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Abstract: Disorders of hepatic energy metabolism, which can be regulated by endoplasmic reticulum
(ER) stress, lead to metabolic diseases such as hepatic steatosis and hypoglycemia. Tunicamycin,
a pharmacological ER stress inducer, is used to develop an anti-cancer drug. However, the
effects of tunicamycin on hepatic energy metabolism have not been well elucidated. Mice were
intraperitoneally injected with tunicamycin or vehicle. Twenty-four hours later, hepatic triglyceride
and glycogen content and serum lipids profiles were analyzed, as well as the expression of lipogenic
and gluconeogenic genes. Tunicamycin significantly induced hepatic a yellowish color and ER stress,
as well as increasing serum levels of aspartate transaminase and alanine transaminase. Besides,
tunicamycin remarkably increased hepatic triglyceride content and suppressed the expression of
apolipoprotein B100. In addition, tunicamycin-treated mice had lower serum levels of triglyceride,
apolipoprotein B, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Gene
expression of peroxisome proliferator-activated receptor α was decreased by tunicamycin, but
the protein level was increased. Furthermore, blood glucose level and hepatic glycogen content
were decreased in tunicamycin-treated mice. Protein kinase B signaling was attenuated in the
tunicamycin-treated liver, but the expression and activities of phosphoenolpyruvate carboxykinase
and glucose-6-phosphatase were unchanged. Tunicamycin alters hepatic energy homeostasis by
increasing triglyceride accumulation and decreasing glycogen content.
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1. Introduction

Liver, the primary metabolic organ, plays an important role in the systemic energy homeostasis,
including glucose production, lipogenesis, fatty acid oxidation, lipoprotein secretion and glycogen
synthesis [1]. To be specific, firstly, the liver regulates blood glucose homeostasis by stimulating
gluconeogenesis, a process mediated by phosphoenolpyruvate carboxykinase (PEPCK) and glucose
6-phosphatase (G6pase), whose expression are mainly regulated by insulin signaling and endoplasmic
reticulum (ER) stress [2–4]. Secondly, the liver is one of the leading organs for lipids metabolism,
including lipogenesis, cholesterol synthesis and fatty acid oxidation [5]. In the liver, lipogenesis is
regulated by enzymes like fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1), while
fatty acid oxidation is controlled by enzymes such as carnitine palmitoyltransferase 1a (CPT1a) and
acyl-CoA dehydrogenase, long chain (ACADL) [6,7]. Stimulation of lipogenesis or inhibition of
fatty acid oxidation in the liver leads to hepatic triglyceride accumulation, which results in hepatic
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steatosis [8]. In addition, reduced apolipoprotein expression and impaired hepatic lipoprotein secretion
give rise to liver triglyceride accumulation [9]. Thirdly, liver synthesizes and stores glycogen, which can
be broken down at fasting state to provide glucose to keep blood glucose homeostasis [10]. Synthesis of
glycogen is regulated by enzyme of glycogen synthetase (GS) while glycogen breakdown is mediated
by glycogen phosphotase (GP), both of which are regulated by insulin signaling [10,11]. Moreover,
impaired liver glycogen accumulation leads to hypoglycemia under fasting state [10].

In the liver, ER stress restores ER homeostasis by stimulating the activation of inositol requiring
enzyme 1 (IRE1), activating transcription factor 6 (ATF6) and RNA-dependent protein kinase-like
ER kinase (PERK), which also regulate energy metabolism [4]. Firstly, IRE1 activation prevents the
inhibition of insulin signaling on forkhead box O1 (FOXO1) activation, thus induces gluconeogenesis,
which is known as insulin resistance [4]. Secondly, PERK activation stimulates lipogenesis and
gluconeogenesis by inducing the expression of CHOP through eukaryotic initiation factor 2 α

(eIF2α)/ATF4 pathway [12]. Thirdly, ER stress induces the expression of the nuclear form of ATF6,
which inhibits gluconeogenesis and lipogenesis by binding to and inactivating CREB-regulated
transcription coactivator 2 (TORC2) and sterol-regulatory element binding protein 2 (SREBP2),
respectively [13,14]. Lastly, ER stress stimulates the splicing of X-box binding protein 1 (Xbp1),
which can directly or indirectly (through SREBP1) activate lipogenesis program while inhibiting
gluconeogenesis [15,16]. ER stress is induced by unfolded protein response (UPR), which can be
stimulated by some chemicals [3].

