activity [89].

Int. J. Mol. Sci. 2018, 19, 263 9 of 22 

 

against human non-melanoma skin cancer [86]. This ingenene-type diterpene (Figure 5) can also be 
isolated from other Euphorbia species such as Euphorbia paralias L., Euphorbia millii Des Moul., 
Euphorbia palustris L., Euphorbia marginata Pursh and Euphorbia helioscopia L., and especially in the 
lower leafless stems of Euphorbia myrsinites L., where it is found in high quantity (547 mg/kg of dry 
weight) [68,87]. Ingenol mebutate has been prepared by semisynthesis using ingenol, which is 
isolated from the seeds of Euphorbia lathyris L. (yield ∼100 mg/kg). The methodology involves a 
selective esterification of the hydroxyl group at position 3 with (Z)-2-methylbut-2-enoic acid 
(angelate nucleus) (Figure 5) [88]. Some efforts have been made to accomplish the ingenol total 
synthesis, but they are not suitable for application in the pharmaceutical industry, so the ingenol 
mebutate total synthesis remains undone. Ingenol mebutate is a monoester considered, in 
pharmacological terms, a small molecule. Its stability is pH dependent and can undergo facile acyl 
migration involving the hydroxyl groups, mainly the 5- and 20-OH (Figure 5). This characteristic is 
important from the biological activity point of view, because the free hydroxyl groups and the ester 
moiety at position 3 are required for the anticancer activity [89]. 

 
Figure 5. Chemical structure of the diterpene ingenol mebutate (8). 

Ingenol mebutate showed potent antiproliferative effects in a dose- and time-dependent 
manner against several cell lines [90,91], especially against colon 205 cells line with IC50 = 10 nM, that 
means more active than staurosporine (IC50 = 29 nM) or doxorubicin (IC50 = 1.5 µM), known active 
compounds used as standards [90]. There is evidence that its effectiveness at damaging the tumor 
vasculature is related to the fact that it can be transported through the epidermis into the deep 
dermis via a P-glycoprotein [92]. Treatment with this compound, both in vitro (230 µM) and in vivo 
(42 nmol), rapidly caused swelling of mitochondria probably by loss of mitochondrial membrane 
potential and cell death by primary necrosis and is, therefore, unlikely to have its activity 
compromised by the development of apoptosis resistance in tumor cells [86]. There is evidence that 
this rapid action of ingenol mebutate is due to its dual action combining cytotoxic and 
immunomodulatory effects in which rapid lesion necrosis and antibody-dependent cellular 
cytotoxicity mediated by neutrophils occur [93]. The mechanism of action of ingenol mebutate is also 
partially related to the modulation of protein kinase C (PKC) to which it has a potent binding affinity 
by activating PKCδ and inhibiting PKCα [91,94]. In an in vitro assay, low isozyme selectivity was 
verified with a Ki ranging from 0.105–0.376 nM [95]. 

The above-mentioned results support the potential of ingenol mebutate for further 
improvements in cancer therapy; in fact, the cutaneous treatment of non-hyperkeratotic, 
non-hypertrophic actinic keratosis (a precancerous condition, that if untreated usually leads to a 
melanoma) with a gel formulation of ingenol mebutate (formerly PEP005 and marketed as Picato®) 
was approved by both FDA and EMA agencies in 2012 [96,97]. Unfortunately, adverse reactions 
associated with this application have been reported, although they are restricted to moderate “local 
skin responses” and included erythema, flaking/scaling, swelling, crusting, erosion/ulceration and 
vesiculation/postulation. However, it shows a favorable safety and tolerability profile exhibiting a 
lack of systemic absorption and photosensitivity [92,97]. 

Figure 5. Chemical structure of the diterpene ingenol mebutate (8).

