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Abstract: Air pollution is a serious environmental health problem closely related to the occurrence
of central nervous system diseases. Exposure to particulate matter with an aerodynamic diameter
less than or equal to 2.5 µm (PM2.5) during pregnancy may affect the growth and development
of infants. The present study was to investigate the effects of maternal exposure to PM2.5 during
pregnancy on brain development in mice offspring. Pregnant mice were randomly divided into
experimental groups of low-, medium-, or high-dosages of PM2.5, a mock-treated group which was
treated with the same amount of phosphate buffer solution (PBS), and acontrol group which was
untreated. The ethology of offspring mice on postnatal days 1, 7, 14, 21, and 30, along with neuronal
development and apoptosis in the cerebral cortex were investigated. Compared with the control,
neuronal mitochondrial cristae fracture, changed autophagy characteristics, significantly increased
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cell rate, and mRNA
levels of apoptosis-related caspase-8 and caspase-9 were found in cerebral cortex of mice offspring
from the treatment groups, with mRNA levels of Bcl-2 and ratio of Bcl-2 to Bax decreased. Treatment
groups also demonstrated enhanced protein expressions of apoptosis-related cleaved caspase-3,
cleaved caspase-8 and cleaved caspase-9, along with declined proliferating cell nuclear antigen
(PCNA), Bcl-2, and ratio of Bcl-2 to Bax. Open field experiments and tail suspension experiments
showed that exposure to high dosage of PM2.5 resulted in decreased spontaneous activities but
increased static accumulation time in mice offspring, indicating anxiety, depression, and social
behavioral changes. Our results suggested that maternal exposure to PM2.5 during pregnancy might
interfere with cerebral cortex development in mice offspring by affecting cell apoptosis.
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1. Introduction

The negative impact of environmental pollution on health has been drawing more and more
attention in recent decades. According to the American Environmental Protection Administration (EPA)
(2015), the major air pollutants include NOx, SO2, O3, PM2.5, and PM10. PM2.5 refers to fine particles

Int. J. Mol. Sci. 2018, 19, 257; doi:10.3390/ijms19010257 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-6510-6445
http://dx.doi.org/10.3390/ijms19010257
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 257 2 of 17

with an aerodynamic diameter less than or equal to 2.5 µm [1]. It consists of complex constituents
including heavy metals and toxic organic pollutants, and there are several investigations concerning
the effects of exposure to air pollutants on admission rates, mortality rates and prognosis of respiratory
diseases, cardiovascular disease, and stroke [2–6]. Air pollution has become an independent risk
factor for cardiovascular diseases and numerous studies have reported the correlations between
atmospheric particulate matter exposure and oxidative stress, lung and systemic inflammation,
endothelial dysfunction, atherosclerosis, and cardiac autonomic dysfunction [7–9].

Epidemiological studies suggest that air pollution affects cognitive function [10] and is also related
to central nervous system diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis, multiple sclerosis, stroke, and so on [11–13]. More and more studies have focused
on the developmental toxicity of air pollutants. It refers to the deleterious effects (such as structural
abnormalities, growth retardation, dysfunction, and death) exerted on prenatal offspring, resulting
from maternal and/or maternal contact with exogenous physical and chemical factors. The tiny
particulate matters which can go directly into the alveoli of lung could penetrate the blood-gas and
placental barriers [14], thus are potentially dangerous to a fetus. Epidemiological studies showed
that exposure to air pollutants during pregnancy could lead to preterm and increased mortality of
preterm infants [15]. Air pollution appeared to exert adverse effects on brain maturation during a
critical period, with changes in specific functional domain [16].

Exposure to non-genetic factors, such as environmental ones, has been proven to interfere with
nervous system development. It was shown that prenatal and neonatal exposure to traffic- related air
pollutants could result in adult behavioral and cognitive impairments [17]. Clinical cohort and animal
studies suggested that prenatal exposure to particulate air pollutants led to increased risks of brain
development disorders such as autism spectrum disorders and schizophrenia in offspring [18–20].

To the best of our knowledge, there are few studies concerning the effects of maternal exposure
to PM2.5 during pregnancy on the development of the cerebral cortex in mice offspring. The present
study was to establish a PM2.5 trachea drip animal model for pregnant mice and investigate the effects
of exposure to PM2.5 during pregnancy on the apoptosis-related genes and their expressions in cerebral
cortex neurons in mice offspring, and then the potential mechanism by which exposure to PM2.5 during
pregnancy impairs the development of cerebral cortical.

