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Abstract: Tricetin is a dietary flavonoid with cytostatic properties and antimetastatic activities in
various solid tumors. The anticancer effect of tricetin in nonsolid tumors remains unclear. Herein,
the molecular mechanisms by which tricetin exerts its anticancer effects on acute myeloid leukemia
(AML) cells were investigated. Results showed that tricetin inhibited cell viability in various types of
AML cell lines. Tricetin induced morphological features of apoptosis such as chromatin condensation
and phosphatidylserine (PS) externalization, and significantly activated proapoptotic signaling
including caspase-8, -9, and -3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in
HL-60 AML cells. Of note, tricetin-induced cell growth inhibition was dramatically reversed by
a pan caspase and caspase-8- and -9-specific inhibitors, suggesting that this compound mainly acts
through a caspase-dependent pathway. Moreover, treatment of HL-60 cells with tricetin induced
sustained activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK),
and inhibition of ERK and JNK by their specific inhibitors respectively promoted and abolished
tricetin-induced cell apoptosis. Dichlorofluorescein (DCF) staining showed that intracellular reactive
oxygen species (ROS) levels were higher in tricetin-treated HL-60 cells compared to the control group.
Moreover, an ROS scavenger, N-acetylcysteine (NAC), reversed tricetin-induced JNK activation
and subsequent cell apoptosis. In conclusion, our results indicated that tricetin induced cell death
of leukemic HL-60 cells through induction of intracellular oxidative stress following activation of
a JNK-mediated apoptosis pathway. A combination of tricetin and an ERK inhibitor may be a better
strategy to enhance the anticancer activities of tricetin in AML.
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1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of hematopoietic progenitor
cells and the most common type of leukemia in adults. Despite significant improvements being made
in the past three decades in the understanding of leukemia pathogenesis, prognostic factors, drug
treatment, and patient care procedures, the prognosis of AML is still not good enough, and estimated
5-year overall survival after a standard chemotherapy is only 38% [1,2]. Chemotherapy resistance and
relapse still remain major challenges in treating AML [3]. Thus, a better understanding of the molecular
biology of AML is needed, and alternative treatments for AML patients still need to be discovered.

Nowadays, some plant-derived natural products have been used as alternative treatments for
leukemias including AML because of their extensive biological activities and comparatively low
toxicities [4,5]. Tricetin (5,7,3′,4′,5′-pentahydroxyflavone), a dietary flavonoid in Myrtaceae pollen
and Eucalyptus honey, appears to have potent anti-inflammatory properties which may be responsible
for its beneficial effects [6]. Recently, tricetin has garnered much attention in relation to its anticancer
activities such as antiproliferative and antimetastatic activities in many solid tumor cell models
including breast [7], liver [8], lung [9], bone [10], and brain [11] tumors. Although it is quite clear that
tricetin can inhibit the growth or metastasis of various solid tumor cells, the precise impact of tricetin
on nonsolid tumors is still unclear.

Apoptosis is an active process of endogenous programmed cell death. The identified
characteristics of apoptosis include morphologic changes such as condensation and fragmentation of
nuclei, cell membrane shrinkage, and loosening of organelle positions in the cytoplasm. In addition
to morphological changes, sophisticated molecular procedures and mechanisms are also involved.
Apoptosis can be initiated either through a death receptor followed by caspase-8 and -10 activation or
the mitochondrial pathway involving caspase-9 [12]. One of the hallmarks of cancer is the deregulation
of apoptosis; thus increasing apoptosis in tumors is one of the best ways for anticancer agents to treat
all types of cancer. Actually, there are several plant-derived anticancer agents such as Vinca alkaloids,
taxines, and podophyllotoxin already in clinical use [13].

The mitogen-activated protein kinase (MAPK) pathway is an important route that communicates
extracellular signals in intracellular responses and was correlated with many physiological
processes such as cell growth, differentiation, and apoptosis. In mammalian cells, there are three
well-characterized subfamilies of MAPKs: extracellular signal-regulated kinases (ERKs), c-Jun
N-terminal kinases (JNKs), and p38 MAPKs [14]. JNK was reported to be phosphorylated/activated
after exposure of cells to stressful stimuli, such as irradiation and cancer chemotherapeutics, and it plays
an important role in chemotherapeutic drug-mediated apoptosis [15]. Recently, it was reported that a
JNK-activation defect confers chemoresistance in solid tumors such as ovarian and liver cancers [16,17].
Notably, involvement of the JNK-activation defect in anthracycline-containing chemotherapy resistance
was also characterized in AML, and JNK targeting might be a new therapeutic approach for AML [18].

