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Abstract: Organ replacement is an option to mitigate irreversible organ damage. This procedure
has achieved a considerable degree of acceptance. However, several factors significantly limit its
effectiveness. Among them, the initial inflammatory graft reaction due to ischemia-reperfusion injury
(IRI) has a fundamental influence on the short and long term organ function. The reactive oxygen
species (ROS) produced during the IRI actively participates in these adverse events. Therapeutic
strategies that tend to limit the action of free radicals could result in beneficial effects in transplantation
outcome. Accordingly, the anti-oxidant α-lipoic acid (ALA) have been proved to be protective in
several animal experimental models and humans. In a clinical trial, ALA was found to decrease
hepatic IRI after hepatic occlusion and resection. Furthermore, the treatment of cadaveric donor
and recipient with ALA had a protective effect in the short-term outcome in simultaneous kidney
and pancreas transplanted patients. These studies support ALA as a drug to mitigate the damage
caused by IRI and reinforce the knowledge about the deleterious consequences of ROS on graft
injury in transplantation. The goal of this review is to overview the current knowledge about ROS in
transplantation and the use of ALA to mitigate it.
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1. Introduction

During the transplantation procedure, the organs undergo ischemia-reperfusion injury (IRI).
This is an inevitable pathological condition characterized by the initial restriction of blood supply
followed by subsequent restoration of perfusion with concomitant re-oxygenation of the graft.
Injury begins with anoxia, continues and is aggravated by reperfusion of the organ, culminating
with a sterile inflammatory reaction [1]. Due to ischemia, structural and metabolic changes occur in
tissue such as reduction of capillary diameter, metabolic dysfunction of endothelial cells, malfunction
of the cell membrane and the deregulation of inflammatory mediators [2]. Once blood flow is restored,
a number of molecular mechanisms are triggered leading to tissue damage and cells death.

In the ischemic phase, anoxic injury begins with a decrease in mitochondrial energy production
and, therefore a downfall in adenosine triphosphate (ATP). Due to energy deficiency, imbalances of
the cellular ions take place, also activation of hydrolases and a critical increase in the permeability of
the cells membrane [3–6]. These events follow only in part a sequential order and self-amplification
of processes and propagation can occur through various pathways. Cytosolic pH decreases due to
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ATP degradation, increased glycolytic rate with lactate accumulation and the release of H+ from
damaged lysosomes. In parallel, cellular homeostasis of ions deteriorates, implying an increase in the
cytosolic concentrations of Na+ and Ca2+. The latter activates hydrolases, such as phospholipase A2
and proteases [3] and proteolysis of cytoskeletal proteins favors the process of tissue injury. At the
same time, elevated cytosolic Ca2+ and hypoxia generate an increase in mitochondrial membrane
permeability. In turn, swelling of mitochondria and augmented permeability lead to the release of
cytochrome c which activates a signaling pathway involving caspases 1 and 9, that promotes cellular
apoptosis. On the other hand, the rise of cellular Na+ cause edema, that contributes to the damage of
the plasma membrane resulting finally in the cell death by necrosis [7].

Paradoxically, restoration of blood flow initiates a cascade of events that lead to additional cell
damage, beyond that caused by ischemia. During re-oxygenation, new lesions are generated by
the increase in the production of reactive oxygen species (ROS) by the epithelial and endothelial
cells, platelet and activated leukocytes that infiltrate the area [8,9]. These free radicals; such as
superoxide anion, hydrogen peroxide and hydroxyl radical; are generated in the reperfused tissues as
a consequence of mitochondrial lesions, by an incomplete reduction of oxygen or through the action of
oxidases. Under normal conditions, the harmful effects of superoxide are prevented by superoxide
dismutase, which converts the anion to hydrogen peroxide, glutathione peroxidase and catalase
converts hydrogen peroxide to water [10,11]. During reperfusion, this natural defense is overcome
and the hydrogen peroxide is converted into hydroxyl radicals, capable of damaging a wide variety
of molecules leading to cell dysfunction or death due to necrosis or apoptosis [12–15]. The process
perpetuates through the release of proinflammatory cytokines which increases the inflammatory
response and injury.

