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Abstract: Metastatic melanoma is a recalcitrant tumor. Although “targeted” and immune therapies
have been highly touted, only relatively few patients have had durable responses. To overcome
this problem, our laboratory has established the melanoma patient-derived orthotopic xenograft
(PDOX) model with the use of surgical orthotopic implantation (SOI). Promising results have been
obtained with regard to identifying effective approved agents and experimental therapeutics, as well
as combinations of the two using the melanoma PDOX model.
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1. Introduction

Metastatic melanoma has a survival rate of 7–29%, depending on the site of metastasis [1].
Recent use of targeted chemotherapy and immunotherapy has not significantly increased the survival
rate [2]. The standard first-line therapy has been decarbazine and cisplatinum (CDDP), with limited
efficacy [3–5]. Vemurafenib (VEM) has had some success as a targeted therapy of melanoma that has
the BRAF-V600E mutation [3,6–9].

PD-1/PD-L1 immunotherapy has shown promise with melanoma, but is limited by tumor
infiltration of activated T cells [5], and has not increased the survival rate [2].

Stage III and IV melanoma is almost never curable, due to a lack of effective drugs, resistance to
immunotherapy and tumor heterogeneity [10]. Chemotherapy and radiotherapy of melanoma are also
limited by melanin [11]. Individualized and precision therapy is needed for melanoma.

To achieve this goal, the patient-derived orthotopic xenograft (PDOX) nude mouse model using
surgical orthotopic implantation (SOI) [12] has been developed in our laboratory. PDOX models
of pancreatic [13–16], breast [17], ovarian [18], lung [19], cervical [20], colon [21–23], stomach [24]
and sarcoma cancers [25–29] have been developed. Fluorescence-guided surgery [14,23,30] and
tumor-targeting bacteria [15,27–29,31] have been developed with the PDOX models. The tumor
microenvironment has also been studied in the PDOX models [32,33]. The PDOX models have been
shown to have advantages over subcutaneous-transplant models, particularly with metastasis [12].

The present report reviews our laboratory’s experience with PDOX models of melanoma, and the
ability of the PDOX models to identify effective currently-used—as well as experimental—therapeutics.

Tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R) contains auxotrophic
mutations for leucine (leu) and arginine (arg), and therefore does not continuously infect normal
tissue [34,35]. S. typhimurium A1-R has shown significant efficacy against mouse models of various
cancer cell lines including prostate [36,37], breast [38–40], lung [41,42], pancreatic [15,31,43–45],
ovarian [46,47] stomach [48], and cervical cancers [49], as well as sarcoma cell lines [50–52],
glioma [53,54], and the PDOX models mentioned above [15,27–29,31].
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2. Results and Discussion

2.1. Patient-Derived Melanoma Growing Orthotopically in Nude Mice

Our initial experience with a melanoma PDOX was with a tumor obtained from the University of
California San Diego (UCSD), which was subdermally transplanted orthotopically [34]. The melanoma
PDOX grew and expressed human MHC class I protein. In contrast, the tumor microenvironment only
reacted with the mouse MHC class I antibody. Thus, the growing PDOX tumor was of human origin
(Figure 1) [34].
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days of growth, Scale bar: 10 mm; (C) hematoxylin and eosin- (H&E)-stained tumor sections (left column), 
human MHC class I (HLA; middle column) immunohistochemistry, mouse MHC class I (right column), 
mouse MHC immunohistochemistry. The human cancer cells expressed human MHC class I and the 
mouse stromal cells and blood vessels expressed mouse MHC. Magnified views of boxed region in the 
upper rows are indicated at the middle rows and magnified views of boxed region in the middle rows are 
indicated in the lower rows. Scale bars: 200 μm (top and middle row), 100 μm (bottom row) [34]. 

Figure 1. (A) Experimental scheme; (B) Patient-derived orthotopic xenograft (PDOX) melanoma
after 28 days of growth, Scale bar: 10 mm; (C) hematoxylin and eosin- (H&E)-stained tumor sections
(left column), human MHC class I (HLA; middle column) immunohistochemistry, mouse MHC class I
(right column), mouse MHC immunohistochemistry. The human cancer cells expressed human MHC
class I and the mouse stromal cells and blood vessels expressed mouse MHC. Magnified views of
boxed region in the upper rows are indicated at the middle rows and magnified views of boxed region
in the middle rows are indicated in the lower rows. Scale bars: 200 µm (top and middle row), 100 µm
(bottom row) [34].
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2.2. S. typhimurium A1-R Was Highly Effective on the Patient-Derived Orthotopic Xenograft (PDOX)
Melanoma in Nude Mice