Although it is entirely clear about the anti-metastatic and anti-tumor growth effects of tricetin
in various solid tumor cells, the exact impact of tricetin on nonsolid tumors is still unknown. This is
the first study to determine the cell growth-inhibitory activity and molecular mechanisms of tricetin
in different French-American-British (FAB) types of AML cells (THP-1, U937, HL-60, and MV4-11).
Our results demonstrated that tricetin suppressed proliferation of these four AML cell lines. We found
that superoxide was overproduced in HL-60 AML cells during tricetin treatment, which initiated a
signal leading to activation of JNK-mediated apoptosis. Moreover, a combination of tricetin and an
ERK inhibitor may be a better strategy than tricetin alone for treating AML. This study should provide
a scientific basis for the clinical use of tricetin to effectively inhibit AML.
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2. Results

2.1. Tricetin Inhibited Proliferation of Human Acute Myeloid Leukemia (AML) Cells

The chemical structure of tricetin is shown in Figure 1A. In this study, we first examined the effect
of tricetin on the growth of human AML cell lines using the cell counting kit-8 (CCK-8) assay. After
treating cells with tricetin for 24 h, the tricetin concentration dependently inhibited the proliferation
of four AML cell lines which represent different FAB types (M2: HL-60 and M5: MV4-11, U937, and
THP-1) (Figure 1B,C). Among these four AML cell lines, HL-60 cells were the most sensitive to tricetin
treatment. Therefore, we chose HL-60 cells for subsequent experiments. We further studied the long-term
antiproliferative potential of tricetin against HL-60 cells by trypan blue exclusion assay. As illustrated in
Figure 1D, tricetin time- and concentration-dependently suppressed the growth of cultured HL-60 cells.
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nuclear condensation and fragmentation, translocation of phosphatidylserine (PS) to the 
extracellular membrane, dynamic membrane blebbing, and loss of adhesion to neighbors or to the 
extracellular matrix [19]. To determine whether tricetin-induced growth inhibition resulted from 
cell apoptosis, HL-60 cells were treated with tricetin (0~80 μM) for 24 h, and we found that tricetin 
induced concentration-dependent increases of the sub-G1 population (Figure 2A). Moreover, we 
performed Annexin-V/PI double staining to identify translocation of PS in HL-60 cells. As shown in 
Figure 2B, early (PI-negative/Annexin-V-positive) and late apoptotic cells 
(PI-positive/Annexin-V-positive) all dramatically increased after respectively treating HL-60 cells 
with 40 and 80 μM tricetin. Because the tricetin-induced increase in the 
PI-positive/Annexin-V-positive population also might have been due to induction of necrosis, we 
next examined the effect of tricetin on cell morphology by using fluorescence microscopy. Treatment of 

Figure 1. Tricetin treatment results in reduced cell viability of human acute myeloid leukemia (AML) cell
lines. (A) The chemical structure of tricetin; (B,C) Four human AML cell lines (HL-60, U937, THP-1, and
MV4-11) were treated with the vehicle (DMSO) or tricetin (0~160 µM) in serum-containing medium for
24 h; (D) HL-60 cells were treated with different concentrations of tricetin (0~80 µM) for 24, 48, and 72 h.
Cell viability was determined by a trypan blue exclusion assay. Results are expressed as multiples of cell
viability. Values represent the mean± standard error (SE) of three independent experiments. *, # p < 0.05,
compared to the vehicle groups. The dashed line indicates 50% growth inhibition of cell viability.