Ingenol mebutate showed potent antiproliferative effects in a dose- and time-dependent manner
against several cell lines [90,91], especially against colon 205 cells line with IC50 = 10 nM, that means
more active than staurosporine (IC50 = 29 nM) or doxorubicin (IC50 = 1.5 µM), known active compounds
used as standards [90]. There is evidence that its effectiveness at damaging the tumor vasculature
is related to the fact that it can be transported through the epidermis into the deep dermis via a
P-glycoprotein [92]. Treatment with this compound, both in vitro (230 µM) and in vivo (42 nmol),
rapidly caused swelling of mitochondria probably by loss of mitochondrial membrane potential and
cell death by primary necrosis and is, therefore, unlikely to have its activity compromised by the
development of apoptosis resistance in tumor cells [86]. There is evidence that this rapid action of
ingenol mebutate is due to its dual action combining cytotoxic and immunomodulatory effects in
which rapid lesion necrosis and antibody-dependent cellular cytotoxicity mediated by neutrophils
occur [93]. The mechanism of action of ingenol mebutate is also partially related to the modulation of
protein kinase C (PKC) to which it has a potent binding affinity by activating PKCδ and inhibiting
PKCα [91,94]. In an in vitro assay, low isozyme selectivity was verified with a Ki ranging from
0.105–0.376 nM [95].

The above-mentioned results support the potential of ingenol mebutate for further improvements
in cancer therapy; in fact, the cutaneous treatment of non-hyperkeratotic, non-hypertrophic actinic
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keratosis (a precancerous condition, that if untreated usually leads to a melanoma) with a gel
formulation of ingenol mebutate (formerly PEP005 and marketed as Picato®) was approved
by both FDA and EMA agencies in 2012 [96,97]. Unfortunately, adverse reactions associated
with this application have been reported, although they are restricted to moderate “local skin
responses” and included erythema, flaking/scaling, swelling, crusting, erosion/ulceration and
vesiculation/postulation. However, it shows a favorable safety and tolerability profile exhibiting a
lack of systemic absorption and photosensitivity [92,97].

2.2.2. Curcumin

Curcumin (9, Figure 6) or diferuloylmethane (bis-α,β-unsaturated β-diketone) is a polyphenolic
compound that has been extracted from the rhizome of turmeric (Curcuma longa L.), a tropical Southeast
Asia plant mainly used as a spice. However, the turmeric powder, which has 2–5% of curcumin,
is used in Chinese and Indian traditional medicines [98]. To this ancient remedy have been attributed
a wide range of beneficial properties including anti-inflammatory, antioxidant, chemopreventive,
chemotherapeutic and chemo-sensitizing activity [98]. Curcumin is an orange-yellow crystalline
lipophilic phenolic substance that, in solution, exists in equilibrium with its keto-enol tautomeric forms
(Figure 6). It is not very soluble in water and also not very stable, although its degradation increases in
basic medium [99].
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Research interest in curcumin’s anticancer properties has been developed based on the low rate
occurrence of gastrointestinal mucosal cancers in Southeast Asian populations and its association with
regular turmeric use in their diet [100].

A large volume of experimental data established the therapeutic efficacy of curcumin in
in vitro cellular level, as well as in some ex vivo tumor-derived cancer cells/solid tumors like brain
tumors, pancreatic, lung, breast, leukemia, prostate, skin cancers and hepatocellular carcinoma,
including cytotoxic effects on cancer stem cells and antimetastatic activity [101–103]. This year,
its possible application in colorectal, head and neck cancer chemotherapy was also reviewed [104,105].
Equally important were the assays demonstrating that curcumin was not cytotoxic to normal cells
at the dosages required for therapeutic efficacy against the cancer cell lines [106,107]. The scientific
interest and pharmacological potential of curcumin anticancer effects becomes also evident from the
number of patents on curcumin-based therapeutics registered in the last five years [108].

