
 

Int. J. Mol. Sci. 2017, 18, 1969; doi:10.3390/ijms18091969 www.mdpi.com/journal/ijms 

Article 

Dual Strands of Pre-miR-149 Inhibit Cancer Cell 
Migration and Invasion through Targeting FOXM1 in 
Renal Cell Carcinoma 
Atsushi Okato 1,2, Takayuki Arai 1,2, Yasutaka Yamada 1,2, Sho Sugawara 1,2, Keiichi Koshizuka 1, 
Lisa Fujimura 3, Akira Kurozumi 1, Mayuko Kato 1, Satoko Kojima 4, Yukio Naya 4,  
Tomohiko Ichikawa 2 and Naohiko Seki 1,* 

1 Department of Functional Genomics, Chiba University Graduate School of Medicine, 2608670 Chiba, 
Japan; aexa5919@chiba-u.jp (A.O.); agda0043@chiba-u.jp (T.A.); yasutaka1205@chiba-u.jp (Y.Y.); 
afha7393@chiba-u.jp (S.S.); aeha4003@chiba-u.jp (K.K.); adfa2718@chiba-u.jp (A.K.);  
mayukokato@chiba-u.jp (M.K.) 

2 Department of Urology, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan; 
tomohiko_ichikawa@faculty.chiba-u.jp 

3 Department of Biomedical Science, Chiba University Graduate School of Medicine, 2608670 Chiba, Japan; 
lisaf1227@faculty.chiba-u.jp 

4 Department of Urology, Teikyo University Chiba Medical Center, 2990111 Ichihara, Japan;  
kojima-s@med.teikyo-u.ac.jp (S.K.); nayay@med.teikyo-u.ac.jp (Y.N.) 

* Correspondence: naoseki@faculty.chiba-u.jp; Tel.: +81-43-226-2971 

Received: 31 July 2017; Accepted: 7 September 2017; Published: 13 September 2017 

Abstract: Our recent studies revealed that dual strands of certain pre-microRNAs, e.g., pre-miR-144, 
pre-miR-145, and pre-miR-150, act as antitumor microRNAs (miRNAs) in several cancers. The 
involvement of passenger strands of miRNAs in cancer pathogenesis is a novel concept in miRNA 
research. The analysis of a miRNA expression signature in clear cell renal cell carcinoma (ccRCC) 
has revealed that the guide strand of pre-miR-149 is significantly downregulated in cancer tissues. 
The aims of this study were to investigate the functional significance of miR-149’s guide strand (miR-
149-5p) and passenger strand (miR-149-3p), and to identify the oncogenic genes regulated by these 
miRNAs in ccRCC cells. The ectopic expression of these miRNAs significantly inhibited cancer cell 
migration and invasion in ccRCC cells. Forkhead box protein M1 (FOXM1) was directly regulated 
by miR-149-5p and miR-149-3p in ccRCC cells. Knockdown studies using si-FOXM1 showed that the 
expression of FOXM1 enhanced RCC cell aggressiveness. Interestingly, the analysis of a large 
number of patients in the The Cancer Genome Atlas (TCGA) database (n = 260) demonstrated that 
patients with high FOXM1 expression had significantly shorter survival than did those with low 
FOXM1 expression (p = 1.5 × 10-6). Taken together, dual strands of pre-miR-149 (miR-149-5p and miR-
149-3p) acted as antitumor miRNAs through the targeting of FOXM1 in ccRCC cells. 
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1. Introduction 

Renal cell carcinoma (RCC) is the most common neoplasm of the kidney, and approximately 70–
80% of RCCs are classified as clear cell-type (ccRCC) [1]. More than 270,000 patients are diagnosed 
with RCC every year, which is estimated to constitute approximately 3% of adult malignancies. The 
incidence and mortality rates of RCC are increasing at a rate of 2–3% per decade [2]. Although 
surgical resection remains the only known curative treatment for localized RCC, a significant 
percentage of these patients develop relapses or metastatic disease, which are associated with a poor 
prognosis [3]. Recently developed targeted molecular therapies and immunomodulatory agents are 
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currently being widely used for patients with metastatic or recurrent RCC [4]. However, those 
curative approaches are restricted to RCC patients in advanced stages of disease and the 5-year 
survival rate of the patients is only 5–10% [5]. Therefore, to improve outcomes in patients with RCC, 
it is necessary to fully elucidate the molecular mechanisms of metastatic RCC based on new genomic 
approaches. 