2. Pharmacological Treatments for IRI Prevention

There are several experimental studies focused both on inhibiting the deleterious effects of
ischemia and reperfusion as well as those generated by the inflammatory response. For this
purpose, drugs such as chloroquine [16] or chlorpromazine [17], were used to prevent mitochondrial
dysfunctions and phospholipid degradation during ischemia. There are also studies that investigated
blocking neutrophil activation and infiltration or tumor necrosis factor (TNF)-α proinflammatory
cytokine, with specific monoclonal antibodies [18,19]. Also, it was sought to decrease apoptosis by
blocking calcium with an antagonist [20]. However, based on the role of ROS in the pathophysiology
of IRI, one of the main target to prevent injury should be against the production of ROS.

Several antioxidant drugs may be available to be tested in different IRI models. However, one
of the most effective antioxidants used in daily clinical practice is α-lipoic acid (ALA) [21]. It is a
powerful natural antioxidant produced in mitochondria from octanoic acid. It has activity in both
aqueous and lipid media. It acts both at intra- and extracellular levels and has two isomeric forms.
Due to these properties it has a wide potential of pharmacological action [22,23]. Its major biological
role is as a cofactor of mitochondrial enzymes such as α-ketoglutarate dehydrogenase and pyruvate
dehydrogenase [24]. ALA also appears to be involved in the production of acetyl-coenzyme A (CoA),
through the oxidative decarboxylation of pyruvate [25]. In vivo, ALA can be reduced in dihydrolipoic
acid (DHLA) which has a higher antioxidant action. Both ALA and DHLA neutralize ROS and have
metal chelating capacity for Fe2+, Cu2+ and Cd2+. It has been shown that only DHLA is able to
regenerate endogenous antioxidants (glutathione and vitamin E, C) and repair the tissue damage
generated by ROS [26]. However, not all of the effects of ALA are due to its anti-oxidant activity.
Lipopolysaccharides (LPS) induce proinflammatory cytokines by promoting the phosphorylation
of the inhibitor of Nuclear factor-κB alpha (IκBα) and the translocation of NF-κB to the nucleus.
It was described that ALA can inhibit the release of proinflammatory cytokines induced by LPS [27].
This anti-inflammatory activity is mediated by the inhibition of phosphorylation of IκBα and the
translocation of NF-κB to the nucleus [28]. Moreover, a recent study shows, in a macrophage cell line,
that ALA inhibits extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase 14 and
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NF-κB activation induced by extracellular histones [29]. Therefore, the beneficial effect of ALA, or its
reduced form, DHLA, is mediated through different mechanisms of action depicted in Figure 1. It is
important to mention that safe levels for oral ALA intake have been defined in rats and 2000 mg/kg is
the LD50 for intravenous (i.v.) administration [30].

The wide antioxidant activities of ALA have supported to test the use ALA in several experimental
models of IRI in different organs and systems, some of which are described below and in Table 1.
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TIME SCHEDULE DOSES

Sciatic-tibial 
nerve 
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days after surgery 

100 mg/kg/day 
intraperitoneal 

(i.p.) 
44 

Distal sensory conduction and 
fiber degeneration improvement 
in the short-time ischemia group 

Mitsui et al. 
1999 [31] 

Ovary 
21, 9 and 1 h before 
torsion of the ovary 36 mg/kg/day i.p. 32 

Reduced tissue damage, MDA, 
NO and XO serum levels  

Cosar et al. 
2007 [32] 

Testis 
30 min prior to 

detorsion 
100 mg/kg i.p. 35 

Reduced testicular cell damage, 
apoptosis and MDA.  

Ozbal et al. 
2012 [33] 

Liver 

Ex vivo model: 20 
min before ischemia 

50 μM 15 
Reduced LDH and PNP efflux, 
NF-κB and AP-1 activation and 
increased Akt phosphorylation Müller et al. 

2003 [34] 
In vivo model: 15 

min before ischemia 
500 μM i.v. 15 

Reduced GST plasma levels and 
improved liver histology 

Kidney 

48 and 24 h before 
ischemia and at 6 

and 24 h after 
reperfusion 

80 mg/kg i.p. 17 

Increased creatinine clearance. 
Attenuated AQP downregulation 

and Na+ transporters. 
Reduced the polyuria normalizing 

the Na+ excretion  

Bae et al. 2008 
[35] 
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days after surgery 

10 mg/kg oral + 
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40 

Increased SOD and GPx activity, 
reduce MDA and PCC levels and 

improved intestinal histology 

Guven et al. 
2008 [36] 

Heart 
council house model: 

10 min before 
ischemia 

Low dose:  
10−8 M 

High dose:  
5 × 10−8 M 

42 

High-dose treatment improved 
cardiac function, increased 

ALDH2 activity and decreased 
reactive aldehydes levels. 