Several studies have shown that curcumin can modulate a variety of cancer-related targets
or pathways [102,103,109,110], which may be responsible for its effectiveness in combating cancer
diseases. Recent studies demonstrate that curcumin’s mechanism of action includes: (i) modulation of
CYP enzymes by elevation of transcription factor Nrf2 level via the mitogen-activated protein kinase
(MAPK) signaling pathway and Akt pathway [111]; (ii) mitotic catastrophe induction due to caspase
activation and mitochondrial membrane polarization [14]; (iii) promotion of autophagic cell death,
an important death inducer in apoptosis resistant cancer cells by beclin-1-dependent and independent
pathways [14,112]; (iv) arrest of the cell cycle at the check points G1, S-phase and G2/M phase,
modulating the cell cycle regulators, including upregulation of cyclin-dependent kinase inhibitors
(CDKIs) [113]; (v) promotion of the inhibition of transcription factor NF-κB by preventing nuclear
translocation of NF-κB and attenuating the DNA binding ability of NF-κB, contouring the problem
of chemoresistance [114]; (vi) promotion of the inhibition of the crucial steps to angiogenesis by
downregulation of the PGDF, VEGF and FGF expression and downregulation of MMPs via NF-κB,
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ERKs, MAPKs, PKC and PI3K inhibition [115]; and (vii) inhibiting tubulin polymerization, that is
curcumin binds with DNA [116,117]. Despite this knowledge about curcumin’s multiple mechanisms
of action, its biological properties are not fully understood. For example, does curcumin’s survival
and proliferative effects depend on its concentration, treatment period and cells type? On the
other hand, administered doses of curcumin have been studied. Systematic in vivo doses up to
300 mg–3.5 g/kg b.w. (administered for up to 14–90 days) or clinical studies with oral intake of 1.2–12 g
daily (for 6 weeks–4 months) did not demonstrate any adverse effects at the populations, animals and
patients [118], although these values exceed that normally consumed (granted an acceptable daily
intake level of 0.1–3 mg/kg b.w. by the Joint FAO/WHO Expert Committee on Food Additives) and
also the typical intake of the Indian population (60–100 mg per day).

Moreover, curcumin has been reported to act as a chemosensitizer for some clinical anticancer
drugs (e.g., gemcitabine, paclitaxel and 5-fluorouracil, doxorubicin) and exhibits a synergistic effect
in combination with other natural products (e.g., resveratrol, honokiol, epigallocatechin-3-gallate,
licochalcone and omega-3), aspects that could be used as an effective strategy to overcome tumor
resistance and reduce recurrence [108,119,120]. These observations therefore suggest that a superior
therapeutic index may be achieved with curcumin when used in combination and could be
advantageous in the treatment of some tumors. Anyway, additional studies are still needed to
assess the exact mechanism of curcumin’s synergic effect.

Nevertheless, the clinical translation of curcumin has been significantly hampered since it is
poorly absorbed, improperly metabolized and shows poor systemic bioavailability, which mandates
that patients consume up to 8–10 grams of free curcumin orally each day, in order for detectable levels
in the circulation [109,118]. Thus, several strategies have been proposed to counter the bioavailability
issue of curcumin involving (i) the use of adjuvants like piperine, which interferes with curcumin
metabolism by glucuronidation, (ii) curcumin formulations based on nanotechnology with liposomes,
micelles, phospholipid, among others, and (iii) use of curcumin analogues [117,121–123]. As result of
the anticancer potential of curcumin and despite its clinical therapeutic limitations, there are currently
17 open clinical studies involving curcumin, mainly studies of combined curcumin therapy with other
substances for the treatment of several types of cancer.