S. typhimurium A1-R, expressing green fluorescent protein (GFP), extensively targeted the
tumor, with very few GFP-expressing bacteria found in other organs (i.e., demonstrating high
tumor selectivity). S. typhimurium A1-R strongly inhibited the growth of the melanoma (Figure 1).
S. typhimurium A1-R, cisplatinum (CDDP), and a combination of S. typhimurium A1-R and CDDP,
were all highly effective on the melanoma PDOX (Figure 2) [34].
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Figure 2. Efficacy of S. typhimurium A1-R, 5-fluorouracil (5-FU) and cisplatinum (CDDP) on a melanoma 
PDOX model. (A) Experimental scheme; (b1) mean change in tumor volume plotted against time, as 
shown in untreated and control tumors; (b2) linear prediction versus time curves for untreated control 
and treated tumors; (C) body weight comparison in nude mice after S. typhimurium A1-R and/or 5-FU 
and CDDP therapy [34]. ** p < 0.01, compared with the untreated control group. 

2.3. PDOX Model of a BRAF-V600E Mutant Melanoma 

A BRAF-V600E mutant melanoma PDOX was established. VEM, temozolomide (TEM), 
trametinib (TRA) and cobimetinib (COB) were all effective against it. TRA treatment caused tumor 
regression (Figure 3). The PDOX was expected to be sensitive to VEM, since VEM targets the BRAF-
V600E mutation. However, in this case, TRA was much more effective than VEM [55]. This result 
shows that the BRAF-V600E mutation is probably not a major factor in promoting this melanoma, 
and that genomic profiling by itself is insufficient to direct therapy.  

 
Figure 3. Efficacy of targeted therapies against a BRAF-V600E mutant melanoma PDOX. Relative 
tumor volume is the ratio of the tumor volume at any time point relative to the initial tumor volume. 
Only trametinib (TRA) could regress the tumor. Vemurafenib (VEM) was not very effective despite 
the fact that it targets the BRAF-V600E mutation in this tumor. ** p ≤ 0.0001. Error bars = SD [55]. 

In a subsequent study with this BRAF-V600E mutant melanoma PDOX, TEM combined with S. 
typhimurium A1-R was significantly more effective than either S. typhimurium A1-R and TEM alone, 

Figure 2. Efficacy of S. typhimurium A1-R, 5-fluorouracil (5-FU) and cisplatinum (CDDP) on a melanoma
PDOX model. (A) Experimental scheme; (b1) mean change in tumor volume plotted against time,
as shown in untreated and control tumors; (b2) linear prediction versus time curves for untreated
control and treated tumors; (C) body weight comparison in nude mice after S. typhimurium A1-R
and/or 5-FU and CDDP therapy [34]. ** p < 0.01, compared with the untreated control group.

2.3. PDOX Model of a BRAF-V600E Mutant Melanoma

A BRAF-V600E mutant melanoma PDOX was established. VEM, temozolomide (TEM), trametinib
(TRA) and cobimetinib (COB) were all effective against it. TRA treatment caused tumor regression
(Figure 3). The PDOX was expected to be sensitive to VEM, since VEM targets the BRAF-V600E
mutation. However, in this case, TRA was much more effective than VEM [55]. This result shows
that the BRAF-V600E mutation is probably not a major factor in promoting this melanoma, and that
genomic profiling by itself is insufficient to direct therapy.
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Figure 3. Efficacy of targeted therapies against a BRAF-V600E mutant melanoma PDOX. Relative
tumor volume is the ratio of the tumor volume at any time point relative to the initial tumor volume.
Only trametinib (TRA) could regress the tumor. Vemurafenib (VEM) was not very effective despite the
fact that it targets the BRAF-V600E mutation in this tumor. ** p ≤ 0.0001. Error bars = SD [55].