MicroRNAs (miRNAs) belong to a class of noncoding RNA molecules that fine-tune the 
expression of protein coding/noncoding RNAs by repressing translation or cleaving RNA transcripts 
in a sequence-dependent manner [6]. Overexpression of oncogenic miRNAs and dysfunction of 
antitumor miRNAs are associated with human cancer pathogenesis [7]. A single miRNA species can 
regulate the expression of hundreds or thousands of different mRNAs, and an individual species of 
mRNA can be regulated by multiple different miRNAs in normal cells [8]. Therefore, aberrantly 
expressed miRNAs can disrupt regulatory miRNA–mRNA networks in cancer cells. 

The construction of expression signatures of miRNAs in human cancers is an effective strategy 
to identify aberrantly expressed miRNAs in cancer cells. We have constructed miRNA signatures in 
several types of human cancers, including RCC [9–12]. From analyses of the signatures, we have 
found that some passenger strands of miRNAs were significantly reduced in cancer tissues, 
suggesting that passenger strands of miRNAs have an antitumor function in cancer cells, as do guide 
strands of miRNAs. In miRNA biogenesis, one strand of mature miRNA (the guide strand) is loaded 
into the miRNA-induced silencing complex (RISC) that targets mRNA degradation and translational 
repression in processing bodies [13]. In contrast, the passenger strand of miRNA was previously 
thought to be degraded and to have no function [14–16]. Interestingly, our recent studies 
demonstrated that the dual strands (guide strand and passenger strand) of certain pre-miRNAs, such 
as pre-miR-144, pre-miR-145, pre-miR-139, and pre-miR-150, acted as antitumor miRNAs through the 
targeting of several oncogenic genes in several cancers [17–19]. Novel approaches to the analysis of 
dual strand miRNA-regulated RNA networks in cancer cells may provide new insights into the 
pathogenic development of human cancers. 

Our original miRNA signature of RCC led us to focus on the dual strands of pre-miR-149, i.e., 
miR-149-5p (the guide strand) and miR-149-3p (the passenger strand) [9]. The aims of this study were 
to investigate the functional significance of these miRNAs and to identify coordinately regulated 
oncogenic genes in RCC cells. The identification of the function of passenger strands of miRNAs and 
novel mechanisms of miRNA-mediated gene regulation enhance our understanding of the molecular 
pathways underlying RCC initiation, development, and metastasis. 

2. Results 

2.1. Expression Levels of miR-149-5p and miR-149-3p in ccRCC Specimens and Cell Lines 

We evaluated the expression levels of miR-149-5p and miR-149-3p in kidney tissues (cancerous 
specimens and adjacent non-cancerous specimens). The patients’ backgrounds are summarized in 
Table 1. The expression levels of miR-149-5p were significantly lower in cancerous tissues than in 
normal tissues, but there were no significant differences in the expression levels of miR-149-3p 
between cancerous tissues and non-cancerous tissues (miR-149-5p: p < 0.0001, miR-149-3p: p = 0.473; 
Figure 1A,B). Comparing the expression levels of two miRNAs, miR-149-5p (guide strand) and miR-
149-3p (passenger strand) in RCC cells, our data showed that the expression level of the miR-149-5p 
strand is more abundant than that of the miR-149-3p strand in RCC cells (Figure 1A,B). Spearman’s 
rank tests showed positive correlations between the expression level of miR-149-5p and miR-149-3p (r 
= 0.628 and p = 0.0005; Figure 1C). 
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Table 1. Characteristics of patients with clear cell renal cell carcinoma (ccRCC). 

No. Age Sex Pathology Grade pT N M INF v ly eg/ig fc im rc rp s
1 71 F clear cell G2 T1a 0 0 a 0 0 eg 1 0 0 0 0 
2 74 M clear cell G1 > G2 T1b 0 0 a 0 0 eg 1 0 0 0 0 
3 59 M clear cell G3 > G2 T1b 0 0 a 0 0 eg 1 0 0 0 0 
4 79 M clear cell G2 > G3 > G1 T1a 0 0 a 0 0 eg 1 0 0 0 0 
5 52 M clear cell G2 > G3 T1b 0 0 a 0 0 eg 1 1 0 0 0 
6 76 F clear cell G2 > G3 T3a 0 0 a 1 0 eg 1 0 0 0 0 
7 64 M clear cell G2 > G3 > G1 T3a 0 1 b 1 0 ig 0 1 1 0 0 
8 67 M clear cell G2 > G3 > G1 T3a 0 0 b 1 0 ig 1 0 0 0 0 
9 59 M clear cell G3 T3a 0 0 b 1 0 ig 0 0 0 0 0 