Tunicamycin, a pharmacological ER stress inducer, can stimulate tumor cell apoptosis [17,18].
Therefore, it has been used to develop an anti-cancer drug [19,20]. Because of its ER stress inducing
character, tunicamycin has been reported to induce metabolism disorders in many studies. As is
demonstrated in a study on hepatocytes, tunicamycin inhibits the phosphorylation of protein kinase
B (Akt) [21], which plays a vital role in insulin sensitivity and in the regulation of glucose and
triglyceride metabolism [22]. Wang et al. suggested that short-time tunicamycin treatment inhibited
hepatic gluconeogenesis [13]. Furthermore, tunicamycin was revealed in a recent study to induce
triglyceride accumulation in cultured HepG2 hepatic cells [23]. Chang and his colleagues demonstrated
that short-term tunicamycin treatment increased hepatic lipid accumulation [24]. However, the in vivo
effects of tunicamycin on hepatic gluconeogenesis, triglyceride accumulation and glycogen synthesis,
and the exact mechanism have not been fully illustrated yet.

In the current study, the effects of 24 h tunicamycin treatment on serum lipids profiles, hepatic
triglyceride accumulation, blood glucose level and liver glycogen content were explored using a
mouse model. Meanwhile, the possible regulatory mechanism was investigated. Results indicated
that, as compared with the control group, 24 h tunicamycin exposure dramatically increased hepatic
triglyceride accumulation, inhibited liver lipoprotein secretion, decreased blood glucose level and
hepatic glycogen content.

2. Results

2.1. Tunicamycin Induced Endoplasmic Reticulum Stress

To investigate the effect of tunicamycin on liver energy homeostasis, mice were administrated with
tunicamycin or vehicle for 24 h and were harvested under fed state. Result showed that tunicamycin
did not alter the body weight when compared with the control group (Figure S1). However, the
liver turned yellow, and the weight tended to decrease in tunicamycin-treated mice as compared
to that of the control mice (Figure 1A,B). As tunicamycin is a pharmacologic ER stress inducer, the
ER stress levels were detected in the liver. Results showed that, when compared with the control
group, the phosphorylation level of PERK, an indicator of ER stress [3], was greatly induced in
tunicamycin-treated liver (Figure 1C). In addition, tunicamycin up-regulated the expression of Chop
and 78 kDa glucose-regulated protein (Grp78) (Figure 1D), two indicator genes of ER stress [25,26].
These data indicated that 24 h tunicamycin administration induced ER stress in the liver. In addition,
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the serum aspartate transaminase (AST) and alanine transaminase (ALT) levels were detected to
reflect the liver function, which showed that the serum levels of both AST and ALT were higher in
tunicamycin treated mice than these in the control mice (Figure 1E,F). However, the ratio of AST to ALT
was unchanged (Figure 1G). These data indicated that tunicamycin slightly impaired liver function.
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Figure 1. Tunicamycin induced hepatic endoplasmic reticulum (ER) stress and impaired liver function.
7-month-old mice were injected intraperitoneally with vehicle or 1 mg/kg tunicamycin. Livers were
collected 24 h after injection under fed condition. N = 6 per group. (A) Liver weight at harvest; (B) Liver
morphology; (C) Phosphorylation level of PERK in the liver; (D) Expression levels of ER stress indicator
genes in the liver; (E) Serum level of AST; (F) Serum level of ALT; (G) The ratio of serum AST to ALT.
Data were shown as mean ± SEM. Veh, vehicle; TM, tunicamycin. * p < 0.05, ** p < 0.01, *** p < 0.001
TM vs. Veh.