In a subsequent study with this BRAF-V600E mutant melanoma PDOX, TEM combined with
S. typhimurium A1-R was significantly more effective than either S. typhimurium A1-R and TEM alone,
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causing regression of the tumor (Figure 4). Confocal microscopy showed that the S. typhimurium A1-R
could directly target the melanoma PDOX and cause tumor necrosis [56].
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typhimurium A1-R, were significantly more effective than S. typhimurium A1-R alone on the BRAF-
V600E mutant melanoma PDOX (Figure 6). Both VEM and TEM significantly increased the tumor 
targeting of S. typhimurium A1-R, compared to S. typhimurium A1-R alone, as observed by high-
resolution confocal microscopy (Figure 7A,B). These results suggested that S. typhimurium A1-R 
increases the efficacy of chemotherapy, and chemotherapy increases the tumor targeting of S. 
typhimurium A1-R in the melanoma PDOX model [57]. 

Figure 4. BRAF-V600E mutant melanoma PDOX. Tumor size of the untreated control mice increased
over time. Tumors treated with TEM or S. typhimurium A1-R were inhibited. Tumors treated with TEM
combined with S. typhimurium A1-R regressed. ** p < 0.01. Error bars = SD [56].

In a subsequent study, VEM, S. typhimurium A1-R, COB, VEM combined with COB, and VEM
combined with S. typhimurium A1-R were all effective against the BRAF-V600E mutant melanoma
PDOX, compared to the untreated control. VEM combined with S. typhimurium A1-R was the most
effective compared to other therapies (Figure 5). Tumor necrosis was more extensive in the group
treated with VEM combined with S. typhimurium A1-R [9].
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Figure 5. Tumor growth curves of the treated and untreated BRAF-V600E mutant melanoma PDOX.
Line graph shows tumor volume at each point relative to the initial tumor volume. Please see Materials
and Methods section for drug dose, route and schedule. ** p < 0.01, * p < 0.05. Error bars = SD [9].

In another study, TEM combined with S. typhimurium A1-R, and VEM combined with S. typhimurium
A1-R, were significantly more effective than S. typhimurium A1-R alone on the BRAF-V600E mutant melanoma
PDOX (Figure 6). Both VEM and TEM significantly increased the tumor targeting of S. typhimurium A1-R,
compared to S. typhimurium A1-R alone, as observed by high-resolution confocal microscopy (Figure 7A,B).
These results suggested that S. typhimurium A1-R increases the efficacy of chemotherapy, and chemotherapy
increases the tumor targeting of S. typhimurium A1-R in the melanoma PDOX model [57].



Int. J. Mol. Sci. 2017, 18, 1875 6 of 14

Int. J. Mol. Sci. 2017, 18, 1875 6 of 13 

 

 
Figure 6. Relative tumor volume in the various treatment groups of the BRAF-V600E mutant 
melanoma PDOX. Bar graph shows tumor volume at post-treatment point relative to the initial pre-
treatment tumor volume. Error bars = SD [57]. N.S. = not significant. 

Methionine dependence is a general metabolic defect in cancer. It has been demonstrated that 
methionine starvation induces a tumor-selective S/G2-phase cell-cycle arrest of tumor cells [58–61]. 
Methionine dependence is due to the excess use of methionine in aberrant transmethylation reactions, 
termed the Hoffman effect, and is analogous to the Warburg effect for glucose in cancer [62–67]. The 
excessive and aberrant use of methionine in cancer is strongly observed in [11C]–methionine PET 
imaging, where the high uptake of [11C]–methionine results in a very strong and selective tumor 
signal compared with normal tissue background. [11C]–methionine is superior to [18C]–
fluorodeoxyglucose (FDG) for PET imaging, suggesting methionine dependence is more tumor-
specific than glucose dependence [68,69]. A purified methionine-cleaving enzyme, methioninase 
(METase), from Pseudomonas putida, has been found previously to be an effective antitumor agent in 
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Methionine dependence is a general metabolic defect in cancer. It has been demonstrated that
methionine starvation induces a tumor-selective S/G2-phase cell-cycle arrest of tumor cells [58–61].
Methionine dependence is due to the excess use of methionine in aberrant transmethylation
reactions, termed the Hoffman effect, and is analogous to the Warburg effect for glucose in
cancer [62–67]. The excessive and aberrant use of methionine in cancer is strongly observed in
[11C]–methionine PET imaging, where the high uptake of [11C]–methionine results in a very strong
and selective tumor signal compared with normal tissue background. [11C]–methionine is superior
to [18C]–fluorodeoxyglucose (FDG) for PET imaging, suggesting methionine dependence is more
tumor-specific than glucose dependence [68,69]. A purified methionine-cleaving enzyme, methioninase
(METase), from Pseudomonas putida, has been found previously to be an effective antitumor agent
in vitro as well as in vivo [70–73]. For the large-scale production of METase, the gene from P. putida
has been cloned in Escherichia coli and a purification protocol for recombinant methioninase (rMETase)
has been established with high purity and low endotoxin release [74–77].