2. Results

2.1. Exposure to PM2.5 during Pregnancy Caused Pathological Changes of Cerebral Cortex in Mice Offspring

The results of Nissl’s staining (Figure 1) demonstrated that there were large number of neurons
in the cerebral cortex of mice offspring on postnatal days 1, 7, 14, 21, and 30 in mock-treated group.
The neurons were structurally integrated with large cell bodies, regular arrangement and compact
connection. Neuron Nissl bodies were deep and cytoplasm was abundant. With the increase of PM2.5

exposure dosage, gradually reduced neurons, disordered arrangements, smaller cell bodies, lightly
stained Nissl bodies, and decreased cytoplasm were observed, compared with the control group
(Table 1). Therefore, evident pathological changes occurred in brain tissues of mice offspring exposed
to PM2.5 and the damages became much more serious with exposure dosage.

Table 1. Parameters of neurons in cerebral cortex.

Group Diameter of Neurons (µm) Number of Neurons

Mock-treated group 18.25 ± 1.09 59 ± 4.58
Low-dosage group 17.66 ± 0.88 58 ± 5.29

Medium-dosage group 14.58 ± 1.02 ** 45.33 ± 6.43 *
High-dosage group 14.34 ± 1.14 ** 38 ± 7.21 **

* compared with mock-treated group p < 0.05, ** compared with mock-treated group p < 0.01.
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Figure 1. Morphological changes of cerebral cortex in mice offspring after maternal exposure to 
PM2.5 during pregnancy (Nissl staining). (A–D) mice offspring on postnatal day 1 after birth; (E–H) 
mice offspring on postnatal day 21 after birth. (A,E) mock-treated group; (B,F) low-dosage group; 
(C,G) medium-dosage group; (D,H) high-dosage group. Bar = 20 µm. 

2.2. Ultrastructural Changes of Cerebral Cortical Neurons in Newborn Mice Offspring 

Ultrastructures of mitochondria in cerebral cortex neurons of mice offspring from both the 
mock-treated group and the high-dosage group on postnatal day 1 were observed to study the 
potential impairment of exposure to PM2.5 on mitochondria which plays a vital role in apoptosis. It 
could be learned that neurons in the mock-treated group demonstrated abundant mitochondria with 
intact capsule, regular, continuous, and dense cristae arrangement (Figure 2A). And no obvious 
ultrastructural changes of neurons in the low-dosage group were found (Figure 2B). Compared with 
the mock-treated group, obvious ultrastructural changes, including broken and partly blurred 
mitochondrial cristae, fuzzy and broken nuclear membrane, and autophagic bodies in cytoplasm, 
occurred in the cerebral cortex neurons of the medium and high-dosage groups (Figure 2C,D), 
indicating certain effects of exposure to high dosage of PM2.5 during pregnancy on mitochondrial 
function of neurons in mice offspring. As a key part of message transmission, synapse in the PM2.5 
high-dosage group presented a decreased number of synaptic vesicles and presynaptic and 
postsynaptic densities of membranes (Figure 2F), compared with the mock-treated group (Figure 
2E). The number of presynaptic vesicles were 18.5 ± 2.64 (mock-treated group) and 10.8 ± 2.39 
(high-dosage group), with statistically significant difference at p < 0.01. Ultrastructural changes 
further suggested that exposure to PM2.5 during pregnancy could exert obvious impairments on 
brain tissue in mice offspring.  

 
Figure 2. Ultrastructural changes of cerebral cortex neurons and synapses in mice offspring after 
maternal exposure to PM2.5 during pregnancy. (A) mock-treated group, normal neuron; (B) 
low-dosage group, no significant changes in the neuron; (C) The arrow shows the indistinct nuclear 
membrane; (D) the arrow shows the autophagic body; (E,F) the arrow shows the synapse. Bar = 1.0 
µm. 

Figure 1. Morphological changes of cerebral cortex in mice offspring after maternal exposure to
PM2.5 during pregnancy (Nissl staining). (A–D) mice offspring on postnatal day 1 after birth;
(E–H) mice offspring on postnatal day 21 after birth. (A,E) mock-treated group; (B,F) low-dosage
group; (C,G) medium-dosage group; (D,H) high-dosage group. Bar = 20 µm.