2.2. Tricetin Treatment Results in the Apoptosis of HL-60 AML Cells

Physiological cell death is characterized by an apoptotic morphology, including cell shrinkage, nuclear
condensation and fragmentation, translocation of phosphatidylserine (PS) to the extracellular membrane,
dynamic membrane blebbing, and loss of adhesion to neighbors or to the extracellular matrix [19]. To
determine whether tricetin-induced growth inhibition resulted from cell apoptosis, HL-60 cells were treated
with tricetin (0~80 µM) for 24 h, and we found that tricetin induced concentration-dependent increases of
the sub-G1 population (Figure 2A). Moreover, we performed Annexin-V/PI double staining to identify
translocation of PS in HL-60 cells. As shown in Figure 2B, early (PI-negative/Annexin-V-positive) and late
apoptotic cells (PI-positive/Annexin-V-positive) all dramatically increased after respectively treating HL-60
cells with 40 and 80µM tricetin. Because the tricetin-induced increase in the PI-positive/Annexin-V-positive
population also might have been due to induction of necrosis, we next examined the effect of tricetin
on cell morphology by using fluorescence microscopy. Treatment of cells with 80 µM tricetin for 24 h
showed morphologies characteristic of apoptosis including chromatin condensation and apoptotic bodies
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formation (Figure 2C, arrows). These results are all hallmarks of cell apoptosis and confirmed that tricetin
can induce apoptotic cell death in HL-60 cells.
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Figure 2. Effect of tricetin on HL-60 cell-cycle regulation and apoptosis. (A) HL-60 cells were treated
with different concentrations of tricetin (0~80 µM) for 24 h. The cell-cycle phase distribution and cell
death in the sub-G1 phase were analyzed by fluorescence-activated cell sorting (FACS) after propidium
iodide (PI) staining. Data are shown as the cell-cycle distribution profile by FACS and the percentage
distribution of cells in the sub-G1, G0/G1, S, and G2/M phases; (B) HL-60 cells were treated with
different concentrations of tricetin (0~80 µM) for 24 h. Quantitative analysis of cell apoptosis by FACS
after staining with Annexin-V and PI. In the dot plots, percentages of Annexin-V+/PI− (cells in early
apoptosis, bottom right quadrant) and Annexin-V+/PI+ (cells in late apoptosis, top right quadrant)
are shown (C) HL-60 cells were treated with 80 µM tricetin for 24 h and analyzed by fluorescence
microscopy after 4′,6-diamidino-2-phenylindole (DAPI) staining. White arrows indicate apoptotic
HL-60 cells. Percentage of apoptotic cells expresses ratio of apoptotic cells to the total cell number.
For each sample 200 cells were assessed. Data are expressed as the mean ± SE of three independent
experiments. * p < 0.05, compared to the vehicle group.
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2.3. Tricetin Induces Caspase-Dependent Apoptotic Cell Death in HL-60 Cells

The apoptotic procedure is carried out by a group of the highly conserved caspases, and modulation
of the mechanisms of caspase activation and suppression is a key molecular target in chemoprevention,
since these procedures lead to apoptosis [20]. To clarify the mechanisms underlying tricetin-induced
apoptosis in AML cells, activation of initiator (caspases-9 and -8) and executioner (caspase-3) caspases
was detected. Figure 3A shows that exposure of HL-60 cells to tricetin (80 µM) for indicated time
points caused hydrolysis of procaspases-8, -9, and -3 and cleavage of caspase-3’s substrate, PARP, in
time-dependent manners. Moreover, treatment of HL-60 cells with different concentrations (0~80 µM)
of tricetin for 8 h also resulted in concentration-dependent increases in activated caspases-8, -9, and
-3, and cleaved PARP (Figure 3B,C). We next further investigated whether activation of caspases is
necessary for tricetin-induced apoptosis of HL-60 cells by an MTS assay using specific inhibitors
that respectively inhibit caspase-9 (Z-LEHD-FMK), caspase-8 (Z-IETD-FMK), or a broad-spectrum
caspase (Z-VAD-FMK). As shown in Figure 3D, all caspase inhibitors significantly attenuated 40 µM
tricetin-induced inhibition of proliferation. Taken together, the results indicated that tricetin induced
rapid and time- and concentration-dependent apoptosis in a caspase-dependent pathway.

Int. J. Mol. Sci. 2017, 18, 1667 5 of 14 

 

2.3. Tricetin Induces Caspase-Dependent Apoptotic Cell Death in HL-60 Cells 

The apoptotic procedure is carried out by a group of the highly conserved caspases, and 
modulation of the mechanisms of caspase activation and suppression is a key molecular target in 
chemoprevention, since these procedures lead to apoptosis [20]. To clarify the mechanisms 
underlying tricetin-induced apoptosis in AML cells, activation of initiator (caspases-9 and -8) and 
executioner (caspase-3) caspases was detected. Figure 3A shows that exposure of HL-60 cells to 
tricetin (80 μM) for indicated time points caused hydrolysis of procaspases-8, -9, and -3 and 
cleavage of caspase-3’s substrate, PARP, in time-dependent manners. Moreover, treatment of HL-60 
cells with different concentrations (0~80 μM) of tricetin for 8 h also resulted in 
concentration-dependent increases in activated caspases-8, -9, and -3, and cleaved PARP (Figure 
3B,C). We next further investigated whether activation of caspases is necessary for tricetin-induced 
apoptosis of HL-60 cells by an MTS assay using specific inhibitors that respectively inhibit 
caspase-9 (Z-LEHD-FMK), caspase-8 (Z-IETD-FMK), or a broad-spectrum caspase (Z-VAD-FMK). 
As shown in Figure 3D, all caspase inhibitors significantly attenuated 40 μM tricetin-induced 
inhibition of proliferation. Taken together, the results indicated that tricetin induced rapid and 
time- and concentration-dependent apoptosis in a caspase-dependent pathway. 