He et al. 2012 
[37] 

Heart 
30 min before 

ischemia 
15 mg/kg i.v. 120

Attenuated myocardial infarct size 
and preserved heart function. Up-

regulated Akt phosphorylation 
and Nrf2 nuclear translocation. 
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Deng et al. 
2013 [38] 
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Table 1. Summary of the effect of ALA treatment in ischemia reperfusion injury animal models.

Tissues and
Organs

ALA Administration
N Outcomes References

TIME SCHEDULE DOSES

Sciatic-tibial
nerve

3 days before and 3
days after surgery

100 mg/kg/day
intraperitoneal (i.p.) 44

Distal sensory conduction and fiber
degeneration improvement in the

short-time ischemia group

Mitsui et al.
1999 [31]

Ovary 21, 9 and 1 h before
torsion of the ovary 36 mg/kg/day i.p. 32 Reduced tissue damage, MDA, NO

and XO serum levels
Cosar et al.
2007 [32]

Testis 30 min prior to
detorsion 100 mg/kg i.p. 35 Reduced testicular cell damage,

apoptosis and MDA.
Ozbal et al.
2012 [33]

Liver

Ex vivo model: 20 min
before ischemia 50 µM 15

Reduced LDH and PNP efflux, NF-κB
and AP-1 activation and increased

Akt phosphorylation
Müller et al.

2003 [34]
In vivo model: 15 min

before ischemia 500 µM i.v. 15 Reduced GST plasma levels and
improved liver histology

Kidney
48 and 24 h before

ischemia and at 6 and
24 h after reperfusion

80 mg/kg i.p. 17

Increased creatinine clearance.
Attenuated AQP downregulation and

Na+ transporters.
Reduced the polyuria normalizing the

Na+ excretion

Bae et al.
2008 [35]

Intestine 1 day before and 3
days after surgery

10 mg/kg oral + ebselen
(20 mg/kg) intragastrically 40

Increased SOD and GPx activity,
reduce MDA and PCC levels and

improved intestinal histology

Guven et al.
2008 [36]

Heart council house model: 10
min before ischemia

Low dose: 10−8 M
High dose: 5 × 10−8 M

42

High-dose treatment improved
cardiac function, increased ALDH2

activity and decreased reactive
aldehydes levels.

He et al.
2012 [37]

Heart 30 min before ischemia 15 mg/kg i.v. 120

Attenuated myocardial infarct size
and preserved heart function.

Up-regulated Akt phosphorylation
and Nrf2 nuclear translocation.

Increased expression of HO-1. PI3K
inhibition abolished the

beneficial effects.

Deng et al.
2013 [38]

MDA, malondialdehyde; NO, Nitric Oxide; XO, Xanthine Oxidase; LDH, Lactate dehydrogenase; PNP, Purine
Nucleoside Phosphorylase; NF-κB, Nuclear Factor Kappa B; AP-1, Activator Protein-1; Akt, Protein Kinase B;
GST, Glutathione S-transferase; AQP, Aquaporins; Na+, Sodium; SOD, Superoxide Dismutase; GPx, Glutathione
Peroxidase; PCC, Protein Carbonyl Content; ALDH2, Aldehyde Dehydrogenase 2; Nrf2, Nuclear factor
(erythroid-derived 2)-like 2; HO-1, Hemoxigenase-1; PI3K, phosphatidylinositol 3-kinase.

2.1. ALA in Nervous System

Ischemic-reperfusion injury in nervous system occurs in conditions such as stroke, subarachnoid
hemorrhage or head trauma. The ischemic injury to peripheral nerve can be aggravated by reperfusion,
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resulting in axon degeneration. Mitsui et al. studied IRI in a sciatic-tibial nerve rat model.
The experimental design took into account two groups with different periods of ischemia (3 h or
5 h) but same reperfusion time and ALA treatment. Remarkably, distal sensory conduction was
significantly improved and axon degeneration decreased, in the short-time ischemia group treated
with ALA, but failed to show favorable effects if the duration of oxygen deprivation was longer.
These results suggest that the time of ischemia may be important to observe effects of ALA in IRI
(Table 1) [31].