10 73 M clear cell G1 >> G3 T2a 0 0 a 0 1 eg 1 0 0 0 0 
11 77 M clear cell G1 > G2 T1b 0 0 a 0 0 eg 1 0 0 0 0 
12 51 F clear cell G2 > G1 > G3 T3b 0 0 b 1 0 ig 0 0 0 0 0 
13 84 F clear cell G2 T1a 0 0 a 0 0 eg 0 0 0 0 0 
14 78 M clear cell G2 > G1 >> G3 T1b 0 0 b 0 0 eg 1 0 0 0 0 
15 44 M clear cell G2 > G1 T1a 0 0 b 0 0 eg 1 0 0 0 0 
16 57 M clear cell G2 T1b 0 0 a 0 0 eg 0 0 0 0 0 

INF: infiltration; v: vein; ly: lymph node; eg: expansive growth; ig: infiltrative growth; im: intrarenal metastasis; rc: renal capsule invasion; rp: pelvis invasion; s; sinus invasion. 
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2.2. Effects of Ectopic Expression of miR-149-5p and miR-149-3p on Cell Proliferation, Migration, and 
Invasion Assays in RCC Cell Lines 

To examine the functional roles of miR-149-5p and miR-149-3p, we performed gain-of-function 
studies by using A498 and 786-O cells transfected with mature miRNAs. 

XTT assays revealed that proliferation was significantly inhibited in A498 and 786-O cells 
transfected with miR-149-5p and miR-149-3p in comparison with mock or miR-control-transfected 
cells (p < 0.0001; Figure 1D). Wound-healing and Matrigel invasion assays demonstrated significant 
inhibition of cell migration and invasion in miR-149-5p and miR-149-3p transfectants (p < 0.0001; 
Figure 1E,F). 

 
Figure 1. Analysis of miR-149-5p and miR-149-3p expression in clinical specimens and functional 
assays in renal cell carcinoma (RCC) cell lines (A498 and 786-O cells) following miR-149-5p and miR-
149-3p transfection. (A,B) Expression levels of miR-149-5p and miR-149-3p in RCC clinical specimens 
were determined by qRT-PCR. Data were normalized to RNU48 expression; (C) Correlation between 
the relative expression levels of miR-149-5p and miR-149-3p; (D) Cell proliferation was determined by 
XTT assays. * p < 0.0001; (E) Cell migration activity was determined by wound-healing assays. * p < 
0.0001; (F) Cell invasion activity was determined using Matrigel invasion assays. * p < 0.0001. 

2.3. Both miR-149-5p and miR-149-3p Bind to Ago2 

We hypothesized that both miR-149-5p and miR-149-3p may be incorporated into and function 
as part of the RISC. To test this hypothesis, we performed immunoprecipitation with antibodies 
targeting Ago2, which plays a central role in the RISC (Figure 2A). After transfection with miR-149-
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5p or miR-149-3p, Ago2-bound miRNAs were isolated, and qRT-PCR was carried out to determine 
whether miR-149-5p and miR-149-3p were bound to Ago2 (Figure 2B). 

After transfection with miR-149-5p and immunoprecipitation with anti-Ago2 antibodies, miR-
149-5p levels were significantly higher than those of mock- or miR control-transfected cells and those 
of miR-149-3p-transfected A498 cells (p < 0.0001; Figure 2B). Similarly, after transfection with miR-149-
3p and immunoprecipitation with anti-Ago2 antibodies, miR-149-3p levels were significantly higher 
than those of mock- or miR control-transfected cells and those of miR-149-5p-transfected A498 cells 
(p < 0.0001; Figure 2B). 

 
Figure 2. Both miR-149-5p and miR-149-3p bound to Ago2. (A) Schematic illustration of microRNA 
(miRNA) detection method. Isolation of miRNA-induced silencing complex (RISC) incorporated 
miRNAs by Ago2 immunoprecipitation; (B) Expression levels of miR-149-5p and miR-149-3p after 
transfection with miR-149-5p or miR-149-3p. We used miR-26a as an internal control. 