 
Figure 3. Tricetin induces caspase-dependent apoptotic cell death in HL-60 cells. (A) Expression 
levels of cleaved caspases-3, -8, and -9, and poly(ADP-ribose) polymerase (PARP) were assessed by a 
Western blot analysis after treatment with 80 μM tricetin for indicated time points; (B) Activated 
caspase-8, -9, and -3, and cleaved PARP protein expressions were upregulated in a 
concentration-dependent fashion after treatment of HL-60 cells with various concentrations of 
tricetin (0~80 μM) for 8 h; (C) Quantitative results of cleaved caspase-3, -8, and -9, and PARP protein 
levels, which were adjusted to the β-actin protein level and expressed as multiples of induction 
beyond each respective control. Values are presented as the mean ± SE of three independent 
experiments. *, #, &, ^, $ p < 0.05, compared to the vehicle control groups; (D) Cells were treated with 40 
μM tricetin for 24 h in the presence or absence of 50 μM Z-VAD-FMK, Z-LEHD-FMK, or 
Z-IETD-FMK. Cell proliferation was determined by an MTS assay. Data are presented as the mean ± 
SE of three independent experiments performed in triplicate. * p < 0.05, control vs. tricetin; # p < 0.05, 
tricetin vs. Z-VAD-FMK, Z-LEHD-FMK, or Z-IETD-FMK plus tricetin. 

  

Figure 3. Tricetin induces caspase-dependent apoptotic cell death in HL-60 cells. (A) Expression levels
of cleaved caspases-3, -8, and -9, and poly(ADP-ribose) polymerase (PARP) were assessed by a Western
blot analysis after treatment with 80 µM tricetin for indicated time points; (B) Activated caspase-8, -9,
and -3, and cleaved PARP protein expressions were upregulated in a concentration-dependent fashion
after treatment of HL-60 cells with various concentrations of tricetin (0~80 µM) for 8 h; (C) Quantitative
results of cleaved caspase-3, -8, and -9, and PARP protein levels, which were adjusted to the β-actin
protein level and expressed as multiples of induction beyond each respective control. Values are
presented as the mean ± SE of three independent experiments. *, #, &, ˆ, $ p < 0.05, compared to the
vehicle control groups; (D) Cells were treated with 40 µM tricetin for 24 h in the presence or absence of
50 µM Z-VAD-FMK, Z-LEHD-FMK, or Z-IETD-FMK. Cell proliferation was determined by an MTS
assay. Data are presented as the mean ± SE of three independent experiments performed in triplicate.
* p < 0.05, control vs. tricetin; # p < 0.05, tricetin vs. Z-VAD-FMK, Z-LEHD-FMK, or Z-IETD-FMK
plus tricetin.