2.2. Ultrastructural Changes of Cerebral Cortical Neurons in Newborn Mice Offspring

Ultrastructures of mitochondria in cerebral cortex neurons of mice offspring from both the
mock-treated group and the high-dosage group on postnatal day 1 were observed to study the
potential impairment of exposure to PM2.5 on mitochondria which plays a vital role in apoptosis.
It could be learned that neurons in the mock-treated group demonstrated abundant mitochondria
with intact capsule, regular, continuous, and dense cristae arrangement (Figure 2A). And no obvious
ultrastructural changes of neurons in the low-dosage group were found (Figure 2B). Compared
with the mock-treated group, obvious ultrastructural changes, including broken and partly blurred
mitochondrial cristae, fuzzy and broken nuclear membrane, and autophagic bodies in cytoplasm,
occurred in the cerebral cortex neurons of the medium and high-dosage groups (Figure 2C,D),
indicating certain effects of exposure to high dosage of PM2.5 during pregnancy on mitochondrial
function of neurons in mice offspring. As a key part of message transmission, synapse in the
PM2.5 high-dosage group presented a decreased number of synaptic vesicles and presynaptic and
postsynaptic densities of membranes (Figure 2F), compared with the mock-treated group (Figure 2E).
The number of presynaptic vesicles were 18.5 ± 2.64 (mock-treated group) and 10.8 ± 2.39 (high-dosage
group), with statistically significant difference at p < 0.01. Ultrastructural changes further suggested that
exposure to PM2.5 during pregnancy could exert obvious impairments on brain tissue in mice offspring.
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Figure 2. Ultrastructural changes of cerebral cortex neurons and synapses in mice offspring after
maternal exposure to PM2.5 during pregnancy. (A) mock-treated group, normal neuron; (B) low-dosage
group, no significant changes in the neuron; (C) The arrow shows the indistinct nuclear membrane;
(D) the arrow shows the autophagic body; (E,F) the arrow shows the synapse. Bar = 1.0 µm.



Int. J. Mol. Sci. 2018, 19, 257 4 of 17

2.3. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL)

Results of TUNEL were shown in Figure 3 from which it could be seen that TUNEL positive cells
in the cerebral cortex of mice offspring on postnatal day 14 increased significantly in high-dosage
group (Figure 3B), compared with fewer ones in mock-treated group (Figure 3A). Apoptosis ratios in
cerebral cortex of mice offspring on postnatal days 7, 14, 21, and 30 from different dosage groups were
shown in Figure 3C.

TUNEL positive rates for mice offspring on postnatal days 7 and 21 from the low-dose group
were significantly different from that of the control (p < 0.01). TUNEL positive rates of the medium and
high- dosage groups at all of the four time points (postnatal days 7, 14, 21, and 30) were significantly
different from those of the control (p < 0.01). These results indicated that exposure to PM2.5 (medium
and high-dosage especially) during pregnancy resulted in significantly increased apoptosis rates in
cerebral cortex of mice offspring.
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Figure 3. Apoptosis of cerebral cortex neurons in mice offspring after maternal exposure to PM2.5

during pregnancy. (A) TUNEL of mice offspring on postnatal day 14 from mock-treated group; TUNEL,
Hochest and merged figures were derived from the area marked by the white box; (B) TUNEL of mice
offspring on postnatal day 14 from high-dosage group; TUNEL, Hochest and merged figures were
derived from the area marked by the white box; (C) the apoptotic ratio of nerve cells. Bar = 20 µm.
** p < 0.01, compared with control.
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2.4. Exposure to PM2.5 during Pregnancy Caused Elevated Expressions of Apoptosis-Related Genes in Cerebral
Cortex of Mice Offspring

2.4.1. Effects of Exposure to PM2.5 on mRNA Levels of Caspase-3, -8, and -9 and Protein Expressions of
Caspase-3, Cleaved Caspase-3, -8, and -9

As to mRNA level and protein expression of caspase-3, there was no significant difference among
the PM2.5-treated groups compared with the control (Figures 4A and 5–9). In comparison with the
control, the protein expression of cleaved caspase-3 increased with exposure dosage at each time point,
especially in the high-dosage group. Both mRNA level of caspase-8 and protein expression of cleaved
caspase-8 increased with exposure dosage at each time point (Figures 4B and 5–9) compared with
the control, with significant increase especially in the high-dosage group. mRNA level of caspase-9
increased with exposure dosage at each time point and protein expression of cleaved caspase-9
significantly increased with exposure dosage at each time point except postnatal day 30, in comparison
with the control (Figures 4C and 5–9).
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Figure 4. mRNA level changes of apoptosis-related genes in cerebral cortex of mice offspring after
maternal exposure to PM2.5 during pregnancy. (A) Caspase-3; (B) Caspase-8; (C) Caspase-9; (D) Bcl-2;
(E) Bax; (F) ratio of Bcl-2 to Bax. * p < 0.05, compared with control; ** p < 0.01, compared with control.



