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Abstract: The very long chain fatty acid elongase (ELOVL) plays an important role in the synthesis of
long-chain polyunsaturated fatty acids (LCPUFA). Previous studies suggest that chicken could be an
alternate source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In this study, we
detected that ELOVL5, which plays a key role in the biosynthesis of omega-3 (n-3) and omega-6 (n-6)
polyunsaturated fatty acids (PUFA), was highly expressed in the liver of laying hens and increased
rapidly after sexual maturity. Bioinformatic analysis revealed ELOVL fatty acid elongase 5 (ELOVL5)
gene as a putative target of miR-218-5p, miR-19a-3p, miR-19b-3p, miR-30a-5p, miR-30b-5p, and
miR-30e-5p. We demonstrated estrogen downregulated microRNA (miRNA), and that ELOVL5 is a
direct target of miR-218-5p, which was located in intron 14 of the Slit guidance ligand 2 (SLIT2) gene
and co-expressed with the host gene. Overall, estrogen enhanced hepatic synthesis of LCPUFA by
functioning as a negative regulator of miRNA thereby augmenting the expression of these miRNA
target genes, especially ELOVL5, which plays a key role in the biosynthesis of n-3 and n-6 LCPUFA.
This study provides a novel model for the use of estrogen in the poultry industry as an inducer of
ELOVL5 expression to enhance hepatic n-3 and n-6 LCPUFA synthesis at the post-transcriptional level.
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1. Introduction

Fish and fish oil are the most common dietary sources of omega-3 (n-3) long-chain polyunsaturated
fatty acids (LCPUFA), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) [1–3].
The beneficial health effects of EPA and DHA have driven human consumption of marine fauna to
an extent where there are concerns about the future ability of aquaculture to meet this demand [4,5].
Recent studies have suggested that chicken could be able to synthesize more docosapentaenoic acid
(DPA) than other species through 24:5n-3, the precursor of DHA [1,4,6]. The enzymatic elongation of
very long-chain fatty acids (ELOVL5), which is encoded as ELOVL5, plays a key role in the biosynthesis
of n-3 and omega-6 (n-6) polyunsaturated fatty acids (PUFA) [7]. Different from mammals and most
fish, chicken ELOVL5 can elongate DPA to 24:5n-3 [1]. Previous studies suggested that compared
with other species, the chicken ELOVL5 enzyme has a five-fold conversion rate from DPA (22:5n-3) to
24:5n-3, which is the penultimate precursor of DHA [1,6]. The fatty acids (FA) synthesis in birds occurs
mainly in the liver [8]. In addition, the liver plays a central role in whole-body lipid metabolism, which
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encompasses the synthesis and modification of fatty acids by way of desaturation, elongation, and
oxidation [7]. These key enzymes of fatty acid metabolism are highly expressed in the liver, and their
activities and expression are regulated during development by diet, hormones, and other factors, in
mature animals [9]. Many studies have focused on the dietary conversion of α-linolenic acid (ALA)
and the substrate specificity of ELOVL5 in the synthesis of n–3 LCPUFA [1,4,6,10]. However, little focus
has been placed on the regulatory function of other factors such as hormones and non-coding RNAs.

Estrogen is vitally important for sexual maturity and the development of the female reproductive
system [11,12]. It is generally believed that the estrogen level of hens rises significantly during the
egg-laying period, as do many of the genes and their products involved in hepatic lipid and fatty
acid metabolism in liver tissue [13–15]. Our previous liver transcriptome research in laying hens
showed that ELOVL5 increased by 1.98-fold in peak-laying-period hens (30 weeks old) compared with
pre-laying-period hens (20 weeks old) [16]. An increasing number of studies have demonstrated that
miRNA serve as important regulators in lipid and fatty acid metabolism [11–14]. Our recent study
revealed several differently expressed miRNA in liver between pre- and peak-laying-period hens,
which suggested that hepatic miRNA might play a role in the regulation of hepatic lipid and fatty acid
synthesis [17].