2.2. Tunicamycin Administration Decreased Blood Glucose Level

It is reported that ER stress regulates hepatic gluconeogenesis [4], thus the blood glucose
level was measured. Results indicated that, tunicamycin-treated mice had lower blood glucose
levels as compared to the control mice (Figure 2A). In addition, insulin tolerance test revealed
that tunicamycin-treated mice were more sensitivity to insulin than the control ones (Figure 2B).
Nonetheless, tunicamycin did not affect the ability of glucose tolerance in mice (Figure S1B). In addition,
serum insulin levels in tunicamycin-treated mice were similar to the control mice (Figure S1C).
Gluconeogenesis plays an important role in systemic glucose homeostasis, while PEPCK and G6pase
are the two rate-limiting enzymes for gluconeogenesis [2]. The results showed that tunicamycin
up-regulated the expression of Pepck while G6pase expression remained unaffected (Figure 2C). Protein
levels of PEPCK and G6Pase were also determined, which indicated that the two in tunicamycin-treated
liver were not different from those in control liver (Figure 2D). Further study revealed no significant
difference in the activity of PEPCK and G6Pase between tunicamycin group and control group
(Figure 2E,F). Besides, liver content of pyruvate, the substrate of gluconeogenesis, trended to be higher
in tunicamycin-treated mice than that in the control mice (Figure S1D). These findings demonstrated
that 24 h tunicamycin treatment decreased blood glucose but it did not affect liver gluconeogenesis.
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Figure 2. Tunicamycin reduced blood glucose level. (A) Blood glucose levels under fed state; N = 6
per group; (B) Insulin tolerance test. N = 7 per group; (C) Expression of gluconeogenic genes. N = 6
per group; (D) Western blotting bands and quantification for liver proteins; (E) The enzyme activity of
PEPCK; (F) The enzyme activity of G6pase. Veh, vehcle; TM, tunicamycin. * p < 0.05, ** p < 0.01 TM
vs. Veh.

2.3. Tunicamycin Induced Hepatic Triglyceride Accumulation

The altered liver weight indicated that the content of tunicamycin-treated liver might be different
from the content of control liver. Thus, the triglyceride and glycogen contents were detected in the liver.
Results showed that tunicamycin remarkably increased the content of hepatic triglyceride (Figure 3A),
an important energy source in the liver [27]. Meanwhile, H&E staining and Oil Red O staining also
revealed that livers from tunicamycin treated mice had accumulated more and larger lipid droplets
than those from control ones (Figure 3B,C). These data suggested that 24 h tunicamycin administration
was susceptible to induce hepatic steatosis.

2.4. Tunicamycin Inhibited Hepatic Lipoprotein Secretion

ER stress has been reported to stimulate lipogenesis [4]. Thus, the expression levels of lipogenic
genes were measured. The results indicated that, the expression of Fas and Scd1 were notably
down-regulated by tunicamycin rather than being up-regulated (Figure 4A). This result was supported
by the decreased protein levels of FAS and SCD1 in the tunicamycin treated liver (Figure 4B).
Consequently, the expression of fatty acid oxidation related genes was thus detected. Results
showed that tunicamycin inhibited the gene expression of Pparα, a transcription stimulator of fatty
acid oxidation genes (Figure 4C). However, the protein level of PPARα was significantly increased
in tunicamycin-treated liver as compared to that in the control liver (Figure 4B). Meanwhile, the
gene expression level of Cpt1a, an important fatty acid oxidation related gene, was increased in the
tunicamycin-treated liver (Figure 4D). Furthermore, though the gene expression level of Acadl, another
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fatty acid oxidation gene, was decreased in tunicamycin-treated liver as compared to that in the control
liver, the protein level was unchanged (Figure 4B,D). Besides, the content of acetyl CoA, the substrate
for lipogenesis and production of fatty acid oxidation, was higher in tunicamycin-treated liver than
this in the control liver (Figure 4E). These data suggested that the increased triglyceride content in 24 h
tunicamycin-treated liver was probably independent on lipogenesis and fatty acid oxidation.
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Figure 4. Tunicamycin inhibited the expression of liver lipogenic genes and increased the protein level
of PPARα. (A) Expression of lipogenic genes; (B) Protein levels of lipogenic and fatty acid oxidation
related genes; (C) Expression of fatty acid oxidation stimulator gene Pparα. (D) Expression of fatty acid
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The lipoprotein secretion of liver was then analyzed. Data indicated that the expression of
ApoB100, the major apolipoprotein of liver, was inhibited in tunicamycin-treated liver as compared
to that in the control liver (Figure 5A). Meanwhile, serum levels of triglyceride, ApoB, low-density
lipoprotein cholesterol (LDL-C) and high-density protein cholesterol (HDL-C) were significantly lower
in tunicamycin-treated mice than those in control mice (Figure 5B–E). Besides, serum free fatty acid
(FFA) level was also decreased in tunicamycin-treated mice (Figure 5F). These data indicated that
tunicamycin impaired hepatic lipoprotein secretion.
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2.5. Tunicamycin Attenuated Liver Glycogen Accumulation