Int. J. Mol. Sci. 2018, 19, 257 6 of 17
Int. J. Mol. Sci. 2018, 19, 257 6 of 17 

 

 
Figure 5. Expressions of apoptosis-related proteins (Caspase-3, Cleaved Caspase-3, Cleaved 
Caspase-8, Cleaved Caspase-9, Bcl-2, Bax, and Bcl-2/Bax) and proliferating cell nuclear antigen 
(PCNA) in cerebral cortex of mice offspring on postnatal day 1 after maternal exposure to PM2.5 
during pregnancy. Left: the results of Western blot; Right: histogram of relative protein levels. * p < 
0.05, compared with control; ** p < 0.01, compared with control. 

 
Figure 6. Expressions of apoptosis-related proteins (Caspase-3, Cleaved Caspase-3, Cleaved 
Caspase-8, Cleaved Caspase-9, Bcl-2, Bax, and Bcl-2/Bax) and PCNA in cerebral cortex of mice 
offspring on postnatal day 7 after maternal exposure to PM2.5 during pregnancy. Left: the results of 
Western blot; Right: histogram of relative protein levels.* p < 0.05, compared with control; ** p < 0.01, 
compared with control. 

Figure 5. Expressions of apoptosis-related proteins (Caspase-3, Cleaved Caspase-3, Cleaved Caspase-8,
Cleaved Caspase-9, Bcl-2, Bax, and Bcl-2/Bax) and proliferating cell nuclear antigen (PCNA) in cerebral
cortex of mice offspring on postnatal day 1 after maternal exposure to PM2.5 during pregnancy. Left:
the results of Western blot; Right: histogram of relative protein levels. * p < 0.05, compared with control;
** p < 0.01, compared with control.
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Figure 6. Expressions of apoptosis-related proteins (Caspase-3, Cleaved Caspase-3, Cleaved Caspase-8,
Cleaved Caspase-9, Bcl-2, Bax, and Bcl-2/Bax) and PCNA in cerebral cortex of mice offspring on
postnatal day 7 after maternal exposure to PM2.5 during pregnancy. Left: the results of Western blot;
Right: histogram of relative protein levels. * p < 0.05, compared with control; ** p < 0.01, compared
with control.
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Figure 7. Expressions of apoptosis-related proteins (Caspase-3, Cleaved Caspase-3, Cleaved Caspase-8,
Cleaved Caspase-9, Bcl-2, Bax and Bcl-2/Bax) and PCNA in cerebral cortex of mice offspring on
postnatal day 14 after maternal exposure to PM2.5 during pregnancy. Left: the results of western blot;
Right: histogram of relative protein levels. * p < 0.05, compared with control; ** p < 0.01, compared
with control.
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Figure 8. Expressions of apoptosis-related proteins (Caspase-3, Cleaved Caspase-3, Cleaved Caspase-8,
Cleaved Caspase-9, Bcl-2, Bax and Bcl-2/Bax) and PCNA in cerebral cortex of mice offspring on
postnatal day 21 after maternal exposure to PM2.5 during pregnancy. Left: the results of western blot;
Right: histogram of relative protein levels. * p < 0.05, compared with control; ** p < 0.01, compared
with control.
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Figure 9. Expressions of apoptosis-related proteins (Caspase-3, Cleaved Caspase-3, Cleaved Caspase-8,
Cleaved Caspase-9, Bcl-2, Bax and Bcl-2/Bax) and PCNA in cerebral cortex of mice offspring on
postnatal day 30 after maternal exposure to PM2.5 during pregnancy. Left: the results of western blot;
Right: histogram of relative protein levels. * p < 0.05, compared with control; ** p < 0.01, compared
with control.

2.4.2. Effects of Exposure to PM2.5 on mRNA Levels and Protein Expressions of Bcl-2 and Bax

mRNA level and protein expression of Bcl-2 decreased at each time point with exposure dosage
(Figures 4D and 5–9), while there was no significant change of mRNA level or protein expression of Bax
at each time point for any dosage group, compared with the control (Figures 4E and 5–9). Both mRNA
level and protein expression rates of Bcl-2/Bax decreased at each time point with exposure dosage
(Figures 4F and 5–9), suggesting that exposure to PM2.5 during pregnancy might exert effects on
neuronal apoptosis in the cerebral cortex of mice offspring via changing the balance between Bcl-2
and Bax.

2.4.3. Effects of Exposure to PM2.5 on Protein Expression of PCNA

Protein expression of PCNA decreased with exposure dosage at each time point, statistically
significantly different between high-dosage group and control (Figures 5–9), which indicated that
exposure to PM2.5 during pregnancy could suppress the expression of PCNA and then exert effects on
proliferation of neurons in the cerebral cortex of mice offspring.

2.5. Results of Behavioral Experiments in Mice Offspring

2.5.1. Results of Open Field Test

Mice offspring from the control group traveled a total distance of 79.54 ± 88.80 m within 5 min
and the total distance shortened with exposure dosage, with the total distance significantly different
from that of high-dosage group (20.24 ± 7.72 m) (p < 0.01, Figure 10A).