2.4. Screening of Target Genes Regulated by miR-149-5p and miR-149-3p in RCC Cells 

Next, we sought to obtain further insights into the molecular mechanisms regulated by 
antitumor miR-149-5p and miR-149-3p in RCC cells. Thus, we screened the genes regulated by those 
miRNAs using in silico and genome-wide gene expression analyses. First, we performed in silico 
analyses. An analysis of the TargetScan database showed that 4750 genes and 7832 genes had putative 
target sites for miR-149-5p and miR-149-3p, respectively, in their 3′-UTRs. Next, we merged the data 
for the gene expression analysis data in miR-149-5p and miR-149-3p transfectants (GSE100746). 
Finally, we found 14 genes that were upregulated (fold-change log2 > 1.0) in cancer tissues by Gene 
Expression Omnibus (GEO) database analyses (GEO accession number: GSE22541 and GSE36895). 
We examined the Kaplan–Meier plot for these genes in RCC using the OncoLnc and cBioPortal 
database [20–22]. Our strategy for analysis is shown in Figure 3. The putative target genes regulated 
by dual strands of miR-149, i.e., miR-149-5p and miR-149-3p, are summarized in Table 2. Among them, 
we focused on FOXM1 because it showed the most significant difference in log rank tests using the 
OncoLnc database. 
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Table 2. Putative target genes regulated by miR-149-5p and miR-149-3p in RCC cells. 

Gene Symbol Gene Name 
Site Counts Microarray (log2 Ratio) GEO TCGA 

miR-149-5p miR-149-3p miR-149-5p miR-149-3p Fold Change p Value 
FOXM1 forkhead box M1 1 1 −1.359 −0.834 1.533 1.5 × 10−6 
SIPA1 signal-induced proliferation-associated 1 1 3 −2.022 −0.732 1.071 6.4 × 10−6 
CXCL5 chemokine (C-X-C motif) ligand 5 1 1 −1.032 −0.650 1.961 2.39 × 10−6 
LMNB2 lamin B2 1 4 −0.767 −0.909 1.438 3.67 × 10−6 
GBP2 guanylate binding protein 2, interferon-inducible 1 4 −2.484 −1.278 1.664 8.57 × 10−6 

FBXL16 F-box and leucine-rich repeat protein 16 2 4 −2.451 −0.685 2.203 0.00927 * 
BTNL9 butyrophilin-like 9 1 3 −1.161 −0.519 1.255 0.0187 * 

APOBEC3C apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3C 2 1 −1.086 −0.672 1.805 0.0424 
MARVELD1 MARVEL domain containing 1 2 4 −0.902 −2.176 1.019 0.188 

IKZF1 IKAROS family zinc finger 1 (Ikaros) 1 2 −1.133 −0.742 1.350 0.401 
TTYH3 tweety family member 3 1 7 −1.933 −1.480 1.096 0.57 

SLC29A4 solute carrier family 29 (equilibrative nucleoside transporter), member 4 1 11 −1.115 −0.868 2.936 0.62 
DDB2 damage-specific DNA binding protein 2, 48kDa 2 1 −0.760 −1.295 2.209 0.757 

PHKA2 phosphorylase kinase, alpha 2 (liver) 2 3 −0.550 −1.281 1.872 0.943 
* Poor prognosis with low expression. 
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Figure 3. The strategy underlying the analysis of miR-149-5p and miR-149-3p target genes in A498 
cells. FC: fold-change. 

2.5. Analysis of FOXM1 Expression in ccRCC Clinical Specimens by qRT-PCR and Immunohistochemistry 

We used qRT-PCR and immunohistochemical staining to examine the expression levels of 
FOXM1 in ccRCC specimens. The expression of FOXM1 was significantly upregulated in cancer 
tissues compared with normal tissues (p < 0.0001; Figure 4A). Spearman’s rank tests showed a 
negative correlation between the expression levels of FOXM1 and miR-149-5p (p = 0.0347 r = −0.373; 
Figure 4B), but there was no correlation between FOXM1 and miR-149-3p (Figure 4C). FOXM1 protein 
expression was strongly expressed in several cancer tissues (patient No. 9, 19, 20), whereas low 
expression was observed in normal tissues using a tissue microarray (Figure 4D). 