The results showed that tunicamycin had decreased the content of liver glycogen (Figure 5A),
another important energy source in liver besides triglyceride [10]. Morphological analysis of H&E and
PAS staining also led to similar result (Figures 2B and 5B). Akt activation stimulates liver glycogen
synthesis [28]. Therefore, the phosphorylation level of Akt was investigated, the results of which
showed that tunicamycin reduced the phosphorylation level of Akt (Figure 5C). However, tunicamycin
did not alter the phosphorylation level or the total protein level of GS (Figure 5C), neither the protein
level of GP (Figure 5C). These data suggested that glycogen content might be reduced in a GS- and
GP-expression-independent manner in 24 h tunicamycin-treated liver.

3. Discussion

ER stress has dual functions, as it induces metabolic syndrome as well as inducing tumor cell
apoptosis [3]. As is shown in this study, 24 h tunicamycin treatment notably induces hepatic ER
stress and yellowish color, impairs liver function, reduces blood glucose level, stimulates hepatic
triglyceride accumulation and attenuates liver glycogen storage. However, it is also observed that 24
h tunicamycin treatment has no effect on the expression and the activity of gluconeogenic enzymes,
which disagrees with previous report, who indicates that tunicamycin inhibits the expression of Pepck
and G6pase. Besides, we observe that, though the gene expression is inhibited, the protein level of
PPARα is significantly increased in tunicamycin treated liver, which has not been reported previously.
In addition, our study demonstrates that tunicamycin decreases hepatic lipoprotein secretion by
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inhibiting the expression of ApoB100, which has not been reported previously either. Our study also
demonstrates that the increased hepatic triglyceride accumulation may be due to the inhibited hepatic
lipoprotein secretion.

3.1. Tunicamycin and ER Stress

Results in this study have shown that tunicamycin exposure has greatly induced the expression
of Chop and Grp78 and the phosphorylation level of PERK (Figure 1), suggesting that 24 h tunicamycin
treatment gives rise to remarkable ER stress. ER stress has a dominant effect on metabolic homeostasis,
especially for chronic ER stress, which accounts for one of the reasons for chronic metabolic
diseases [3,4,29]. Three types of ER stress have been reported, including acute ER stress, periodic ER
stress and chronic ER stress, and different types of ER stress have different effects on metabolism [4].
Of them, the effects of acute and chronic ER stress on hepatic energy metabolism have been widely
studied [3,4,30]. However, the effect of sub-acute ER stress, the transition between acute and chronic
ER stress, on metabolic homeostasis remains unknown. Acute ER stress has been studied within
hours while chronic ER stress within days or longer; therefore, ER stress induced by 24 h tunicamycin
treatment in our study is considered as the transition between acute and chronic ER stress [3,4,30]. This
may account for the reason why the effect of tunicamycin on the expression of hepatic gluconeogenic
genes in our study is different from those in previous reports. Consequently, one possibility has been
raised in this study that the sub-acute ER stress has different effects on hepatic energy metabolism from
those of the acute and chronic ER stress. Further studies are required to explore the role of sub-acute
ER stress on energy metabolism.

Besides, tunicamycin is reported to inhibit tumor growth at dose of 1 mg/kg, but not at the dose
of 0.5 mg/kg [19]. However, our study indicates that tunicamycin at the dose of 1 mg/kg body weight
slightly impairs liver function. This suggests that when tunicamycin or other ER stress inducers are
used as anti-cancer medicine, liver protection is required.

3.2. Tunicamycin and Blood Glucose

It is shown in the current study that 24 h tunicamycin treatment decreases the blood glucose level
(Figure 4), which is supported by previous reports that acute tunicamycin treatment reduces blood
glucose level [13,31]. However, 24 h tunicamycin treatment makes no difference to the expression of
gluconeogenic genes in this study, which is different from the previous reports declaring an inhibition of
gluconeogenic genes expression by acute tunicamycin treatment. One possible reason is the duration of
tunicamycin treatment, which is 24 h in this study, compared to 10 h and 6 h in the studies by Wang et al.
and Lee et al., respectively [13,31]. Moreover, our result is also different from the report demonstrating
that chronic ER stress induced by long term high fat diet intake stimulates gluconeogenesis [32].