Compared with the control group, the activity time in the central area decreased with dosage,
but there was no statistically significant difference. Distances traveled in the central area decreased
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with dosage, with statistically significant difference between the high-dosage and control groups
(p < 0.05, Figure 10B). Moreover, spontaneous activities reduced with dosage.
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2.5.2. Results of Tail Suspension Experiment

The cumulative immobility time durations in tail suspension experiment were 60.33 ± 30.26 s,
59.00 ± 10.18 s, 83.13 ± 47.17 s, 104.45 ± 31.50 s, and 113.89 ± 24.01 s, corresponding to the control,
mock-treated, low-dosage, medium-dosage, and high-dosage groups, respectively. The cumulative
immobility time durations in the medium and high-dosage groups were significantly prolonged,
compared with the control (p < 0.05, Figure 10C), with no significant difference among the control,
mock-treated, and low-dosage groups.

3. Discussion

A PM2.5 trachea drip animal model for pregnant mice was established in our preliminary
animal experiments where it was found that weight gains and gestation days decreased, along with
pathological changes such as inflammation in heart, liver, lung, kidney, and other main organs occurred
with exposure dosage of PM2.5 [21,22]. Exposure to PM2.5 during pregnancy resulted in many adverse
pregnancy outcomes such as slow weight gain in pregnant mice, along with reduced number and body
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weight loss of newborn mice [21]. After entering into maternal blood circulation, PM2.5 might interfere
with maternal normal metabolism, delay placental growth, reduce the placental nutrient supply and
gas exchange, or exert indirect effects on the normal systematic development of fetal mice through
a variety of mechanisms including oxidative stress, inflammation, and dysfunction of the placenta
resulting in adverse pregnancy outcomes [15,23,24].

After exposure to PM2.5, adult mice demonstrated impaired abilities of learning and memory,
anxiety- and depression-like behaviors, suggesting that particulate matter pollutants could exert
adverse effects on the central nervous system, emotional reactions, and cognitive competence by
activating reactive oxygen species (ROS) and proinflammatory cytokine pathways [25]. However,
studies concerning the developmental toxicity of exposure to PM2.5 during pregnancy to nervous
system remain limited [26–28]. In particular, very few animal experiments involved the effects and
mechanisms of prenatal exposure to PM2.5 on the development of the central nervous system in mice
offspring [29].

Exposure to PM2.5 possessed potential neurotoxicity and could penetrate various biological
barriers including blood-gas, placental, and blood-brain barriers in mammals [14], causing
inflammations and oxidative stress in the brain [30]. The brain is particularly sensitive to oxidative
stress and exhibits morphological changes in the cerebral cortex with the increased exposure dosage of
PM2.5 after peripheral immune stimulation.

A great deal of oxygen free radicals could result from brain impairment and lead to neuronal base
damages which could be repaired by the PCNA-dependent pathway [31]. Protein expression of PCNA
(a DNA repair protein) decreased with PM2.5 exposure dosage at each time point in mice offspring in
the present work. Thus, it could be speculated that the decreased expression of PCNA made its DNA
base repair function reduced or lost correspondingly and caused partial genetic damages missing
prompt and effective repair, which further aggravated the damages of DNA and resulted in irreversible
process and even cell death.

Apoptosis, firstly put forwarded by Kerr et al. [32], plays a key role in the development of the
nervous system and homeostasis of adult nervous system. Therefore, abnormal neuronal apoptosis
might exert serious effects on the nervous system [33]. In the present study, the rate of TUNEL-positive
cells increased significantly with the exposure dosage of PM2.5 during pregnancy. The effects of
exposure to PM2.5 on apoptosis of the cerebral cortex neurons were also confirmed by transmission
electron microscope (TEM) examination which exhibited indistinct mitochondrial cristae, myeloid
like degeneration, and overflown nuclear chromatin. This might affect the mitochondrial function
(membrane potential and permeabilization), inhibition or activation of apoptosis-related molecules,
leading to dysregulation of apoptosis via the mitochondrial pathway [34,35]. It could be inferred
that abnormal apoptosis of cortical neurons might be related to the induced neurotoxicity. Decreased
synaptic gap of cortical neurons, number of presynaptic synaptic vesicles, and density of presynaptic
synapses occurred in mice offspring after exposure to PM2.5. Synaptic plasticity can affect the brain
functions such as development of the nervous system, damage repair, learning, and memory, and thus
plays a vital role in the pathogenesis of cognitive impairments [36]. Neuronal damages and alterations
in synaptic plasticity are the pathophysiological basis for the development of psychiatric disorders.