2.6. TCGA Database Analysis of Dual Strands of Pre-miR-149 and FOXM1 

We analysed Kaplan-Meier overall survival (OS) curves according to the expression levels of 
dual strands of pre-miR-149 and FOXM1 and the relationships between FOXM1 expression and 
tumor stage and metastasis in ccRCC using the TCGA-KIRC database. The TCGA dataset showed 
that high expression of miR-149-5p was associated with a poor prognosis of the patients with RCC. 
The miR-149-3p data was not available in this database (data not shown). The Kaplan–Meier curves 
for OS rates showed that the group with high expression of FOXM1 had a significantly shorter 
survival than the low expression group in ccRCC (p = 1.5 × 10−6, Figure 5A). The expression levels of 
FOXM1 were significantly increased in advanced T stage cases and metastatic cases (Figure 5B,C). 
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Figure 4. Expression levels of FOXM1 in ccRCC clinical specimens and TCGA data analysis based on 
FOXM1 expression in ccRCC. (A) Expression levels of FOXM1 in ccRCC specimens were significantly 
upregulated in cancer tissues compared with normal tissues (p < 0.0001); (B,C) The correlation 
between FOXM1 and miR-149-5p, and FOXM1 and miR-149-3p and (D) FOXM1 protein was strongly 
expressed in several cancer tissues, while low expression was observed in normal tissues using a 
tissue microarray. 

 

Figure 5. TCGA database analysis of FOXM1. (A) Kaplan-Meier survival curves for overall survival 
rates based on FOXM1 expression in RCC (p = 1.5 × 10-6) and (B,C) The relationships between FOXM1 
expression and tumor stage and metastasis in ccRCC. 
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2.7. Regulation of FOXM1 Expression by miR-149-5p and miR-149-3p in RCC Cells 

Our studies revealed that FOXM1 mRNA was significantly reduced in both miR-149-5p and miR-
149-3p transfectants in comparison with mock or miR-control transfectants (p < 0.0001 and p < 0.0001; 
Figure 6A). The expression of FOXM1 protein was also repressed in these miRNA transfectants 
(Figure 6B). The target prediction databases indicated that both miR-149-5p and miR-149-3p had one 
putative target site in the 3′-UTR of FOXM1 for miR-149-5p (position 909–915) and miR-149-3p 
(positions 588–594) (Figure 6C). We performed a dual luciferase reporter assay. The TargetScan 
database identified one putative target site in the 3′-UTR of FOXM1 for miR-149-5p (position 909–915) 
and miR-149-3p (positions 588–594). We used vectors encoding a partial wild-type sequence of the 3′-
UTR of FOXM1 mRNA, including the predicted miR-149-5p and miR-149-3p target site, or a vector 
lacking the miR-149-5p and miR-149-3p target sites. We found that the luminescence intensity was 
significantly reduced by co-transfection with miR-149-5p or miR-149-3p and the vector carrying the 
wild-type 3′-UTR of FOXM1 (p < 0.001; Figure 6D). 

 
Figure 6. Direct regulation of FOXM1 by miR-149-5p and miR-149-3p in RCC cell lines. (A) FOXM1 
mRNA expression in RCC cell lines was evaluated by qRT-PCR. GAPDH was used as an internal 
control. * p < 0.0001; (B) FOXM1 protein expression in RCC cell lines was evaluated by Western blot 
analyses. GAPDH was used as a loading control; (C)The miR-149-5p or miR-149-3p binding site in the 
3′-UTR of FOXM1 mRNA; (D) Dual Luciferase reporter assays using vectors encoding putative miR-
149-5p and miR-149-3p target sites of the FOXM1 3′-UTR (positions 909–915 and 588–594) for both 
wild-type and deleted regions. Normalized data were calculated as ratios of Renilla/Firefly luciferase 
activities. * p < 0.001. 

2.8. Effects of Silencing FOXM1 on Cell Proliferation, Migration, and Invasion in RCC Cells 

We evaluated the knockdown efficiency of si-FOXM1 transfection in RCC cells. Our present data 
showed that si-FOXM1 transfection effectively downregulated FOXM1 expression in A498 and 786-
O cells (Figure 7A,B). Functional assays demonstrated that cell proliferation, migration, and invasion 
were all inhibited in si-FOXM1 transfectants compared with mock- or miR control-transfected cells 
(p < 0.0001, Figure 7C–E). 