To investigate the effect of estradiol on the synthesis of long-chain polyunsaturated fatty acids,
we focused on ELOVL5, which plays a key role in the biosynthesis of PUFA. In the present study, we
found that ELOVL5 was highly expressed in liver tissue and increased rapidly after sexual maturity.
Combined with our previous study, we found six miRNA were significantly downregulated in
peak-laying-period hens and primary hepatocytes treated with estrogen. Furthermore, we observed
that miR-218-5p could directly target ELOVL5. Interestingly, we also found that miRNA-218-5p was
co-expressed with the host gene SLIT2, which was suppressed by estrogen. Our results revealed
that estrogen promotes the synthesis of LCPUFA indirectly through up-regulation of ELOVL5 in the
liver of laying hens. These findings provide a novel mechanism whereby estradiol increased ELOVL5
expression to accelerate LCPUFA synthesis in the liver of laying hens.

2. Results

2.1. ELOVL5 Expression Rapidly Increased in Liver Tissue During Peak-Laying Stages

To detect the tissue-specific expression patterns of ELOVL5 mRNA in chickens, tissue including
liver, heart, lung, kidney, duodenum, ovary, pectorals, and abdominal fat from 30-week-old chickens
were analyzed using qPCR. Our results showed that ELOVL5 was highly expressed in liver and kidney
tissues (Figure 1A). To investigate the expression patterns of ELOVL5 in chicken liver, both mRNA and
the protein level of ELOVL5 at different developmental stages were analyzed. The results showed that
ELOVL5 was greatly increased after sexual maturity (Figure 1B,C) (p < 0.05).
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Figure 1. ELOVL5 was highly expressed in liver tissue and increased rapidly during the peak-laying 
period. (A) Tissue expression profile of ELOVL5 in laying hens; (B) Expression patterns of chicken 
ELOVL5 in liver at different developmental stages. β-Actin was used as the referenced gene to estimate 
mRNA. Data are presented as Mean ± SEM (n = 6 for each group), * p < 0.05, ** p < 0.01; (C) Western 
blotting of ELOVL5 using equal amounts of protein extracted from livers of chickens with different 
ages. 

2.2. Computational Prediction of the MicroRNAs Targeting ELOVL5 

By sequence comparison analysis, no putative estrogen receptor binding site upstream of the 
ELOVL5 promoter was found in the present study(data not shown). To explore the underlying 
mechanism coordinated by estrogen, we focused on hepatic miRNAs that might target ELOVL5 
genes, and hence might affect the metabolism of fatty acids. Three miRNA target prediction tools, 
TargetScan, miRDB, and PicTar were used to search for the miRNA targeting ELOVL5. Two miRNA 
(miR-124a-3p and miR-124b) and four miRNA clusters (miR-19-3p, miR-218-5p, miR-124-3p, and 
miR-30-5p) shared by three databases were found to be potentially combine the 3′UTR of ELOVL5, 
respectively (Figures 2A,B and S3). However, neither miR-124a-3p nor miR-124b were differentially 
expressed miRNA in our previous miRNA experiment [17]. To further classify and analyze the 
potential functions of these downregulated miRNA in peak laying period, we used DIANA mirPath 
to investigate the classification and their target pathways (Figure 2C). Among these pathways, the 
biosynthesis of unsaturated fatty acids (p < 0.01) and fatty acid metabolism (p < 0.05) signaling 
pathways were found to be involved in the target pathways (Figure 2C). According to our previous 
study [17], 46 differentially downregulated miRNA (|fold-change| > 1.5, FDR < 0.05) were re-
analyzed to identify miRNA shared by the potential binding sites in ELOVL5 (Table S1 and Figure 
2B). Three miRNA clusters (miR-218-5p, miR-19-3p, and miR-30-5p) from 46 differentially expressed 
miRNA were found to potentially bind to the 3′UTR of ELOVL5 in the present study (Figure 2B). 
  