Also, it is important to highlight that, ALA effect was also studied in cerebral IRI. As a result,
Panigrahi et al. described a dramatically reduction in mortality rate in animals treated with ALA [39].

2.2. ALA in Reproductive System

Torsion of the adnexa is a rare cause of lower abdominal pain and a surgical emergency of
difficult diagnosis with a prevalence of 2.7% [40]. In most cases, it is associated with the presence of
a preexisting adnexal tumor or cyst, but it can also occur in normal ovaries. Because of the torsion,
the ovaries suffer IRI. Cosar et al. showed that pathological changes induced by IRI were reduced in
ALA-treated rats; specially the neutrophils infiltration, edema and loss of cohesion in the ovaries. Also,
levels of malondialdehyde (MDA), as an index of lipid peroxidation, was significantly decreased by
ALA treatment in ovarian tissue and in serum. Finally, it has shown a regulatory activity for superoxide
dismutase (SOD), xanthine oxidase (XO) and nitric oxide (NO) serum levels in treated animals [32].

In male, testicular torsion is also a urologic emergency occurring frequently in neonatal and
adolescent periods. The testis is sensitive to IRI, which results in testicular cell damage and apoptosis.
Ozbal et al. studied ALA effects in testicular IRI, with a model of testicular torsion and detorsion. As a
result, pretreatment with ALA reduced cell damage and decreased cell death. Like in the ovaries, ALA
decreased MDA tissue levels. However, in the testis IRI model it was also possible to observe greater
activity of the enzyme SOD in testicular tissue in animals treated with ALA. This may be related to the
different administration protocol chosen in both studies. Nevertheless, both studies showed that ALA
pretreatment has beneficial effects in ovarian and testicular IRI models [33].

2.3. ALA in Liver

In liver resection and transplantation, IRI is one of the main causes of organ non-function. It is
important to emphasis that animals do not tolerate total hepatic ischemia very well and therefore, most
hepatic IRI models are partial or ex vivo. As an example, Müller et al. studied the administration of
ALA in an ex vivo model. Rat livers were perfused with Krebs–Henseleit buffer with or without ALA,
followed by warm ischemia (1 h) and reperfusion (90 min). The preconditioning with ALA significantly
reduced lactate deshidrogenase (LDH) and purine nucleoside phosphorylase (PNP) efflux during
reperfusion in isolated perfused livers. Post-ischemic activation of NF-κB and activating protein 1
(AP-1) was significantly reduced in ALA-pretreated organs. Then, they used an animal model of hepatic
IRI and detected that the preconditioning with ALA reduced glutathione s-transferase (GST) plasma
levels and improved liver histology compared to control group. It is important to highlight that this
study showed a causal relationship between protein kinase B (Akt) activation and hepatoprotection
by ALA. Through this study, it was possible to conclude that the phosphatidylinositol-3-kinases
(PI3K)/Akt pathway plays a central protective role in IRI of the rat liver and that ALA administration
attenuates IRI via this pathway (Table 1) [34].

It is known that liver is an organ with high regenerative capacity. Duenschede et al. studied ALA
effects on liver IRI and regeneration. To assess the effect of ALA in liver IRI, the authors induced
90 min of ischemia of one liver lobe followed by 1 h of reperfusion [41]. As a result, they observed
that caspase 3, 8, and 9 activities were significantly lower in the ALA-treated group accompanied by a
decrease in DNA fragmentation in hepatocytes. Furthermore, they discovered that ALA had effects on
liver regeneration. This was studied by resecting the 70% of non-ischemic liver after ischemia, before
reperfusion and analyzing the remaining tissue in untreated and ALA-treated animals. Untreated
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animals showed massive mitochondrial damage compared with ALA-treated animals. Remarkably,
ALA-treated animals presented higher mitotic index compared with untreated animals. These results
suggest that ALA attenuates IRI of the rat liver in vivo with a reduction of cell death, whereas liver
regeneration is increased [41].