Thus, another possibility has been raised that tunicamycin induces apoptosis of some liver cells.
This may lead to decreased hepatic glucose production rate in tunicamycin-treated mice. Thus, when
challenged with insulin, blood glucose levels of the tunicamycin-treated mice decrease faster than
these of the control mice. At the same time, the expression and activity of PEPCK and G6pase are
normalized to total β-action (gene expression), total tubulin (protein expression) or total protein
(enzyme activity), including which of the apoptosis cells. So, they retain similar in both groups or
is higher (gene expression of Pepck) in the tunicamycin treated liver. However, the exact mechanism
needs further study to be elucidated.

3.3. Tunicamycin and Hepatic Triglyceride

In this study, tunicamycin is found to stimulate liver triglyceride accumulation (Figure 1), which
is consistent with the previous studies by Chang et al. and by Lee et al. In their study, Chang et al.
reported that tunicamycin induced triglyceride accumulation in hepatocytes, while Lee et al. observed
that tunicamycin increased the triglyceride content in mouse liver [24,30]. Increased hepatic triglyceride
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accumulation induces hepatic steatosis [8,27,33]. Thus, it is suggested from the findings of this study
that prolonged tunicamycin treatment may lead to increased risk of hepatic steatosis.

Triglyceride metabolism in liver is regulated by lipogenesis and fatty acid β-oxidation [27].
Chronic ER stress is reported to induce lipogenesis in the liver [4]. However, 24 h tunicamycin treatment
down-regulates the gene expression and protein levels of lipogenic enzymes FAS and SCD1, which are
important lipogenic genes (Figure 2). This may be attributed to the sub-acute ER stress induced by 24
h tunicamycin exposure in our study, which has a different effect on lipogenesis from that of chronic
ER stress [4]. Lee et al. declared an increased lipogenesis in tunicamycin-treated liver. However, the
expression of Fas and Scd1 in the cultured hepatoma cells, rather than in the liver, was shown in their
study [30]. The decreased expression of lipogenic genes in 24 h tunicamycin-treated liver may result
from the negative feedback of increased hepatic triglyceride accumulation on lipogenesis [7]. Akt
activation is reported to stimulate hepatic lipogenesis [34]. Therefore, decreased Akt phosphorylation
level may also be responsible for the inhibition of lipogenic gene expression by 24 h tunicamycin
exposure in our study (Figure 3). However, more studies are required to further elucidate the precise
mechanism by which tunicamycin down-regulates the expression of lipogenic genes.

Subsequently, the expression levels of fatty acid oxidation related genes are detected. The result
shows that, the expression of Pparα is significantly decreased, which is in accordance with a previous
report [30]. However, the protein level of PPARα is significantly higher in tunicamycin-treated liver
than that in the control liver. This suggests that tunicamycin has contrary effects on transcriptional and
post-transcriptional expression of PPARα. However, the mechanism and the role need further study to
be explored. In addition, the expression of Cpt1a is increased and the protein level of ACADL was
unchanged by tunicamycin. Moreover, liver content of acetyl CoA, the substrate for lipogenesis and
production of fatty acid oxidation, is increased in tunicamycin treated mice. All these data demonstrate
that the fatty acid oxidation is probably not decreased by tunicamycin in our study.

Liver triglyceride content also can be regulated by hepatic lipoprotein secretion [35]. Our data
demonstrate that the expression of ApoB100, the liver expressed VLDL binding apolipoprotein, is
reduced in the tunicamycin treated liver. Together with the reduction of serum triglyceride, ApoB,
LDL-C and HDL-C levels, our data suggest that the hepatic lipoprotein secretion of tunicamycin-treated
mice is inhibited, which may be the reason why hepatic triglyceride accumulation is increased in
tunicamycin-treated mice.