Int. J. Mol. Sci. 2017, 18, 1667 6 of 14

2.4. Mitogen-Activated Protein Kinases Involved in Tricetin-Regulated Apoptotic Cell Death

The MAPK signaling pathway, such as JNK1/2 and/or p38 MAPK, was reported to be participated
in the caspase-mediated apoptotic effect induced by different traditional Chinese herbs in various
cancer types, including AML [21–23]. In contrast, ERK was shown to correlate with the proliferation
and drug resistance of hematopoietic cells [24]. Therefore, we determined whether activation of MAPKs
was affected in tricetin-treated HL-60 cells, and found that tricetin induced activation of JNK1/2
and ERK1/2, but not p38 MAPK in concentration- and time-dependent manners (Figure 4A–C).
Surprisingly, tricetin also induced the formation of cleaved p54 JNK and p52 JNK at 8 h after
the addition of 40 or 80 µM tricetin (Figure 4A,B). To further investigate relationships among
tricetin-induced activation of caspases and MAPKs, HL-60 cells were pretreated with U0126 (an ERK
inhibitor) or JNK-IN-8 (a JNK inhibitor) for 1 h, treated with 40 µM tricetin for another 24 h, and then
analyzed by Western blotting. As shown in Figure 4D JNK-IN-8 and U0126 respectively attenuated and
increased tricetin-induced caspase-8 and -3 activation. Moreover, we found that JNK-IN-8 and U0126
also respectively attenuated and enhanced tricetin-induced inhibition of proliferation (Figure 4E). These
findings suggest that activation of ERK1/2 and JNK1/2 might play opposite roles in tricetin-mediated
caspase activation and cell death in HL-60 cells.
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Figure 4. Role of mitogen-activated protein kinases (MAPKs) in tricetin-induced apoptotic cell death in
HL-60 cells. (A,B) Phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2, p38, and
c-Jun N-terminal kinase (JNK)1/2 were assessed by a Western blot analysis after treatment of HL-60 cells
with 80 µM tricetin for indicated time points (A) or with various concentrations of tricetin (0~80 µM) for
8 h (B,C) Quantitative results of phopho-ERK1/2, p38, and JNK1/2 protein levels, which were adjusted
to the total ERK1/2, p38, and JNK1/2 protein levels and expressed as multiples of induction beyond
each respective control. Values are presented as the mean ± SE of three independent experiments.
*, #, &, $ p < 0.05, compared to the vehicle control groups; (D,E) HL-60 cells were pretreated with or
without 5 µM U0126 or 1 µM JNK-IN-8 for 1 h followed by tricetin (40 µM) treatment for an additional
24 h. Expression levels of cleaved caspases-3, -8, and cell viability were respectively determined by
a Western blot analysis (D, left panel) and a CCK-8 assay (E). Quantitative results of cleaved caspase-3
and -8 protein levels, which were adjusted to the β-actin protein level and expressed as multiples of
induction beyond each respective control (D, right panel). Values represent the mean ± SE of three
independent experiments. * p < 0.05, control vs. tricetin; # p < 0.05, tricetin vs. U0126 or JNK-IN-8
plus tricetin.

2.5. Tricetin-Induced Intracellular Oxidative Stress as an Initial Signal for JNK-Mediated Apoptosis in
HL-60 Cells

A recent report suggested that JNK activation is associated with ROS-induced apoptosis of chronic
myelogenous leukemia cells [25]. In order to test whether tricetin leads to ROS generation in AML cells,
HL-60 cells were treated with tricetin for indicated time points, and cellular ROS were monitored with
H2DCFDA, a fluorescent, redox-sensitive dye. Our results showed that compared to the control group,
treatment of cells with 80 µM tricetin dramatically increased dichlorofluorescein (DCF) fluorescence at
6 and 8 h after treatment (Figure 5A). To further dissect the correlation between ROS production and
JNK activation in tricetin-mediated cell death, the results showed that pretreating HL-60 cells with the
antioxidant, NAC, significantly blocked 40 and 80 µM tricetin-induced JNK activation and cleavage
(Figure 5B) and subsequently reversed tricetin-induced cell death as evidenced from decreases in
tricetin-induced PARP cleavage (Figure 5C), procaspase-9 and -3 hydrolysis (Figure S1), and cell
proliferation inhibition (Figure 5D).
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Figure 5. Tricetin-induced intracellular oxidative stress as an initial signal for c-Jun N-terminal kinase
(JNK)-mediated apoptosis in HL-60 cells. (A) HL-60 cells were treated with 80 µM tricetin for the
indicated time, and then the total reactive oxygen species (ROS) level was measured by H2DCF-DA
staining under a fluorescence microscope. Original magnification, 200×; (B,C) HL-60 cells were
pretreated with or without 10 mM N-acetylcysteine (NAC) for 1 h followed by treatment with 40 or
80 µM tricetin for 8 h; levels of JNK1/2, p-JNK1/2, cleaved poly(ADP ribose) polymerase (PARP),
and β-actin were detected by a Western blot analysis; (D) HL-60 cells were pretreated with or without
10 mM NAC for 1 h followed by treatment with 40 or 80 µM tricetin for 12 h Trypan blue exclusion
assay was used to quantify the cell viability change in each group. Values represent the mean ± SE of
three independent experiments. * p < 0.05, control vs. tricetin; # p < 0.05, tricetin vs. NAC plus tricetin;
(E) Proposed signal transduction pathways by which tricetin induces apoptosis of acute myeloid
leukemias (AML) cells. The antileukemic activity of tricetin was attributed to its apoptosis induction by
increasing ROS production and further inducing activation of JNK and caspases-8, -9, and -3. The p54
JNK cleavage was also induced by tricetin-mediated ROS upregulation. Black arrows indicate induced
effects and red t-bar indicate inhibitory effects.