Int. J. Mol. Sci. 2017, 18, 1969 10 of 16 

 

 

Figure 7. FOXM1 mRNA and FOXM1 protein expression after si-FOXM1 transfection and the effects 
of FOXM1 silencing in RCC cell lines. (A) FOXM1 mRNA expression in RCC cell lines was evaluated 
by qRT-PCR. GAPDH was used as an internal control; (B) FOXM1 protein expression in RCC cell lines 
was evaluated by Western blot analysis. GAPDH was used as a loading control; (C) Cell proliferation 
was determined using XTT assays, * p < 0.0001; (D) Cell migration activity was determined by wound-
healing assays, * p < 0.0001; (E) Cell invasion activity was determined using Matrigel invasion assays. 
* p < 0.0001. 

2.9. Kaplan–Meier Survival Curves and Genes Affected by miR-149-5p and miR-149-3p 

To investigate the contribution of miR-149-5p and miR-149-3p to the coordinate regulation of 
genes (Table 2) in ccRCC pathogenesis, we searched the TCGA database. Among 14 genes, the 
expression of 6 genes (FOXM1, SIPA1, CXCL5, LMNB2, GBP2, and APOBEC3C) was significantly 
associated with a poor prognosis of patients with ccRCC (Figure 8). 
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Figure 8. Kaplan-Meier survival analysis. Kaplan-Meier survival curves based on putative target 
genes regulated by miR-149-5p and miR-149-3p in patients with ccRCC. 

3. Discussion 

Currently approved targeted therapies have improved the management of patients with 
metastatic RCC. However, the use of these targeted therapies is restricted to advanced stages of RCC 
[23]. The elucidation of molecular mechanisms of relapse, metastasis and drug resistance is 
indispensable to improve the prognosis of RCC patients. To identify novel pathologic molecular 
mechanisms in RCC, our research group has identified RCC oncogenic pathways based on antitumor 
miRNAs that were identified by examining RCC miRNA signatures [9]. For example, lysyl oxidase 
homolog 2 (LOXL2) was overexpressed in RCC clinical specimens. Importantly, the antitumor miR-
29 family (miR-29a/b/c) targeted LOXL2 and inhibited cancer cell migration and invasion [24]. More 
recently, it was found that miR-101 was significantly reduced in sunitinib-treated RCC tissues and 
the ectopic expression of miR-101 inhibited RCC cell aggressiveness through its targeting of 
ubiquitin-like with PHD and ring finger domains 1 (UHRF1) [9]. Our antitumor miRNAs-based 
strategy is an attractive approach for the identification of novel regulatory networks in cancer cells. 

Our present data demonstrated that dual strands of pre-miR-149, miR-149-5p and miR-149-3p, 
acted as antitumor miRNAs in RCC cells. The antitumor function of miR-149-5p was reported in 
several other types of cancer [25,26]. In breast cancer, miR-149-5p was downregulated by the hyper-
methylation of its promoter region and was found to be involved in Adriamycin-resistant breast 
cancer cells targeting GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST1) [27]. In hepatocellular 
carcinoma, miR-149-5p was significantly downregulated and its expression was correlated with 
distant metastases and TNM classification [26]. An overexpression of miR-149-5p suppressed the 
migration and invasion activities of hepatocellular carcinoma cells [26]. In colorectal carcinoma, the 
expression of miR-149-5p regulated cell growth, migration, and invasion through its targeting of the 
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EPH receptor B3 gene (EphB3), and the knockdown of EphB3 inhibited tumor growth by in vivo 
assays [28]. 

In contrast to miR-149-5p, few reports have described the function of miR-149-3p in cancer cells. 
Dioscin is a natural product that induces apoptosis and suppresses tumor growth in pancreatic cells 
[29]. The expression level of miR-149-3p was upregulated by dioscin, and miR-149-3p inhibited the 
Akt1 signaling pathway [29]. A major bioactive component in licorice root is 18β-glycyrrhetinic acid 
(GRA). It reportedly possesses antitumor effects in several cancers [30–32]. In gastric cancer tissues, 
miR-149-3p was downregulated, but its expression was upregulated by GRA treatment [33]. The 
overexpression of miR-149-3p inhibited gastric cancer cell proliferation and cell cycle progression [33]. 
In these analyses, we did not detect the downregulation of the passenger strand of miR-149-3p in RCC 
tissues. However, the ectopic expression of miR-149-3p inhibited cancer cell aggressiveness in RCC 
cells. This fact indicates that the passenger strand of miR-149-3p may possess cancer-suppressing 
functions in RCC cells. These findings strongly suggest that dual strands of pre-miR-149 act as 
antitumor miRNAs in human cancers. 