Int. J. Mol. Sci. 2017, 18, 1875 6 of 13 

 

 
Figure 6. Relative tumor volume in the various treatment groups of the BRAF-V600E mutant 
melanoma PDOX. Bar graph shows tumor volume at post-treatment point relative to the initial pre-
treatment tumor volume. Error bars = SD [57]. N.S. = not significant. 

Methionine dependence is a general metabolic defect in cancer. It has been demonstrated that 
methionine starvation induces a tumor-selective S/G2-phase cell-cycle arrest of tumor cells [58–61]. 
Methionine dependence is due to the excess use of methionine in aberrant transmethylation reactions, 
termed the Hoffman effect, and is analogous to the Warburg effect for glucose in cancer [62–67]. The 
excessive and aberrant use of methionine in cancer is strongly observed in [11C]–methionine PET 
imaging, where the high uptake of [11C]–methionine results in a very strong and selective tumor 
signal compared with normal tissue background. [11C]–methionine is superior to [18C]–
fluorodeoxyglucose (FDG) for PET imaging, suggesting methionine dependence is more tumor-
specific than glucose dependence [68,69]. A purified methionine-cleaving enzyme, methioninase 
(METase), from Pseudomonas putida, has been found previously to be an effective antitumor agent in 
vitro as well as in vivo [70–73]. For the large-scale production of METase, the gene from P. putida has 
been cloned in Escherichia coli and a purification protocol for recombinant methioninase (rMETase) 
has been established with high purity and low endotoxin release [74–77].  

 

Figure 7. Cont.



Int. J. Mol. Sci. 2017, 18, 1875 7 of 14

Int. J. Mol. Sci. 2017, 18, 1875 7 of 13 

 

B 
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typhimurium A1-R-GFP fluorescent area (mm2) for each treatment group. N.S. = not significant. Error 
bars = SD [57]; (B) fluorescence imaging of S. typhimurium A1-R-GFP targeting alone and in 
combination with chemotherapy in the melanoma PDOX. Confocal imaging with the FV1000. Scale 
bars: 12.5 μm. 
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Figure 7. (A) Quantitative tumor targeting by S. typhimurium A1-R-GFP alone and in combination with
chemotherapy on the BRAF-V600E mutant melanoma PDOX model. Bar graph shows S. typhimurium
A1-R-GFP fluorescent area (mm2) for each treatment group. N.S. = not significant. Error bars = SD [57];
(B) fluorescence imaging of S. typhimurium A1-R-GFP targeting alone and in combination with
chemotherapy in the melanoma PDOX. Confocal imaging with the FV1000. Scale bars: 12.5 µm.

The combination therapy of TEM and rMETase had significantly better efficacy than either therapy
alone on the BRAF-V600E mutant melanoma PDOX (Figure 8). Post-treatment L-methionine levels
in tumors treated with rMETase alone, or along with TEM, were significantly decreased compared
to untreated controls (data not shown). These results showed that this melanoma is methionine
dependent, and rMETase thereby suppresses the melanoma PDOX [77].
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Figure 8. Time-coursed treatment efficacy on the BRAF-V600E mutant melanoma PDOX. Line graph
shows tumor volume at each point relative to the initial tumor volume. All treatments significantly
inhibited tumor growth compared to the untreated control (TEM: p = 0.0081, recombinant methioninase
(rMETase): p = 0.0037, TEM/rMETase: p = 0.0024). In addition, TEM and rMETase combination therapy
was significantly stronger than both TEM (p = 0.0051) and rMETase (p = 0.0051) alone at day 14. There
was no significant difference between TEM and rMETase. ** p < 0.01. Error bars = SD [77].
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This review indicates that the melanoma PDOX is a promising—although still-developing—
technology, able to identify effective therapy for patients, both approved and experimental. Future
studies will investigate further advantages of the melanoma PDOX model. Please see references [78,79]
for reviews of melanoma PDX models. Future studies will address molecular changes in the treated
melanoma PDOX models described in the present report.

3. Materials and Methods

3.1. Mice

Athymic (nu/nu) nude mice (AntiCancer Inc., San Diego, CA, USA) were used in these studies
in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals under Assurance Number A3873-1. Animals were anesthetized with a ketamine mixture
via subcutaneous injection of a 0.02 mL solution of 20 mg/kg ketamine, 15.2 mg/kg xylazine and
0.48 mg/kg acepromazine maleate for all surgeries [9,55–57,77].