Apoptosis involves two pathways: endogenous and exogenous. Endogenous (mitochondrial)
pathway can regulate apoptosis initiation genes (Bax or Bcl-2) and caspase-9 to stimulate the release
of mitochondrial cytochrome C into cytoplasm followed by combination with apoptosis peptidase
activation factor 1(APAF-1) and then induce apoptosis. As to exogenous (transmembrane) pathway,
FasL and tumor necrosis factor alpha (TNF-α) act on the corresponding receptors and lead to apoptosis
under the stimulation of apoptosis signals [37–39]. Bcl-2 protein family is a key regulator of apoptosis
and Bax can promote apoptosis while Bcl-2 can inhibit apoptosis, with ratio changes of Bcl-2/Bax
directly reflecting the level of apoptosis [40,41]. When stimulated by upstream apoptosis signal,
the initiation factors of caspase-8 and caspase-9 are cleaved and activated by other kinases, and the
apoptosis signal is then transmitted to the cascade execution factor caspase-3 to induce apoptosis [42].
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The results in the present work suggested that effects of exposure to PM2.5 during pregnancy on the
development of cerebral cortex in mice offspring could be achieved by up-regulating the expressions of
Caspase-3, Caspase-8, and Caspase-9, and down-regulating the expression of Bcl-2. Since Bcl-2 could
form a heterodimer with Bax, the protein expressions ratio of Bcl-2 to Bax might eventually break
the balance and participate in the induction of apoptosis [43]. Furthermore, the effects of exposure to
PM2.5 during pregnancy on neuronal apoptosis in cerebral cortex of mice offspring would persist.

An open field test is a classical method to evaluate the motor function and anxiety state of
rodent experimental animals [44]. The statistically significantly different results of the open field test
between the control and the high-dosage group suggested that long-term exposure to a high dosage of
PM2.5 during pregnancy might have certain effects on the motor function of mice offspring. The tail
suspension test is widely used to evaluate depression-like behavior. In the present work, an immobile
posture based on a stress that the tail could not bear was established [45,46] to acquire the immobility
time duration and evaluate effects of exposure to PM2.5 during pregnancy on depression in mice
offspring. The significantly prolonged immobility time duration in the high-dosage group indicated
that exposure to PM2.5 in early life could induce depression-like behavior in adult mice offspring.

The aforementioned results suggested that exposure to PM2.5 during pregnancy could lead
to expression changes of apoptosis-related indicators in the cerebral cortex and subsequently then
induce apoptosis. Therefore, exposure to PM2.5 during pregnancy might break the balance between
neurogenesis and apoptosis in the cerebral cortex by inducing neuronal apoptosis, which might be an
intrauterine cause of adult depression susceptibility. A relatively low dosage of fine particles could
result in certain alterations of those sensitive indicators and become a potential mutagenic factor
which might play a significant role in different periods due to some incentives and therefore lead to
corresponding lesions. In summary, the effects of exposure to PM2.5 on the growth and development of
the cerebral cortex in offspring is a multi-mechanism regulation, multi-gene involvement, multi-stage
process. To study and understand its effects on the development of the mouse brain in gestational
and offspring mice is of great significance. We aim to advocate vigilance and prevention of harm to
pregnant women, fetus, and offspring due to pollution of atmospheric particulate matter, and establish
early and specific birth defects monitoring indicators.

4. Materials and Methods

4.1. Sampling and Preparation of PM2.5

Atmospheric fine particulate matter samplers were used for collecting urban atmospheric PM2.5

in a prefecture-level city in Northern China ranging from December 2015 to January 2016. The filter
membranes carrying particulate matters were cut into small pieces and processed in deionized water at
low temperature by ultrasonic oscillation four times (30 min for each). Then the elution was gathered
and freeze-dried in vacuum and the freeze-dried powders were preserved at −20 ◦C before being
dissolved in PBS and used in uniform solution at certain concentration.