Figure 1. ELOVL5 was highly expressed in liver tissue and increased rapidly during the peak-laying
period. (A) Tissue expression profile of ELOVL5 in laying hens; (B) Expression patterns of chicken
ELOVL5 in liver at different developmental stages. β-Actin was used as the referenced gene to estimate
mRNA. Data are presented as Mean ± SEM (n = 6 for each group), * p < 0.05, ** p < 0.01; (C) Western
blotting of ELOVL5 using equal amounts of protein extracted from livers of chickens with different ages.

2.2. Computational Prediction of the MicroRNAs Targeting ELOVL5

By sequence comparison analysis, no putative estrogen receptor binding site upstream of the
ELOVL5 promoter was found in the present study(data not shown). To explore the underlying
mechanism coordinated by estrogen, we focused on hepatic miRNAs that might target ELOVL5 genes,
and hence might affect the metabolism of fatty acids. Three miRNA target prediction tools, TargetScan,
miRDB, and PicTar were used to search for the miRNA targeting ELOVL5. Two miRNA (miR-124a-3p
and miR-124b) and four miRNA clusters (miR-19-3p, miR-218-5p, miR-124-3p, and miR-30-5p)
shared by three databases were found to be potentially combine the 3′UTR of ELOVL5, respectively
(Figure 2A,B and Figure S3). However, neither miR-124a-3p nor miR-124b were differentially expressed
miRNA in our previous miRNA experiment [17]. To further classify and analyze the potential functions
of these downregulated miRNA in peak laying period, we used DIANA mirPath to investigate the
classification and their target pathways (Figure 2C). Among these pathways, the biosynthesis of
unsaturated fatty acids (p < 0.01) and fatty acid metabolism (p < 0.05) signaling pathways were found
to be involved in the target pathways (Figure 2C). According to our previous study [17], 46 differentially
downregulated miRNA (|fold-change| > 1.5, FDR < 0.05) were re-analyzed to identify miRNA shared
by the potential binding sites in ELOVL5 (Table S1 and Figure 2B). Three miRNA clusters (miR-218-5p,
miR-19-3p, and miR-30-5p) from 46 differentially expressed miRNA were found to potentially bind to
the 3′UTR of ELOVL5 in the present study (Figure 2B).
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Figure 2. Integrated prediction of the miRNA targeted ELOVL5. (A) The binding sites between 
miRNA and 3′UTR. CDS, Coding Sequence; UTR, Untranslated Region; (B) TargetScan, miRDB and 
PicTar software analysis of miRNA that potentially target ELOVL5. The intersection of our previous 
miRNA data [17] and the predicted miRNA; Intronic miRNA is in bold. (C) Heat map of putative 
pathways of candidate miRNA by DIANA miRPath analysis. 

  

Figure 2. Integrated prediction of the miRNA targeted ELOVL5. (A) The binding sites between miRNA
and 3′UTR. CDS, Coding Sequence; UTR, Untranslated Region; (B) TargetScan, miRDB and PicTar
software analysis of miRNA that potentially target ELOVL5. The intersection of our previous miRNA
data [17] and the predicted miRNA; Intronic miRNA is in bold. (C) Heat map of putative pathways of
candidate miRNA by DIANA miRPath analysis.
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2.3. Estrogen Suppression of miRNA Expression to Upregulate the ELOVL5 Expression in
Chicken Hepatocytes