Our recent studies demonstrated that dual strands of certain pre-miRNAs, e.g., pre-miR-145, 
pre-miR-139, and pre-miR-150, act as antitumor miRNAs. Each guide strand and passenger strand 
coordinately regulates oncogenic genes as observed in several cancers, e.g., pre-miR-145: MTDH and 
UHRF1; pre-miR-139: MMP11; pre-miR-150: SPOCK1 [18,19,34,35]. In this study, we speculate that 
miR-149-5p and miR-149-3p work together to regulate pathways in RCC cell progression and 
metastasis. Our present data showed that a total of 14 genes were putative targets of both miR-149-
5p and miR-149-3p regulation in RCC cells. Interestingly, among the candidate genes, the expression 
of 6 genes (FOXM1, SIPA1, CXCL5, LMNB2, GBP2, and APOBEC3C) was associated with a poor 
prognosis of patients with RCC by TCGA analyses (Figure 8). 

In this study, we focused on FOXM1 as a target of the dual strands of pre-miR-149 and validated 
the direct binding of these miRNAs to the 3′-UTR using luciferase reporter assays. Past studies have 
shown that FOXM1 was regulated by miR-149-5p in colorectal cancer and non-small cell lung cancer 
[36,37]. This is the first study to report that dual strands of pre-miR-149 coordinately regulate FOXM1 
in RCC cells. FOXM1 is a member of the forkhead transcription family of proteins, and it plays pivotal 
roles in cell cycle progression in normal cells [38]. An overexpression of FOXM1 has been detected in 
a broad range of human cancers, including RCC [39–41]. Our present data demonstrated that the 
knockdown of FOXM1 in tumor cells by RNAi reduced cell proliferation, migration, and invasion, 
suggesting that FOXM1 acts as an oncogene in RCC cells. Moreover, recent meta-analyses have 
indicated that high expression of FOXM1 was significantly associated with poor overall survival in 
most solid tumors [42,43]. Taken together, the expression of FOXM1 is a useful biomarker for the 
prognosis of human cancers and a potential therapeutic target in RCC cells. Authors should discuss 
the results and how they can be interpreted in perspective of previous studies and of the working 
hypotheses. The findings and their implications should be discussed in the broadest context possible. 
Future research directions may also be highlighted. 

4. Materials and Methods 

4.1. Clinical ccRCC Specimens 

Clinical ccRCC specimens were obtained from patients who were admitted to Chiba University 
Hospital and had undergone radical nephrectomy from 2012 to 2015. A total of 16 pairs of ccRCC 
specimens and adjacent non-cancerous specimens were collected. The clinicopathological 
characteristics of the patients are summarized in Table 1. These samples were staged according to the 
UICC TNM classification [44]. All patients in this study provided written informed consent for tissue 
donation for research purposes. The protocol was approved by the Institutional Review Boards of 
Chiba University Hospital (identification code: No. 484, 30 August 2011). 
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4.2. Tissue Collection and Cell Culture 

Clinical specimens were immersed in RNAlater (Thermo Fisher Scientific, Waltham, MA, USA) 
and stored at 4 °C until RNA was extracted. Human ccRCC cells (A498 and 786-O cells) were obtained 
from the American Type Culture Collection (Manassas, VA, USA). 

4.3. Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR) 

Stem-loop RT-PCR (TaqMan MicroRNA Assays; product ID: 002255 for miR-149-5p and 002164 
for miR-149-3p; Applied Biosystems, Foster City, CA, USA) was used for these assays. TaqMan probes 
and primers for FOXM1 (product ID: Hs01073586_m1; Applied Biosystems) were assay-on-demand 
gene expression products. We used GUSB (product ID: Hs00939627_m1; Applied Biosystems), 
GAPDH (product ID: Hs02758991_g1; Applied Biosystems), and RNU48 (product ID: 001006; Applied 
Biosystems) as internal controls. We first verified the transfection efficiency of miRNA in cell lines 
based on downregulation of TWF1 (PTK9) mRNA following transfection with miR-1 (This method 
was recommended by the manufacturer). 