2.2.3. Betulinic Acid

Betulinic acid (3β-hydroxy-lup-20(29)-en-28-oic acid), a lupane-type pentacyclic triterpene
(10, Figure 7) is biosynthesized from six different isoprene units and was first identified and isolated
from Gratiola officinalis L. and named “graciolon”. It was also isolated from other species, but identified
with different names (from the bark of Platanus acerifolia (Aiton) Willd. named “platanolic acid” and
from Cornus florida L. named “cornolic acid”), which led to some confusion. Later on, it was confirmed
that all have the same structure, and the compound was named betulinic acid. Nowadays, it is known
that this triterpene is extensively spread throughout the plant kingdom (for instance Betula spp.,
Diospyros spp., Syzygium spp., Ziziphus spp., Paeonia spp., Sarracenia flava L., Anemone raddeana Regel
and Lycopodium cernuum L., among others) and in considerable amounts (up to 2.5%) [124]. However,
these sources are not sufficient to meet the growing demand for betulinic acid. Therefore, it can be
obtained through a selective oxidation of betulin (lup-20(29)-en-3,28-diol) [125], far more abundant
(up to 30%) in birch bark than betulinic acid [126].
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In 1995, the first betulinic acid antitumor activity was reported by a researcher at the University of
Illinois. It killed melanoma cells in mice with low IC50 values (IC50 0.5–1.5 µg/mL) [127]. Since then,
a number of researchers have conducted laboratory tests on betulinic acid to determine its antitumor
properties, especially with respect to melanoma cells [128]. More recent studies suggest that betulinic
acid possesses a broader spectrum of activity against other cancer cells, and consequently betulinic acid
has been selected by the National Cancer Institute for addition into the Rapid Access to Intervention in
Development (RAID) program.

Betulinic acid exhibits significant in vitro cytotoxicity in a variety of tumor cell lines and also inhibits
the growth of solid tumors in vivo, comparable to some clinically-used drugs and showing a good
selectivity index for cancer over normal cells even at doses up to 500 mg/kg b.w. [14,127,129,130].
Its anticancer proprieties have been demonstrated against colorectal lung, colon, breast, prostate,
hepatocellular, bladder, head and neck, stomach, pancreatic, ovarian and cervical carcinoma, glioblastoma,
chronic myeloid leukemia cells and human melanoma with IC50 values mainly between 1 to
13.0 µg/mL [14,124,128–132].

Betulinic acid exhibits potent anticancer activity by multiple molecular targets, the best
characterized mechanism being the induction of apoptosis by direct regulation of the mitochondrial
apoptotic pathway; which can be associated with mitochondrial collapse through direct opening of the
permeability transition pore, decreasing mitochondrial outer membrane potential, downregulation
of Bcl-2 family members, release of pro-apoptotic factors such as cytochrome c, increase of caspase
activities, attenuating both constitutive and inducible STAT3 phosphorylation, nuclear translocation
and its DNA binding [124,130,133]. However, there is also evidence that, in some cases, apoptosis may
be induced by stabilizing p53 and downregulating NF-kB-mediated signaling [124,134].

The antimetastatic effect of betulinic acid seems to be through the prevention of the
epithelial-to-mesenchymal transition in highly aggressive melanoma cells [131], while in breast cancer
cells, it be by downregulation of the matrix metalloproteinases expression [133]. Betulinic acid can also
induce an antiangiogenic response under hypoxia mediated by the STAT3/HIF-1α/VEGF signaling
pathway [124,130], can block the cell cycle in the G1 phase through inhibition of Cyclin B1 and Hiwi in
mRNA and potently induces autophagy as a survival mechanism in response to permeability transition
pore opening and mitochondrial damage [14,133]. Recently, a new cell death pathway was attributed
to betulinic acid in which cell death is induced through the inhibition of the stearoyl-CoA-desaturase
(SCD-1), an enzyme that is overexpressed in tumor cells [135]. Proteasome inhibition assays suggest
the proteasome is the main target for betulinic acid [136]. However, the regulatory effects of betulinic
acid on the NF-κB pathway and on Bax or Bak expression are not well clarified [130].

Betulinic acid seems to be a very effective chemosensitizer for anticancer drug treatment in
chemoresistant cell lines once it promotes the inhibition of multidrug resistance proteins in vivo
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and in vitro, as for example in combination with 5-fluorouracil (5-FU) and oxaliplatin [133,137].
These results clearly demonstrate that in some cases, it is possible to circumvent acquired
chemoresistance by combination therapy of anticancer drugs with chemosensitizers as betulinic
acid. Moreover, betulinic acid has strong synergy with mithramycin A on the inhibition of migration
and invasion of pancreatic cancer cells at nontoxic concentrations by suppressing the Sp1 and uPAR
level [138]. Furthermore, a synergistic effect of betulinic acid and tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) combination to inhibit liver cancer progression in vitro and in vivo
through targeting the p53 signaling pathway [139] revealed that betulinic acid combined with TRAIL
has potential value against liver cancer.