3. Discussion

AML is a non-solid tumor with high mortality rates. At present, conventional chemotherapy has
favorable outcomes; however, the response is limited by progressive resistance and a number of side
effects [2]. There is great interest in therapy with drugs of plant origins, because traditional medicines
have less toxicity and fewer side effects [13]. Our current study showed that tricetin, a dietary flavonoid
in Myrtaceae pollen and Eucalyptus honey, reduced HL-60 leukemic cell growth through increasing
endogenous ROS production, which is the initial signal to activate JNK1/2-mediated cell apoptosis.
Therefore, tricetin could have physiologic value taken in a natural food form.

The enhancement of ROS production has long been associated with the apoptotic response
induced by several anticancer agents [26]. Targeting ROS levels could be a novel approach for AML
treatment since ROS levels are higher in malignant cells than in non-malignant cells [27]. Furthermore,
increasing oxidative stress is emerging as a promising therapy for leukemia [28]. For example, our
previous study showed that quercetin induced cell death of HL-60 cells in vitro and in vivo through
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induction of intracellular oxidative stress [29]. Moreover, several studies also showed that clinically
achievable concentrations (1~2 µM) of a chemotherapeutic drug, arsenic trioxide (As2O3), induced
apoptosis through an ROS-dependent pathway in acute promyelocytic leukemia (APL or AML M3) [30].
Accumulation of intracellular ROS by quercetin or As2O3 led to dissipation of the mitochondrial
membrane potential (MMP), release of cytochrome c from mitochondria, subsequent activation of
caspase-9, and ultimately apoptotic cell death [31,32]. Our study showed that tricetin can induce
caspase-9-mediated cell death, but the effect of tricetin on the MMP in AML cells will be investigated in
our future work. Recently, flavonoids isolated from grape or Citrus paradisi Macfadyen were reported
to enhance the antileukemic activity of As2O3 [33,34]. In addition, several mild ROS generators
were also reported to facilitate As2O3-induced apoptosis of different types of cancer cells as well as
As2O3-resistant leukemic cell lines [28]. The therapeutic potential of tricetin combined with As2O3 in
AML treatment will also be further investigated.

Chemotherapeutic resistance and relapse remain major challenges in treating AML. Previous
reports indicated that JNK activation is the critical step for the chemotherapy drug, anthracycline,
to trigger apoptosis in AML, and a JNK-activation defect confers chemoresistance in AML [18].
Mitochondrial release of ROS upon different apoptotic stimulations can lead to activation of JNK [25,35].
In response to ROS, JNKs induce the phosphorylation and inactivation of antiapoptotic proteins
such as B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-XL) [35]. Previous reports
indicated that Bcl-2 and Bcl-XL can antagonize ROS generation and protect cells from ROS-mediated
apoptosis [36]. In addition, JNK was also reported to modify the composition of the Bcl-2-associated
X (Bax)/Bcl-2 complex through increasing the expression of Bax, leading to formation of Bax
homodimers resulting in dissipation of mitochondrial membrane potential [37]. Actually, Hsu et
al. have demonstrated that tricetin-induced liver cancer cells apoptosis is associated with Bcl-2 family
members-regulated mitochondrial pathway, which is mediated by ROS generation and, subsequently,
JNK activation [8]. Our current study demonstrated that tricetin induced leukemic cell death
through inducing ROS-mediated JNK activation. The effect of tricetin on Bcl-2 family members
and determining whether tricetin can sensitize anthracycline-induced cell death in AML through JNK
activity modulation are worthy of evaluating in future work. In addition to JNK activation, we also
observed the conversion of p52 from p54 JNK after tricetin treatment in AML cells. This finding is in
line with previous reports in MOLT-4 and U937 leukemia cells which showed X-irradiation or heat
treatment can induce caspase-3-mediated cleavage of p54 JNK, and this JNK cleaved form still harbors
its kinase activity [38].