2.4. ALA in Intestine

Intestinal IRI can complicate certain serious clinical conditions, including intestinal obstruction
with strangulation, and intestinal transplantation [42–44]. In a rat model of intestinal IRI, Guven et al.
showed that ALA decreased the intestinal injury [36]. Furthermore, the same effect was reproduced
by Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a low-molecular-weight selenium compound,
originally described as a drug that mimics the glutathione peroxidase (GPx) [45,46]. However, it
was possible to observe that the combination of both drugs was much more effective decreasing
lipid peroxidation products and increasing antioxidant enzymes than the administration of each drug
alone [36].

2.5. ALA in Kidney

Rat renal IRI is a model that is extensively used to study acute kidney injury (AKI). In these
animal models, it is possible to observe structural alterations in renal tubules, as well as impaired ions
urinary concentration. Şehirli et al. showed that as well as in other organs ALA could reduce tissue
damage in kidney IRI. This effect was mediated through reducing neutrophil infiltration, balancing the
oxidant–anti-oxidant status and regulating the generation of inflammatory mediators [47]. Bae et al.
showed that the treatment with ALA increased creatinine clearance compared with those in untreated
rats. Also, ALA treatment reduced the degree of polyuria normalizing the excretion of sodium. The
same authors described that ALA treatment attenuated the downregulation of aquaporins (AQPs) and
sodium transporters in response to IRI [35].

2.6. ALA in Circulatory System

Myocardial ischemia-reperfusion is a major cause for the events of cardiovascular disease.
Wang et al. investigated the protective effect of ALA against myocardial IRI and its mechanisms.
They observed that myocardial IRI resulted in a significant increase of serum creatine kinase (CK),
promoted oxidative stress and decreased the activities of antioxidant enzymes. In addition, apoptosis
and inflammatory response were activated and aggravated in a time-dependent manner by IRI.
All these alterations were attenuated by the administration of ALA before reperfusion [48].

He et al. tried to further explore the mechanisms underlying ALA’s cardio protective effect.
In this sense, they observed, in a Langendorff model of IRI in rats that IRI led to cardiac dysfunction
accompanied by an increase in products of phospholipid peroxidation. The pretreatment only with a
high dose of ALA (5 × 10−8 M) improved these results. Moreover, ALA significantly up-regulated
myocardial aldehyde dehydrogenase 2 (ALDH2) activity and these effects were reverted by its inhibitor.
Similar results were achieved in vitro. It is interesting to remark that ALDH2 has been described to
play a major role in detoxification of reactive aldehydes in a variety of organs [49]. This suggests that
the cardioprotective effects of ALA on IRI are through a mechanism involving this enzyme activation
and PKCε signaling pathways [37].

In line with He studies, Deng et al. described that ALA treated animals compared with untreated
animals had lower tissue damage markers, smaller infarct size and less cell apoptosis and better cardiac
functioning. Moreover, they showed that ALA pretreatment up-regulated Akt phosphorylation as well
as Müller et al. described in liver. However, they noted an increase of nuclear factor erythroid 2–related
factor 2 (Nrf2) nuclear translocation and hemoxigenase-1 (HO-1) protein levels in the myocardium,
being this at least partially through activating PI3K/Akt pathway [38].



Int. J. Mol. Sci. 2018, 19, 102 6 of 13

2.7. Summary of the Experimental IRI Models

Altogether, these IRI animal models, supports the concept that ROS could be an appropriate
target to decrease tissue injury caused by the ischemia. Furthermore, ALA, through their pleiotropic
mechanism of action may be a suitable candidate to reduce the deleterious effect of ROS. These animal
models, also allow us to understand the putative molecular pathway involves in the effect of ALA on
IRI, which includes the PI3K/Akt/Nrf2 pathways that controls the expression of genes involves in
the detoxification and elimination of ROS and electrophilic agents. Although, it is probable that ALA
effectiveness and mechanisms of action might vary depending on each tissue and organ where the
ROS is produced. IRI is a process present in organ transplantation. However, these IRI animal models
do not guarantee that the same pathway would be involved in organ transplantation, since the latter is
a more complex process.

3. Clinical Trials

Beneficial effects of ALA treatment have also been observed in humans. Several studies have
documented a positive therapeutic effect, particularly in diseases such as diabetes, atherosclerosis,
neurodegenerative diseases, and AIDS, among others [26,50–52]. However, the most significant
therapeutic effect of ALA is in diabetic polyneuropathy and cataract [53]. A four-year treatment using
600 mg ALA once daily in mild-to-moderate diabetic distal symmetric sensorimotor polyneuropathy
resulted in a clinically meaningful improvement and prevention of progression of neuropathic
impairments and was well tolerated by patients [54].