Betulinic acid is slightly soluble in water, and therefore, its water solubility is a drawback that
should be overcome to improve its absorption and bioavailability. The main targets for structure
activity studies were the C-3 hydroxyl, C-20 vinyl and C-28 carboxyl groups (Figure 7). The 3-OH
oxidation increased cytotoxic activity, but decreased selectivity; introduction of groups, such as amine
or hydroxyl, at the C-28 position increased activity; while modifications at C-20 did not enhance
cytotoxicity [14,124,140]. It can be conclude that modifications may improve the cytotoxicity and/or
the water solubility, but not the selectivity. It seems that the presence of the free hydroxyl group at C-3
and the carboxyl group at C-28 are the most important features.

Recently, a clearer and more realistic method, 3D-QSAR by CoMFA and CoMSIA, shows the
structure-cytotoxicity relationship of betulinic acid derivatives against human ovarian cancer cell
A2780, and the main conclusions were: an electropositive group at the C-2 α-site; an electronegative
and hydrogen bond acceptor group at the C-2 β-site; bulky groups at the C-3 β-site; bulky and
electronegative groups at the C-3 α-site; bulky, electronegative and hydrogen bond donor or acceptor
groups at the C-28 side chain; and would be beneficial to the antitumor potency (Figure 7) [130].

Due to its extraordinary potential as an antitumor agent, betulinic acid was involved in phase
I/II clinical trials to evaluate its safety and effectiveness. The study involved topical applications
(20% betulinic acid in ointment) to treat dysplastic nevi that can transform into melanoma. Unfortunately,
at the end of 2013, the study was suspended due to funding issues (Clinical Trials database).

3. Conclusions

Cancer is becoming a high profile disease in developed and developing countries, and its
treatment is a struggle with some successful cases. Nevertheless, the drugs developed by synthesis
and used in chemotherapy have limitations mainly due to their toxic effects on non-targeted
tissues and consequently furthering human health problems. Therefore, there is a demand for
alternative treatments, and the naturally-derived anticancer agents are regarded as the best choice.
As demonstrated herein, with some representative examples, secondary metabolites are themselves
suitable anticancer agents leading to the development of new clinical drugs with also new anticancer
mechanisms of action. Some have already become cases of success for the pharmaceutical industry.
Additionally, they are excellent lead compounds, by which, through structural modifications,
alternative formulations and/or using increasingly effective delivery systems, their pharmacological
potential is enhanced. Recent new biotechnological solutions, using nanotech approaches, present
a new hope for cancer therapy (e.g., plant drug-functionalized nanodiamonds and other nanocarriers
based on anticancer drugs). Simultaneously, they provide a further step forward in the successful
use of secondary metabolites for cancer therapeutic purposes [141–144]. In other cases, the success
story has not yet reached its high point with its introduction in the market, but the more recent studies
presented and discussed in this paper clearly show that this goal is getting closer. On the other hand,
demand for plant-derived drugs is putting pressure on high-value medicinal plants and risking their
biodiversity, so exploitation of these agents needs to be managed to keep up with demands and be
sustainable. Fortunately, there are currently developments using new biotechnological solutions and
sustainable alternative methods for the production of high-value plant metabolites.
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Abbreviations