4.2. Animal Grouping and Model Preparation

Specific pathogen-free (SPF) Kunming mice, 8 to 9-week old, were purchased from Qingdao
Laboratory Animal Center and adaptively fed for a week. Female and male mice were crossbred
in a proportion of 2:1 and the next day when vaginal plug appeared was considered as day zero of
embryonic development (E0). Pregnant mice were randomly divided into five groups (with 6 mice
in each group), namely control, mock-treated, low-dosage, medium-dosage and high-dosage groups,
respectively. No additional treatment was applied in the control group while 30 µL of PBS was given
via intratracheal instillation in the mock-treated group. Meanwhile, 30 µL of PM2.5 suspensions, with
concentration as 0.2592 µg/µL, 1.56695 µg/µL and 3.456 µg/µL (corresponding to the PM2.5 daily
dosage upper limit of 75 g/m3, PM2.5 red haze warning reference value of 500 g/m3 and the PM2.5

explosion value of 1000 g/m3 in different regions in 2015, respectively, based on the Environmental



Int. J. Mol. Sci. 2018, 19, 257 12 of 17

Air Quality Standard issued by the Ministry of Environmental Protection of China), were dripped into
the trachea of pregnant mice from low-dosage, medium-dosage and high-dosage group respectively
every 3 days from E0 to parturition (totally seven times) according to a modified rapid mice trachea
drip method. Groups of pregnant mice took food and water freely during pregnancy. And all of the
experiments (including the following analyses) in the present work were conducted in a random and
double-blind manner. This study was approved by Institutional Research Ethics Committee of Weifang
Medical University (approval code: 2015266; approval date: December 2015).

4.3. Nissle Staining

Once obtained from mice sacrificed on 1st, 7th, 14th, 21st and 30th day after birth, brains were
immediately fixed in 4% paraformaldehyde for 3 days, followed by being embedded in paraffin.
The paraffin-embedded tissues were cut into 5 µm-thick sections which were subject to subsequent
Nissl staining. Quantitative analyses were performed according to a method described previously by
Miner et al. [47]. The number of neurons in the cerebral cortex of 0.01 mm2 was counted (×40 objective
lens and ×10 ocular lens). The longest diameter and the shortest diameter of the positive neurons
were measured (×40 objective lens and ×10 ocular lens) and the average value was regarded as the
cell diameter. Three slices were selected from each group and five field of views were selected from
each slice. The data were presented as mean ± standard deviation.

4.4. TEM Observation

Cerebral cortex obtained from mice offspring were cut into cubes of about 1 mm3 and fixed in 2.5%
glutaraldehyde solution. After being stained with both uranyl acetate and lead citrate, the prepared
ultrathin sections were washed using deionized water and then observed by transmission electron
microscope (TEM) (HT7700, Hitachi, Tokyo, Japan). A quantitative analysis was performed. Ten fields
of view for each TEM figure were selected randomly to quantify the number of presynaptic vesicles.
The data were presented as mean ± standard deviation.

4.5. TUNEL

Mice offspring were perfused transcardially using 4% paraformaldehyde with 0.1 M PBS as
solvent. Then brains were isolated and dehydrated with sucrose solutions (20–30%, w/w), followed by
frozen section. Slides, placed in citrate buffer of 0.1 M, were subject to microwave irradiation for 5 min
and subsequent rinsing with 0.1 M PBS (pH 6.0) three times. TUNEL reaction mixture, consisting of
10% enzyme solution and 90% label solution (v/v) (Roche, Shanghai, China), was dropped onto the
sections which were then placed in a sealed container at 37 ◦C for 60 min in the dark. After being
rinsed with 0.1 M PBS three times, sections were stained using Hoechst (1:1000) at 37 ◦C for 30 min
in the dark, followed by anti-quenching mounting and fluorescence microscopic observation. Label
solution was used as negative control to ensure the specificity of TUNEL. Apoptotic index (AI) was
calculated as (TUNEL-positive cell number)/(total cell number) × 100%.

4.6. Real-Time Quantitative PCR

Total RNA was extracted from the cerebral cortex tissues of each group at different time points
using Trizol reagent (Invitrogen, Carlsbad, CA, USA) and corresponding cDNA was synthesized using
a 1st Strand cDNA Synthesis Kit (Takara, Otsu, Japan). The cDNA products were kept at −20 ◦C prior
to use. The primers for target and internal reference (β-actin) genes were designed using a Primer5
software and synthesized by Takara. Then mRNA levels of target and internal reference genes were
analyzed in triplicate using a Bio-Rad CFX Manager 3.1 real-time quantitative PCR system(Bio-Rad
Laboratories, Hercules, CA, USA), with total reaction volume as 10 µL containing approximately 50 ng
cDNA, 5 µL SYBR premix, 10 µM primer each and diethylpyrocarbonate (DEPC) processed deionized
water. Positive and negative controls were also used for the accuracy of experimental results. Relative
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mRNA levels of target genes were calculated using the 2−44Ct method. The primers used in the
present work were shown in Table 2.

Table 2. Primers used for real-time quantitative PCR.