3.2. Patient-Derived Tumors

The PDOX models from the University of California Los Angeles (UCLA) were established
from a 75-year-old female patient with a melanoma of the right chest wall. The melanoma had
a BRAF-V600E mutation. Tumor resection was performed in the Department of Surgery, UCLA.
The tumor was provided for PDOX establishment after written informed consent was provided by
the patient, and after approval was granted by the Institutional Review Board (IRB) [55]. Another
patient melanoma was obtained from a patient at UCSD under IRB approval and informed patient
consent [34].

3.3. Establishment of PDOX Models of Melanoma by Surgical Orthotopic Implantation (SOI)

Resected melanoma tissue was immediately transported to AntiCancer Inc. on ice. The BRAF-V600E
mutant melanoma tumor fragments (3 mm3) were transplanted to the chest wall of nude mice to mimic
the site from which they were resected from the patient [9,55–57,77]. The melanoma from UCSD was
directly implanted subdermally and passaged in the back skin of nude mice [34]. All surgeries were
performed under ketamine anesthesia.

3.4. Preparation and Administration of S. typhimurium A1-R

S. typhimurium A1-R (AntiCancer Inc.), expressing GFP, was cultured in LB medium (Fisher Sci.,
Hanover Park, IL, USA) and harvested at the late-log phase. The bacteria were washed and diluted
with PBS. S. typhimurium A1-R was injected intravenously. A total of 5 × 107 colony-forming units
(CFU) of S. typhimurium A1-R in 100 µL phosphate-buffered saline (PBS) was administered to each
mouse [36–38,56].

3.5. Recombinant Methionase (rMETase) Production

Recombinant L-methionine α-deamino-γ-mercaptomethane lyase (recombinant methioninase
(rMETase)) (EC 4.4.1.11) from Pseudomonas putida was previously cloned and produced in Escherichia coli
using previously published procedures [74].

3.6. Tumor Histology

The original tumor tissue and PDOX tumor tissue were fixed in 10% formalin. The fixed tumors
were embedded in paraffin and then sectioned and stained. Standard bright-light microscopy was
used for histopathological analysis [55].
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3.7. Confocal Microscopy

The FV1000 confocal microscope (Olympus, Tokyo, Japan) was used for high-resolution imaging
of S. typhimurium A1-R. Fluorescence images were obtained using the 20×/0.50 UPLAN FLN and
40×/1.3 Oil Olympus UPLAN FLN objectives [80].

3.8. Treatment Study Design in the PDOX Model of Melanoma

BRAF-V600E mutant melanoma PDOX mouse models were randomized into six groups of
10 mice each: untreated control (n = 10); VEM (30 mg/kg, oral (po) per week (qd) × 14); COB
(5 mg/kg, po qd × 14); S. typhimurium A1-R (5 × 107 CFU/100 mL, intravenous (i.v.), per week
(qw) × 2); COB (30 mg/kg, 5 mg/kg, po qd × 14) combined with VEM (30 mg/kg, po qd × 14);
VEM (30 mg/kg, po qd × 14) combined with S. typhimurium A1-R (5 × 107 CFU/100 mL, i.v., qw
× 2); rMETase (100 units, intraperitoneal (i.p.), 14 consecutive days, n = 10) [9]. For the melanoma
tumor from UCSD, the treatment was as follows: 5-fluorouracil (5-FU) (10 mg/kg, i.p., once per
week) and CDDP (3 or 5 mg/kg, i.p., once per week) were administered. S. typhimurium A1-R (3 or
5 × 107 CFU/body, i.v., once per week) was also injected [34]. Tumor volume (mm3) was calculated
from length (mm) × width (mm) × width (mm) × 0.5. Data points represent mean ± SD [9].

3.9. Intratumor L-Methionine Levels

After the completion of rMETase treatment, each tumor was sonicated for 30 s on ice and
centrifuged at 12,000 rpm for 10 min. Supernatants were collected and protein levels were measured
using the Coomassie Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). L-methionine levels
were determined using a high-pressure liquid chromatography (HPLC) procedure we developed
previously [81,82]. Methionine levels were normalized to tumor protein by standard procedures.

Conflicts of Interest: The author declares no conflict of interest.
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