5-FU 5-fluorouracil
A2780 human ovarian carcinoma cell line
ABCB1 ATP binding cassette subfamily B member 1
ABCC10 ATP binding cassette subfamily C member 10
Akt serine/threonine-specific protein kinase
b.w. body weight
Bak pro-apoptotic Bcl-2 protein
Bax bcl-2-like protein 4
Bcl-2 B-cell lymphoma 2 protein
BCR-ABL1 breakpoint cluster region protein-Abelson murine leukemia viral oncogene homolog 1
CDKI cyclin-dependent kinase inhibitors
colon 205 human Caucasian colon adenocarcinoma cell line
CoMFA comparative molecular field analysis
CoMSIA comparative molecular similarity index analysis
CYP cytochrome P450
DNA deoxyribonucleic acid
EMA European Medicines Agency
ERK extracellular signal-regulated kinases
FAO Food And Agriculture Organization
FDA Food And Drug Administration
FGF fibroblast growth factor
FLT3-ITD fms-related tyrosine kinase 3 internal tandem duplication
HIF-1α hypoxia-inducible factor 1-alpha
HMGB1 high mobility group box 1 protein
IC50 half maximal inhibitory concentration
MAPK mitogen-activated protein kinase
Mcl-1 induced myeloid leukemia cell differentiation protein
MDR multidrug resistance
miRNA micro-ribonucleic acid
MMP matrix metalloproteinase
mRNA messenger ribonucleic acid
Myc proto-oncogene
nab-paclitaxel nanoparticle albumin-bound paclitaxel
NF-κB nuclear factor kappa B cells
Nrf2 nuclear factor (erythroid-derived 2)-like 2
P-388 bipotential murine pre-B cell lymphoma
PEP005 ingenol mebutate
PGDF platelet-derived growth factor
P-gp p-glycoprotein
PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase
PICN paclitaxel injection concentrate for nanodispersion
PKC protein kinase C
PKCα protein kinase C-α
PKCδ protein kinase C-δ
QSAR quantitative structure activity relationship
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RAID rapid access to intervention in development
SAR structure activity relationship
SCD-1 stearoyl-CoA- desaturase 1
SCLC small-cell lung cancer
SIRT1 NAD-dependent protein deacetylase sirtuin-1
SM/Chol sphingomyelin/cholesterol
smad3 mothers against decapentaplegic homolog 3
Sp1 specificity protein 1
STAT3 signal transducer and activator of transcription 3
T315I mutation resulting in an amino acid substitution at position 315 in BCR-ABL1,

from a threonine (T) to an isoleucine (I).
TGF-β transforming growth factor beta
TRAIL tumor necrosis factor-related apoptosis-inducing ligand
tRNA transfer ribonucleic acid
uPAR urokinase receptor
VEGF vascular endothelial growth factor
WHO World Health Organization
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Quantitative analysis of ingenol in Euphorbia species via validated isotope dilution ultra-high performance
liquid chromatography tandem mass spectrometry. Phytochem. Anal. 2018, 29, 23–29. [CrossRef] [PubMed]

88. Liang, X.; Grue-Sørensen, G.; Petersen, A.K.; Högberg, T. Semisynthesis of ingenol 3-angelate (PEP005):
Efficient stereoconservative angeloylation of alcohols. Synlett 2012, 23, 2647–2652. [CrossRef]

89. Liang, X.; Grue-Sørensen, G.; Månsson, K.; Vedsø, P.; Soor, A.; Stahlhut, M.; Bertelsen, M.; Engell, K.M.;
Högberg, T. Syntheses, biological evaluation and SAR of ingenol mebutate analogues for treatment of actinic
keratosis and non-melanoma skin cancer. Bioorg. Med. Chem. Lett. 2013, 23, 5624–5629. [CrossRef] [PubMed]

90. Serova, M.; Ghoul, A.; Benhadji, K.A.; Faivre, S.; Le Tourneau, C.; Cvitkovic, E.; Lokiec, F.; Lord, J.;
Ogbourne, S.M.; Calvo, F.; et al. Effects of protein kinase C modulation by PEP005, a novel ingenol
angelate, on mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling in cancer cells.
Mol. Cancer Ther. 2008, 7, 915–922. [CrossRef] [PubMed]

91. Benhadji, K.A.; Serova, M.; Ghoul, A.; Cvitkovic, E.; Le Tourneau, C.; Ogbourne, S.M.; Lokiec, F.; Calvo, F.;
Hammel, P.; Faivre, S.; et al. Antiproliferative activity of PEP005, a novel ingenol angelate that modulates
PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells. Br. J. Cancer
2008, 99, 1808–1815. [CrossRef] [PubMed]

92. Collier, N.J.; Ali, F.R.; Lear, J.T. Ingenol mebutate: A novel treatment for actinic keratosis. Clin. Pract. 2014,
11, 295–306. [CrossRef]