Target Primer Sequence (5′–3′)

Caspase-3 F: CTGGACTGCGGTATTGAGAC
R: CCGGGTGCGGTAGAGTAAGC

Caspase-8 F: TGCTTGGACTACATCCCACAC
R: TGCAGTCTAGGAAGTTGACCA

Caspase-9 F: TCCTGGTACATCGAGACCTTG
R: AAGTCCCTTTCGCAGAAACAG

Bcl-2
F: GTCGCTACCGTCGTGACTTC
R: CAGACATGCACCTACCCAGC

Bax
F: TGAAGACAGGGGCCTTTTTG
R: AATTCGCCGGAGACACTCG

β-actin
F: GGCTGTATTCCCCTCCATCG
R: CCAGTTGGTAACAATGCCATGT

4.7. Western Blot

Samples of cerebral cortex were separated from newborn mice on postnatal days 1, 7, 14, 21,
and 30, respectively, and homogenized at 4 ◦C in lysis buffer consisting of 50 mM NaCl, 1 mM
ethylene diamine tetraacetic acid (EDTA) (pH 8.0), 50 mM Tris-HCl (pH 7.4), 1% Triton-100 and
100 µg/mL PMSF. Lysates were centrifuged at 12,000× g for 15 min to obtain the supernatant and
protein concentrations were determined by BCA method. Protein samples were separated by 10%
SDS-PAGE electrophoresis and then transferred onto PVDF membrane (Millipore, Billerica, MA, USA)
at a voltage of 90 V for 1 h. The transferred proteins were blocked using 5% skim milk in TBST buffer
on a shaker for 2 h at ambient temperature, followed by incubations with TBST diluted mice PCNA
(1:500, Abcam, Boston, MA, USA) primary monoclonal antibody or caspase-3 rabbit primary polyclonal
antibody (1:100, Abcam), or cleaved caspase-3/cleaved caspase-9 rabbit primary polyclonal antibody
(1:500, CST, Beverly, MA, USA), or cleaved caspase-8 rabbit primary monoclonal antibody (1:300,
Abcam), or rabbit Bcl-2 (1:500, CST) primary monoclonal antibody or rabbit Bax primary polyclonal
antibody (1:300, CST), respectively at 4 ◦C overnight. Then the proteins were incubated with TBST
diluted goat-anti-mice IgG (1:2000, CST) or goat-anti-rabbit IgG (1:2000, CST) on a shaker for 2 h at
ambient temperature accordingly, followed by the analyses performed using a chemiluminescence
detection kit (thermo, Rockford, IL, USA) in darkroom. GAPDH and β-actin (for PCNA, caspase-3
and cleaved caspase-3) were used as internal references (1: 3000, MULTI Sciences, Shanghai, China).
The experiment was replicated three times and gray density analyses were performed using a gel
image analyzer (UVP, Upland, CA, USA).

4.8. Behavioral Experiments

Mice offspring were acclimatized to the experimental conditions overnight and behavioral
experiments were conducted between 9 a.m. and 4 p.m. using mice offspring that were 6 weeks old.
Residual odors were removed by cleaning the behavioral equipment with 75% ethanol. Open field and
the tail suspension tests were conducted using a Locomotion Activity Video Analysis System (Jiliang
Software, JLBehv-LAM-1, Shanghai, China).

4.8.1. Open Field Test

Each mouse was placed at the midpoint of a Plexiglas cage (30 cm × 30 cm × 30 cm) equipped
with room light for 5 min. Parameters, including total travelled distance, time spent in the central area
(20 cm × 20 cm) and activity path were recorded.
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4.8.2. Tail Suspension Experiment

A small clip, connected to the top of tail suspension test operation box, was used to fasten the
adhesive tape wrapped around the tail end of mouse which was overhung for totally 6 min, with a
distance of 4~5 cm between mouse head and box bottom. Time duration for mice tail suspension was
recorded during the last 4 min. Tail suspension refers to completely immobile limbs or merely slight
feet movements.

4.9. Statistical Analysis

All of the data were reported as mean values ± standard deviation (SD). Multiple comparisons
were analyzed by one-way ANOVA using a SPSS19.0 software (SPSS Inc., Chicago, IL, USA).
The comparisons were conducted by the least significant difference test (LSD-t) for homogeneous
variance or Games-Howell test for inhomogeneous variance. p < 0.05 was considered to be
statistically significant.

5. Conclusions

In conclusion, our results showed that maternal exposure to PM2.5 during pregnancy induced
mitochondrial dysfunction and neuronal apoptosis in the cerebral cortex of mice offspring.
The exposure also exerted certain negative effects on the later neurobehaviors of mice offspring. Therefore,
exposure to PM2.5 during pregnancy should receive people’s high attention. They are advised to pay
close attention to the air quality, seek protection when needed, and avoid long-term exposure to PM2.5

especially at high dose. These actions may help avoiding the adverse development of fetus.
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