3.4. Tunicamycin and Liver Glycogen

Hepatic glycogen is a storage form as well as a rapid source of blood glucose, while decreased
hepatic glycogen storage adds to the risk of hypoglycemia under fasting condition [36]. 24 h
tunicamycin treatment evidently decreases hepatic glycogen content in our study (Figure 6). It suggests
that tunicamycin has impaired liver glycogen accumulation, which has not been reported previously.
Akt is reported to stimulate hepatic glycogen synthesis by means of stimulating GS activity [28].
A decrease of Akt phosphorylation level has been observed in this study (Figure 3). However, the
phosphorylation level or the total protein level of GS remains unchanged in tunicamycin-treated mice,
indicating that tunicamycin may decrease liver glycogen content in a GS-expression independent
manner. Besides, tunicamycin does not change the protein level of GP as well (Figure 3), suggesting
that glycogen breakdown may not be affected either. Therefore, the reduced hepatic glycogen content
may result from the decreased blood glucose level in tunicamycin-treated mice. These results indicate
that cancer patients may be fasting intolerance during the treatment of tunicamycin or other ER stress
inducing medicines.
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Overall, 24 h tunicamycin exposure slightly impairs liver function, increases hepatic triglyceride
accumulation, inhibits liver lipoprotein secretion and decreases blood glucose level, hepatic glycogen
accumulation and serum lipids levels. Our study suggests that, chemicals, which are used to treat
tumors by their ER stress inducing characteristic, may cause liver function failure and metabolic
disorders, thus liver protection should be performed when these medicines are using.

4. Materials and Methods

4.1. Animals and Chemicals

Animal study protocol (MICE2015016, 10/22/2016) was reviewed and approved by the Animal
Care and Use Committee of Sichuan Agricultural University. All animal procedures were performed
according to the National Institutes of Health guide for the care and use of Laboratory animals.
7-month-old C57BL/6 male mice were obtained from Vital River Laboratory Animal Technology Co.
Ltd. (Beijing, China). The mice were allowed for one week of acclimation in a pathogen-free room
at the temperature of 22 ◦C and the humidity of 60%. Subsequently, they were randomly divided
into 2 groups according to similar average body weight and blood glucose level (Blood glucose strips
were purchased from Beijingyicheng, Beijing, China). One group were injected intraperitoneally
(IP) with 1 mg/kg tunicamycin (Sigma, Shanghai, China) or vehicle. The body weight and blood
glucose level at fed state were measured 24 h after injection. Later, mice were euthanized using carbon
dioxide, followed by cervical dislocation. Serum was collected for further analysis. Livers were rapidly
dissected and weighed after taking morphological images. One piece of liver was fixed in 10% formalin
for H&E and PAS staining, while one piece was frozen in OCT embedding medium, and the remaining
was frozen at −80 ◦C for further analysis.

4.2. Insulin Tolerance Test and Glucose Tolerance Test

For insulin tolerance test (ITT), mice were injected intraperitoneally with 1 mg/kg tunicamycin or
vehicle. 18 h later, mice were deprived of food for 6 h. And then, mice were injected intraperitoneally
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with 0.25 U/kg insulin (Novo Nordisk, Beijing, China). Blood glucose level was measured 0, 15, 30, 45,
60 and 90 min after insulin injection.

For glucose tolerance test (GTT), mice were intraperitoneally injected with vehicle or 1 mg/kg
tunicamycin, and then were deprived of food 8 h after injection. 24 h after injection, mice were
intraperitoneally injected with 1 g/kg dextrose (Sigma). Blood glucose were measured at 0, 15, 30, 45,
60 and 90 min after dextrose injection.

4.3. Serum Metabolites Profile Analysis

Serum AST, ALT, triglyceride, ApoB, HDL-C, LDL-C and FFA levels were measured on an
automatic biochemical analyzer (7020, HITACHI, Tokyo, Japan) with their analysis kits respectively (All
kits were obtained from Makerbio. Co., Chengdu, China) according to the manufacturer’s instructions.
Serum pyruvate levels were detected using a commercial kit (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China) according to the manufacturer’s instruction.

4.4. Serum Insulin Level Measurement

Serum insulin levels were measured with a mouse insulin ultrasensitive ELISA kit (ALPCO,
Salem, MA, USA) according to the manufacturer’s instruction.

4.5. Liver Pyruvate and Acetyl CoA Content Measurement

Liver pyruvate content was detected using a commercial pyruvate kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) according to the manufacturer’s instruction. Liver acetyl
CoA content was detected using a commercial acetyl CoA kit (Cominbio, Suzhou, China) according to
the manufacturer’s instruction.