In addition to JNK, our study also showed that tricetin can induce ROS-mediated ERK activation
in HL-60 cells (Figure S2). ERK activation was reported to be a key pathway that protects cancer
cells from apoptosis including in leukemia [39]. Previous reports indicated that ERK1/2 can promote
leukemic cell survival by enhancing the activity of antiapoptotic proteins including Bcl-2, Bcl-XL,
Mcl-1, inhibitor of apoptosis protein (IAP), and repressing the activity or expression of proapoptotic
proteins, such as Bad, Bim, and caspase-9 [39,40]. Recently, evidence has also shown that ERK1/2
can have proapoptotic functions in response to different stimuli such as etoposide, bufalin, shikonin,
doxorubicin, and apigenin in different cancer types [40]. Although our present results indicated that
tricetin (40 and 80 µM) can induce apoptosis of HL-60 cells, results showed that ERK can also be
activated instead of inhibited by higher concentrations (40 and 80 µM) of tricetin. Moreover, inhibition
of the ERK pathway by a specific inhibitor further enhanced the apoptosis-inducing effect of tricetin in
AML cells. Consistent results from previous studies also indicated that an ERK inhibitor enhances
docetaxel- and DAPT-induced apoptosis in androgen-independent prostate cancer and gastric cancer,
respectively [41,42]. Taken together, we propose that ERK activation induced by higher concentrations
of tricetin may have been due to a cell-derived protective effect against the toxic effects of tricetin.
According to these findings, we suggest that a combination of tricetin and an ERK inhibitor may be a
good strategy for preventing the growth of AML cells.
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In addition to MAPKs, a breast cancer resistance protein (BCRP/ABCG2) was reported to be
overexpressed by stem cells in leukemias, potentially contributing to their resistance to eradication
by chemotherapy or targeted therapies and to be associated with a poor response to conventional
chemotherapy and increased risk of relapse [43]. Recently, tricetin was identified as a novel
flavonoid ABCG2 inhibitor [44], but the effect of tricetin on the stemness of leukemia should be
further investigated.

4. Materials and Methods

4.1. Materials

Tricetin was purchased from Extrasynthese (Genay, France). An 80-mM stock solution of tricetin
was made in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO, USA) and stored at −20 ◦C.
The final concentration of DMSO for all treatments was <0.5%. 2′,7′-Dichlorofluorescein diacetate
(DCFDA), N-acetylcysteine (NAC), z-IETD-FMK (a caspase-8 inhibitor), zLEHD-FMK (a caspase-9
inhibitor), and a general inhibitor of caspases (zVAD-FMK) were purchased from Sigma-Aldrich.
Antibodies against poly(ADP-ribose) polymerase (PARP), phosphorylated (p)-c-Jun N-terminal kinase
(JNK), JNK1/2, p-extracellular signal-regulated kinase (ERK)1/2, caspase-9, caspase-3, and caspase-8
were purchased from Cell Signaling Technology (Beverly, MA, USA). Anti-p-p38, p38, and β-actin
antibodies were obtained from BD Biosciences (San Jose, CA, USA).

4.2. Cell Culture

The human MV4-11, HL-60, U937, and THP-1 AML cell lines were purchased from American Type
Culture Collection (Manassas, VA, USA). All cell lines were cultured in RPMI 1640 medium supplemented
with 10% heat-inactivated fetal bovine serum (FBS; Gibco, Grand Island, NY, USA), 0.1 mM nonessential
amino acids, 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin.

4.3. In Vitro Cytotoxicity Assay

Four AML cells (MV4-11, HL-60, U937, and THP-1) were cultured in 96-well plates containing
complete media and treated with different concentrations of tricetin (0, 20, 40, 80, and 160 µM) for
24 h, and cell viabilities were examined using a Cell Counting Kit-8 (CCK-8) (Sigma-Aldrich) or
MTS (Promega, Madison, WI, USA) assay. The absorbance (A) was read at 450 nm (CCK-8 assay) or
490 nm (MTS assay) using an enzyme-linked immunosorbent assay (ELISA) reader (MQX200; Bio-Tek
Instruments, Winooski, VT, USA). The cell viability rate (multiple) was analyzed by the formula:
A450 or 490, tricetin/A450 or 490, vehicle.

4.4. In Vitro Cell Viability Assay

The effect of tricetin on the viability of HL-60 cells was determined by a trypan blue dye exclusion
assay. Briefly, the HL-60 cells were plated at a density of 5 × 103 in 96-well plates containing complete
media and treated with tricetin, or tricetin combined NAC. After incubation for indicated time points,
cells were collected and an aliquot of cell suspension was mixed with an equal volume of trypan blue
and cells were counted under the microscope.