Standard oral dosages of ALA tend to be between 300–600 mg/daily and its administration is safe.
There has not been defined an upper limit of ALA intake, but doses of 1800 mg/day caused no adverse
effects over a 6–7-month period [55]. Moreover, in clinical trials, ALA administration has not caused
severe adverse effects [56]. However, several common, mild and transient side effects were reported
such as nausea, urticaria and itching, associated with high doses (1200–1800 mg/daily). Furthermore,
in diabetic patients, mild hypoglycaemia was reported due to better cellular glucose uptake [57–59].
In 2014, it was informed a multiorgan failure and subsequent death within 24 h of a 14-year-old girl
that ingested 6000 mg in a non-accidental intoxication [60].

Up to date there are two clinical trials published accomplished in humans suffering from IRI. First,
Dünschede et al. studied the effects of preconditioning with ALA in twenty-four patients undergoing
hepatic resection. In this study, aspartate transaminase (AST) and alanine transaminase (ALT) levels
were significantly lower in ALA-pretreated group of patients (ALA: 600 mg i.v.; n = 12) compared
with control group. Furthermore, the analysis of the biopsies showed histomorphological features of
oncosis in control group but not ALA-treated patients. This result was confirmed in TUNEL assay.
Therefore, the authors conclude that ALA reduced liver damage induced by the vascular occlusion
and the liver resection [61].

In the second study, we analyzed the effect and safety of ALA administration in simultaneous
kidney-pancreas transplant patients. It is worth to mention that ALA treatment was justified because
all the patients included in the study suffered from diabetic polyneuropathy. Twenty-six simultaneous
kidney-pancreas transplant patients were recruited for this preliminary study and grouped as follow:
(i) untreated patients (n = 11), (ii) recipient treated with ALA just before the surgery (ALA: 600 mg i.v.
n = 8); and (iii) donor treated just before the procurement and recipient prior to the transplantation
(ALA: 600 mg i.v. n = 7). The primary outcome for this study was to evaluate the safety of the
procedure by measuring the patient’s and graft’s survival. The secondary outcomes were to evaluate
the inflammatory and biochemical markers and functional recovery of grafts. We observed that the
treatment was safe since all patients and grafts survive three months after transplantation for both
ALA-treated groups. Furthermore, the analysis of the results showed an effect of ALA treatment,
particularly the group where both, donor and recipient were treated with ALA. This was statistically
significant (p < 0.05) at the serum levels of proinflammatory cytokines (IL-8 and IL-6), alarmins
immune mediators (Regenerating islet-derived protein 3 alpha, Reg-3a and secretory leukocyte
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protease inhibitor, SLPI) and amylase but not urea, creatinine and glucose. Moreover, we observed
a tendency to a better kidney and pancreas clinical endpoints in donor and recipients ALA-treated
groups. However, a higher number of patients should be recruited in order to confirm these preliminary
results [62]. These results are extremely important since strengthen the idea that the generation of
ROS plays a role in the pathophysiology of transplantation. Furthermore, and more importantly, it
suggests that donor’s ROS affects the inflammatory status and integrity of the graft to be implanted.
Therefore, we can speculate that a worthy therapeutic intervention against ROS, should start before
the graft transplantation, probably in the donor and/or during the graft cold storage. Furthermore,
preliminary results (40 patients recruited) suggest that a similar protective effect could be achieved
with ALA administration in liver transplantation [63].

4. Discussion

The constant need to increase the number of donors made reconsider the criteria for organ
donation, at least for kidney transplant. The old-for-old allocation policies or the inclusion of
expanded criteria donors (ECD) are some of those efforts that try to decrease the high organ demand.
The characteristics of these donors include an age higher than 60 years, or age between 50 and
59 years with at least two of the following features: history of hypertension, terminal serum creatinine
>1.5 mg/dL, or cerebrovascular cause of death [64]. Currently, there is no doubt about the survival
benefit of transplant patients with ECD over those that remain on dialysis. However, mostly of
these criteria probably favor the production of ROS, diminishing the short and long term graft
survival [65–69]. For example, the impact of age on ROS production has been described in humans
and rats. The spontaneous ROS formation increases with age, in human neutrophils and rat cardiac
tissues [70]. Besides age, there are others donor derived factors that may influence the transplant
outcome, such as hypertension, obesity and cause of death. Higher ROS production was seen in
hypertensive and obese subjects [71,72]. However, the donor death may boost the ROS production.
In fact, it has been described an increase of ROS after brain death in rat kidney tissue [73]. In the same
way, there are risk factors linked to the receptor. Those factors turn the recipient more susceptible to
malfunction leading to a delayed graft function (DGF) [74]. This is a condition that is clinically defined
as a need for dialysis in the immediate post-transplantation period and it has been related with graft
loss [75].