93. Rosen, R.H.; Gupta, A.K.; Tyring, S.K. Dual mechanism of action of ingenol mebutate gel for topical
treatment of actinic keratoses: Rapid lesion necrosis followed by lesion-specific immune response.
J. Am. Acad. Dermatol. 2012, 66, 486–493. [CrossRef] [PubMed]

94. Matias, D.; Bessa, C.; Simões, M.F.; Reis, C.P.; Saraiva, L.; Rijo, P. Natural products as lead protein
kinase c modulators for cancer therapy. In Studies in Natural Products Chemistry Bioactive Natural Products;
Atta-Ur-Rahman, F.R.S., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 2017; Volume 53,
pp. 45–79. ISBN 978-0-444-63930-1.

95. Kedei, N.; Lundberg, D.J.; Toth, A.; Welburn, P.; Garfield, S.H.; Blumberg, P.M. Characterization of the
interaction of ingenol 3-angelate with protein kinase C. Cancer Res. 2004, 64, 3243–3255. [CrossRef] [PubMed]

96. Doan, H.Q.; Gulati, N.; Levis, W.R. Ingenol mebutate: Potential for further development of cancer
immunotherapy. J. Drugs Dermatol. 2012, 11, 1156–1157. [PubMed]

http://dx.doi.org/10.1038/leu.2011.55
http://www.ncbi.nlm.nih.gov/pubmed/21468038
http://dx.doi.org/10.1126/scitranslmed.aaf3735
http://www.ncbi.nlm.nih.gov/pubmed/27708062
http://dx.doi.org/10.1016/j.leukres.2014.05.007
http://www.ncbi.nlm.nih.gov/pubmed/24906663
http://dx.doi.org/10.1634/theoncologist.2014-0230
http://www.ncbi.nlm.nih.gov/pubmed/25280490
http://dx.doi.org/10.3109/10428194.2015.1071486
http://www.ncbi.nlm.nih.gov/pubmed/26436949
http://dx.doi.org/10.1016/j.drudis.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18275914
http://dx.doi.org/10.1016/S0031-9422(00)81076-6
http://dx.doi.org/10.1111/j.1365-2133.2010.10184.x
http://www.ncbi.nlm.nih.gov/pubmed/21375515
http://dx.doi.org/10.1016/j.fitote.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25016953
http://dx.doi.org/10.1002/pca.2711
http://www.ncbi.nlm.nih.gov/pubmed/28786149
http://dx.doi.org/10.1055/s-0032-1317415
http://dx.doi.org/10.1016/j.bmcl.2013.08.038
http://www.ncbi.nlm.nih.gov/pubmed/23993332
http://dx.doi.org/10.1158/1535-7163.MCT-07-2060
http://www.ncbi.nlm.nih.gov/pubmed/18413805
http://dx.doi.org/10.1038/sj.bjc.6604642
http://www.ncbi.nlm.nih.gov/pubmed/19034280
http://dx.doi.org/10.2217/cpr.14.13
http://dx.doi.org/10.1016/j.jaad.2010.12.038
http://www.ncbi.nlm.nih.gov/pubmed/22055282
http://dx.doi.org/10.1158/0008-5472.CAN-03-3403
http://www.ncbi.nlm.nih.gov/pubmed/15126366
http://www.ncbi.nlm.nih.gov/pubmed/23134979


Int. J. Mol. Sci. 2018, 19, 263 20 of 22

97. Tzogani, K.; Nagercoil, N.; Hemmings, R.J.; Samir, B.; Gardette, J.; Demolis, P.; Salmonson, T.; Pignatti, F.
The European Medicines Agency approval of ingenol mebutate (Picato) for the cutaneous treatment of
non-hyperkeratotic, non-hypertrophic actinic keratosis in adults: Summary of the scientific assessment of the
Committee for Medicinal Products for Human Use (CHMP). Eur. J. Dermatol. 2014, 24, 457–463. [CrossRef]
[PubMed]
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