4.5. Flow Cytometric Analysis of DNA Contents

HL-60 cells (2 × 106/mL) were treated with vehicle or tricetin (0, 20, 40, and 80 µM) for 24 h and
then cells were collected and fixed by 70% ethanol. Next, cells were incubated with propidium iodide
(PI) buffer (4 µg/mL PI, 0.5 mg/mL RNase A, and 1% Triton X-100 in phosphate-buffered saline (PBS))
for 30 min at 37 ◦C in the dark followed by filtration through a 40-µm nylon filter (Falcon, San Jose,
CA, USA). The cell cycle distribution was analyzed for 104 collected cells by a FACS Vantage flow
cytometer that uses the Cellquest acquisition and analysis program (Becton-Dickinson FACS Calibur,
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San Jose, CA, USA). The proportion of nuclei in each phase of the cell cycle was determined, and
apoptotic cells with hypodiploid DNA peak were catched in the sub-G1 region.

4.6. 4,6-Diamidino-2-phenylindole (DAPI) Staining

Morphological changes in the nuclear chromatin of cells undergoing apoptosis were visualized
following DNA staining using the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI, Sigma).
After incubation for 24 h with tricetin, HL-60 cells were fixed with methanol, stained with the DAPI
solution for 10 min at room temperature, and examined under a fluorescence microscope. Apoptotic
cells exhibited morphological features of apoptosis including nuclear fragmentation and chromatin
condensation. The percentage of apoptotic cells were calculated as the ratio of apoptotic cells to total
cells counted.

4.7. Apoptosis Assays

Apoptotic cell death was determined by Annexin-V-fluorescein isothiocyanate (FITC)/PI double
staining, using an FITC-labeled Annexin-V/PI Apoptosis Detection kit (BD Biosciences, San Jose, CA,
USA) following the manufacturer’s guidelines. HL-60 cells were exposed to tricetin at the indicated
concentration for 24 h, cells were then washed with PBS following trypsinization, resuspended
in 100 µL of binding buffer (10 mM HEPES/NaOH, 140 mM NaCl, and 2.5 mM CaCl2 at pH 7.4)
and stained with 5 µL of FITC-conjugated Annexin-V and 5 µL of PI (50 µg/mL) for 30 min at
room temperature, and then 400 µL of binding buffer was added. Apoptotic cells were analyzed by
flow cytometry with a FACScan system flow cytometric analysis. Data acquisition and analysis
were performed in a Becton-Dickinson FACSCalibur flow cytometer using CellQuest software
(BD Biosciences).

4.8. Preparation of Total Cell Extracts and Western Blot Analysis

Cell lysates were prepared as previously described. The protein content was determined with the
Bio-Rad protein assay reagent using bovine serum albumin as a standard. Equal amounts of protein
extracts (10~50 µg) were boiled in Laemmli sample buffer, separated on sodium dodecylsulfate (SDS)
polyacrylamide gels, electrophoretically transferred to polyvinylidene fluoride membranes (Millipore,
Belford, MA, USA) and incubated with the indicated primary antibodies at 4 ◦C overnight. Blots were
then further incubated with a horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 h
at room temperature. Signals were detected through enhanced chemiluminescence (ECL) Western
blotting detection reagents (Millipore, Billerica, MA, USA).

4.9. Measurement of ROS Production

HL-60 cells were treated with tricetin (80 µM) for 6 and 8 h; then ROS production was detected
by staining with an ROS probe (5 µM DCFDA) in RPMI 1640 medium for 30 min. Cells were then
washed with PBS or medium and ROS production of DCFDA-preloaded cells were captured with
a fluorescence microscope (Nikon Eclipse TE 300, Tokyo, Japan).

4.10. Statistical Analysis

Data points represent the mean ± standard error (SE). We performed statistical analyses with
Student t test was used to compare data between two groups. p values of <0.05 were considered
statistically significant.

5. Conclusions

In conclusion, we first report that tricetin possesses an antileukemic effect on AML cells, and that
phenomenon stems from induction of intracellular oxidative stress, which initiates a signal leading to
activation of JNK and induces caspase-dependent apoptosis; the mechanism is schematically illustrated
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in Figure 5E. In addition, we also found that a combination of tricetin and an ERK inhibitor presented a
better apoptosis-inducing effect on AML cells than tricetin treatment alone. Our discovery of this novel
mechanism of tricetin not only gives further insights into its anticancer potential against hematological
malignancies, but also contributes to developing tricetin as a chemopreventive or chemotherapeutic
agent in managing human AML.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/8/1667/s1.
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