In liver transplantation a post-reperfusion syndrome (PRS) could appear in the minutes after
reperfusion. This PRS has been associated to IRI. The PRS is one of the causes of primary hepatic
graft dysfunction, affecting the overall results of the transplant. As ROS being the main actors in IRI,
treatment with an antioxidant such as ALA could be an adequate therapy and beneficial for the short-
and long-term transplant outcome. Our preliminary result [63], treating the donor and receptor of
liver transplant with ALA reinforced this issue.

Overall, the experiments described above support the knowledge about the harmful consequences
of ROS, as one of the main mechanisms responsible for IRI. However, the clinical efficacy of
antioxidant therapies is questioned based on trials that showed lack of beneficial effects. For example,
a randomized double-blind trial in kidney transplantation using another anti-oxidant (human
recombinant superoxide dismutase) was not able to demonstrate benefit on serum creatinine and
creatinine clearance at 48 h after surgery [76]. However, in another prospective randomized
double-blind placebo-controlled trial, the same drug was able to reduce acute rejection episodes and to
increase four-year graft survival [77]. In a further clinical trial, using the antioxidant N-acetylcysteine,
the authors described less DGF and a better renal function at one year after transplantation [78].
The discrepancies among different trials could be due to the lack of certainty about the right dose
and time lapses of drug administration related to the ischemia or reperfusion in transplantation.
Furthermore, in relation to the donor and recipient we should identify which of them would be the
best therapeutic target for antioxidant treatment. It is probable that the administration of antioxidants
to a donor, slows the injury process inside of a cadaveric donor, resulting in a less damage graft
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with less proinflammatory characteristic. On the contrary, it is improbable that the administration
of antioxidants turns to benefit if the organ is already damaged. Therefore, the efficacy of the
administration of antioxidant to recipient will depend on the graft status prior the transplantation.
Perhaps, the administration of the antioxidant to the donor could be difficult to achieve and approve.
Therefore, another alternative could be the administration of ALA in the preservation solution in
which organs are maintained for transplantation (Figure 2).
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5. Future Prospect

The large number of preclinical studies mentioned above supporting the use of ALA in IRI
treatment together with the protective results in preliminary human clinical trials would justify the
use of ALA to reduce the impact of IRI and to improve the clinical outcome in organ transplantation.
However, further precise and controlled randomized clinical trials, with a higher number of recruited
patients and, ideally, multicenter, should be necessary to identify the best target, dose and time of ALA
administration to improve the clinical outcomes in solid organ transplantation. These studies should
be done in transplant recipient patients that we expect the worst short and long term clinical outcomes.
For example, patients transplanted with organs derived from ECD or with high kidney donor profile
index (KDPI). Although, ALA has shown safety, caution should be taken about putative interactions
with immunosuppressive drugs used in the induction stage.
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Abbreviations

ALA Alpha Lipoic Acid
LDH Lactate Deshidrogenase
ROS Reactive Oxygen Species
GST Glutathione S-Transferase
ATP Adenosine Triphosphate
TNF-α Tumor Necrosis Factor Alpha
DHLA Dihydrolipoic Acid
MDA Malondialdehyde
SOD Superoxide Dismutase
XO Xanthine Oxidase
NO Nitric Oxide
PNP Purine Nucleoside Phosphorylase
NF-κB Nuclear Factor Kappa B
AP-1 Activator Protein-1
GPx Glutathione Peroxidase
CK Creatine Kinase
ALDH2 Aldehyde Dehydrogenase 2
HO-1 Hemoxigenase-1
PCC Protein Carbonyl Content
KDPI Kidney Donor Profile Index
AST Aspartate Transaminase
ALT Alanine Transaminase
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