4.6. Liver Glycogen Assay

Liver glycogen content was measured using a commercial glycogen assay kit from Nanjing
Jiancheng Bioengineering Institute according to the manufacturer’s instruction with slight modification.
Briefly, frozen livers were ground with a pestle in liquid nitrogen. 300 µL alkaline solution was added
to 100 mg tissue powder. Mixture was heated in boiling water for 20 min. Samples were then mixed
with 96-fold (volume/tissue weight) of doubly distilled (dd) H2O and centrifuged at 5000× g for 5 min.
200 µL of the supernatant or standard was transferred to a new Eppendorf (EP) tube and mixed with
400 µL chromogenic agent. The mixture was subsequently heated at 98 ◦C for 5 min. The absorbance
was measured at 620 nm on a plate reader (SpectraMax M2, Molecular Devices, Sunnyvale, CA, USA).
Liver glycogen content was calculated from the known standards multiplied by the dilution factor.

4.7. Liver Triglycerides Assay

Liver triglyceride content was measured using a commercial triglyceride assay kit from Nanjing
Jiancheng Bioengineering Institute according to the manufacturer’s instruction with modifications as
previously described [37]. Briefly, 50 mg tissue powder was homogenized in 1.5 mL pure ethanol with
a PowerGen 125 homogenizer (Thermo Fisher Scientific, Waltham, MA, USA). The homogenate was
vortexed, and then was centrifuged at 12,000× g for 5 min. 1 mL of the supernatant was transferred
to a new EP tube. 5 µL samples and standards (Cat# 17811-1AMP, Sigma) were added into a 96-well
transparent plate and were incubated with 200 µL enzyme mixture at 37 ◦C for 10 min. The absorbance
was measured at 510 nm on a plate reader (Spectra Max M2). Liver triglycerides content was calculated
from the known standards multiplied by the dilution factor.

4.8. PEPCK and G6pase Activity Analysis

The activities of hepatic PEPCK and G6pase were measured using their activity kits respectively,
according to the manufacturer’s instruction (Cominbio, Suzhou, China).
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4.9. Liver Histology Staining

For H&E and PAS staining, fresh liver tissues were fixed in 10% formalin for 48 h, and then
dehydrated and embedded in paraffin. Embedded tissues were sliced into 4 µm sections (RM2016,
Leica, Shanghai, China). For H&E staining, the sections were dehydrated, stained with hematoxylin for
5 min, washed with ddH2O, and stained with eosin for 2 min. The sections were then dehydrated and
mounted with a neutral resin onto slides. For PAS staining, the sections were dehydrated, incubated
with 0.5% periodate solution for 10 min, washed with ddH2O, stained with Schiff solution for 30 min
in a dark room, washed with ddH2O, and then stained with hematoxylin for 2 min. The sections were
washed with ddH2O, dehydrated, and mounted with a neutral resin onto slides.

For Oil Red O staining, fresh liver tissues were embedded in OCT embedding medium and frozen
in liquid nitrogen, and then sliced into 10 µm sections on a frozen section machine (Cryotome E,
Thermo Fisher Scientific). The sections were dried on slides, fixed in 4% paraformaldehyde for 15 min,
washed with PBS, stained with Oil Red O staining solution for 1 h, washed again with PBS, and stained
with hematoxylin for 2 min. The slides were then washed with ddH2O, dried, and mounted with
glycerogelatin. Images were captured on a microscope (TS100, Nikon, Tokyo, Japan) with a CCD
(DS-U3, Nikon) using imaging software (NIS-Elements F3.2, Nikon).

4.10. RNA Extraction and Real-Time PCR

RNA extraction and real-time PCR were performed as previously reported [37]. Briefly, 50 mg
liver tissue powder was homogenized in 1 mL Trizol Reagent (Invitrogen, Shanghai, China) and RNA
was extracted in accordance with the manufacturer’s instruction. The quality of RNA was assessed by
agarose gel and the concentration was measured with a spectrophotometer (NanoDrop 2000, Thermo
Fisher Scientific). 1 µg RNA was reverse-transcribed into cDNA with a reverse-transcription PCR kit
according to the manufacturer’s instructions (Takara, Dalian, China). Real-time PCR was conducted
on a quantitative-PCR machine (7900HT, ABI, Carlsbad, CA, USA) with Power SYBR Green RT-PCR
reagents (Thermo Fisher Scientific). The following reagent amounts were used for each reaction:
forward primer, 300 nM; reverse primer, 300 nM; cDNA sample, 20 ng. The conditions used for PCR
were: 95 ◦C for 10 min for 1 cycle, and then 40 cycles of 95 ◦C for 15 s followed by 60 ◦C for 1 min. The
real time PCR data was analyzed by the 2−∆∆Ct method with β-actin as the reference. The sequences of
the primers are listed below:

β-actin forward GGCTGTATTCCCCTCCATCG and reverse CCAGTTGGTAACAATGCCATGT;
Chop, forward CACGCACATCCCAAAGCC and reverse GGGCACTGACCACTCTGTT; Grp78,
forward ATCAGGGCAACCGCATCAC and reverse TGATGTCCTGCTGCACCGAA; Pepck, forward
CGCTGGATGTCGGAAGAGG and reverse GGCGAGTCTGTCAGTTCAATAC; G6pase, forward
CGACTCGCTATCTCCAAGTGA and reverse GTTGAACCAGTCTCCGACCA; Fas, forward
GGCTCTATGGATTACCCAAGC and reverse CCAGTGTTCGTTCCTCGGA; Scd1, forward
CCTACGACAAGAACATTCAATCCC and reverse CAGGAACTCAGAAGCCCAAAGC; Pparα,
forward TACTGCCGTTTTCACAAGTGC and reverse AGGTCGTGTTCACAGGTAAGA; Cpt1a,
forward CTCCGCCTGAGCCATGAAG and reverse CACCAGTGATGATGCCATTCT; Acadl, forward
TCTTTTCCTCGGAGCATGACA and reverse GACCTCTCTACTCACTTCTCCAG; ApoB100, forward
TTGGCAAACTGCATAGCATCC and reverse TCAAATTGGGACTCTCCTTTAGC.

4.11. Western Blot Analysis

Western blot analysis was performed as previously reported [38]. For the preparation of protein
lysates, 100 mg liver tissue powder was homogenized in 1 mL cell lysis buffer (Beyotime Biotechnology,
Shanghai, China) supplemented with protease inhibitor cocktail (Roche, Mannheim, Germany) on a
homogenizer. The protein lysate was centrifuged at 12,000× g and 4 ◦C for 30 min, and the supernatant
was transferred to a new EP tube. The concentration of protein in the supernatant was measured
with a BCA Protein Assay Kit (Thermo Fisher Scientific). 100 µg protein was used to prepare an
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electrophoresis sample with loading buffer (BioRad, Shanghai, China) in a volume of 30 µL for
each sample. Proteins were separated on 12% polyacrylamide gel, and then transferred onto PVDF
membranes (BioRad). The membranes were blocked in 1% BSA/1× TBST for 1 h at room temperature,
followed by incubation with the appropriate primary antibodies (1 ug/ml) overnight. ACADL
antibody was the product of Abcam (Shanghai, China); pAKT T308 (4056), AKT (9272), pGS (3891), GS
(3886), pPERK (3179), PERK (5683), SCD1 (2794) and tubulin (3873) antibodies were obtained from Cell
Signaling Technology (Shanghai, China); and GP (sc-46347), G6pase (sc-398155), PEPCK (sc-377136),
FAS (sc-48357) and PPARα (sc-398394) antibodies were obtained from Santa Cruz (Shanghai, China).
After thorough washing, membranes were incubated with appropriate horseradish peroxidase-linked
secondary antibodies (7074 and 7076, CST) (1:2000 dilution in 5% milk/1× TBST) for 1 h. After further
thorough washing, protein signals were detected by ECL western blotting detection reagent (BioRad,
Shanghai, China) on a Molecular Imager ChemiDoc XRS+ System (BioRad, Shanghai, China). Blots
were quantified with ImageJ software (National Institutes of Health, Bethesda, MD, USA).

4.12. Statistical Analysis

Data were analyzed with Microsoft Office Excel 2016 and Prism 5, and the results were presented
as mean ± SEM. Student’s t-test was used to compare the difference between two groups. Statistical
significance was determined at p < 0.05.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/8/1710/s1.
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