4.4. Cell Proliferation, Migration, and Invasion Assays 

A498 and 786-O cells were transfected with 10 nM miRNAs or siRNAs by reverse transfection. 
Cell proliferation was determined by XTT assay using a Cell Proliferation Kit II (Sigma-Aldrich, St. 
Louis, MO, USA). Cell migration was evaluated with wound healing assays. Cell invasion was 
analyzed using modified Boyden chambers containing Transwell-precoated Matrigel membrane 
filter inserts. These assays were performed as described previously [45–47]. 

4.5. miRNA Incorporated into RISC by Ago2 Immunoprecipitation 

To confirm that exogenous miR-149-5p or miR-149-3p were incorporated into RISC, we 
performed immunoprecipitation assays using a microRNA Isolation Kit, Human Ago2 (Wako, 
Osaka, Japan) as described previously [19]. The expression levels of miRNAs bound to Ago2 were 
measured by TaqMan RT-qPCR. The miRNA expression data were normalized to the expression of 
miR-26a (product ID: 000404; Applied Biosystems), which was not affected by miR-149-5p or miR-
149-3p expression. 

4.6. Selection of Putative Target Genes Regulated by miR-149-5p and miR-149-3p in RCC Cells 

To identify target genes of miR-149-5p and miR-149-3p in ccRCC, we performed in silico analyses 
and genome-wide gene expression analyses. We used the TargetScanHuman database (Release 7.1; 
http://www.targetscan.org/vert_71/), TCGA database (https://cancergenome.nih.gov/), and OncoLnc 
(http://www.oncolnc.org/) for in silico analyses [20–22]. The genome-wide gene expression analyses 
were performed using microarray data and gene expression profiles (GEO database; accession 
number: GSE22541 and GSE36895). The microarray data were deposited into the GEO database 
(accession number: GSE100746). We merged these datasets and selected putative miR-149-5p and 
miR-149-3p target genes. 

4.7. TCGA Database Analysis of ccRCC 

To investigate the clinical significance of target genes, we used the TCGA database from 
OncoLnc and cBioPortal (http://www.cbioportal.org/) [20–22]. We analyzed Kaplan-Meier survival 
curves and log-rank tests for target genes, and evaluated the lower expression group and the higher 
expression group of FOXM1 by T stage and metastatic cases. 

4.8. Western Blot Analysis 

Immunoblotting was conducted with monoclonal anti-FOXM1 antibodies (1:1000 dilution; 
#5436; Cell Signaling Technology, Danvers, MA, USA) and with anti-glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH) antibodies (1:1000 dilution; ab8245; Abcam, Cambridge, UK) as a loading 
control. The procedures were performed as previously described [45–47]. 

4.9. Immunohistochemistry Using Tissue Microarrays 

We used a tissue microarray of renal cell carcinoma samples obtained from US Biomax 
(Derwood, MD, USA; cat no. KD806), which contained a total of 80 renal tissues (clear cell carcinoma, 
n = 68; carcinoma sarcomatodes, n = 2; normal renal samples, n = 10). Detailed information on these 
samples is available at http://www.biomax.us/tissue-arrays/Kidney/KD806. 

4.10. Statistical Analysis 

The relationships between the two groups and expression values obtained by RT-PCR were 
analyzed using Mann–Whitney u-tests. The correlations between miR-149-5p and miR-149-3p 
expression were evaluated using Spearman’s rank test. The relationships among more than three 
variables and numerical values were analyzed using Bonferroni-adjusted Mann–Whitney u-tests. 
Survival analysis was carried out using the Kaplan–Meier method and log-rank tests with JMP 
software (version 12, SAS Institute Inc., Cary, NC, USA). Other analyses were performed using Expert 
StatView software (version 5.0, SAS Institute Inc., Cary, NC, USA) for these analyses. 

5. Conclusions 

Both strands of pre-miR-149, miR-149-5p (guide strand) and miR-149-3p (passenger strand), acted 
as antitumor miRNAs in RCC cells. FOXM1 was regulated by these miRNAs, and an overexpression 
of FOXM1 was observed in RCC clinical specimens. The aberrant expression of FOXM1 enhanced 
cancer cell aggressiveness, and high expression of FOXM1 was significantly associated with a poor 
prognosis of this disease. The identification of antitumor-mediated oncogenic networks may lead to 
a better understanding of RCC pathogenesis. 
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