In order to understand the effect of estrogen on miRNA expression, miRNA expression level
was measured by qPCR in hepatocytes incubated for 24 h with 100 nM 17 β-estradiol. As shown
in Figure 3A, miR-218-5p, miR-30a-5p, miR-30b-5p, miR-30e-5p, miR-19a-3p, and miR-19b-3p were
significantly downregulated in 17 β-estradiol treated groups (p < 0.01). Furthermore, a marked
downregulation of ELOVL5 mRNA and protein expression level were observed by overexpressing
these miRNA in chicken primary hepatocytes (Figure 3B,C) (p < 0.01).
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Figure 3. Estrogen suppresses miRNA expression to upregulate the expression of ELOVL5 in chicken
hepatocytes. (A) Effect of estrogen on miRNA expression in hepatocytes. miRNA expression levels
were detected by qPCR in hepatocytes incubated for 24 h with 100 nM 17 β-estradiol. U6 was used
as the reference gene to estimate miRNA relative expression. Data represent Mean ± SEM (n = 6)
of miRNA expression relative to miR-218-5p level in vehicle group, set to a value of 1. * p < 0.05;
** p < 0.01; (B) miRNA suppresses the expression of ELOVL5 in hepatocytes. Mimic miRNA were used
to overexpress miRNA (miR-218-5p, miR-19a-3p, miR-19b-3p, miR-30a-5p, miR-30b-5p, miR-30e-5p) in
hepatocytes, with negative mimics as control group (n = 3). RNA were extracted 48 h later, and levels
were detected by qPCR and western blot. * p < 0.05; ** p < 0.01; (C) Immunoblot analysis of ELOVL5 in
hepatocytes treated with control and miRNA mimics.
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2.4. Verification of the Interaction between miR-218-5p and ELOVL5

The putative miR-218-5p-binding sites at ELOVL5 3′UTR are evolutionarily conserved across
species (Figure 4A). To evaluate the possibility that ELOVL5 expression is negatively regulated by
candidate miRNA under normal physiological conditions, miR-218-5p and ELOVL5 mRNA in chicken
liver at different developmental stages were detected by qPCR. The results showed that the expression
of miR-218-5p increased before 20 weeks of age and decreased after 20 weeks of age, whereas that of
ELOVL5 mRNA tended to have the opposite change (Figure 4B). The correlation coefficient between
miR-218-5p and ELOVL5 mRNA in chicken liver at different developmental stages was −0.906
(p = 0.034) in the present study (data not shown). In addition, the expression level of miR-218-5p and
ELOVL5 were measured in 16 liver tissue samples at peak- and later laying-period (35–55 weeks old).
Results indicated that miR-218-5p was inversely correlated with ELOVL5 in laying hens (r = −0.97,
p < 0.001) (Figure 4C). To verify the direct binding between miR-218-5p and ELOVL5, a 3′UTR fragment
with seed region binding site was inserted into the 3′UTR of a Renilla luciferase (Rluc) gene of the
psiCHECK-2 vector (Figure 4A). Luciferase assay revealed that miR-218-5p significantly reduced
the Rluc activity of the wild-type ELOVL5 reporter vector (ELOVL5-UTR-WT) in DF1 cells, whereas
point mutations of target sites bound by the seed region of miR-218-5p in the 3′UTR of ELOVL5
did not disturb luciferase activity (Figure 4D). Overexpression of miR-218-5p in chicken hepatocytes
significantly decreased ELOVL5 mRNA and protein level (p < 0.05) (Figure 3A,B and Figure 4E). In
contrast, miR-218-5p-inhibitor increased ELOVL5 expression at 12, 24, and 48 h (Figure 4E). These data
suggest the possibility that miR-218-5p negatively regulates the expression of ELOVL5 in chicken liver.
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Figure 4. Identification of ELOVL5 as a direct target of miR-218-5p. (A) The putative miR-218-5p
binding site at ELOVL5 3′UTR (red) is evolutionarily conserved across species. The shaded portion
represents the seed region of miR-218-5p; (B) Expression levels of miR-218-5p (red) and ELOVL5 (black)
mRNA in chicken liver at different developmental stages. The former was normalized to U6, while the
latter to β-Actin. Data are presented as Mean± SEM (n = 3 for each group); (C) The correlation between
expression level of miR-218-5p and ELOVL5 in 16 liver tissue samples; (D) miR-218-5p suppresses
ELOVL5 translation. pcDNA-miR-218 was transfected into DF1 cells along with ELOVL5-3′UTR-WT
but not ELOVL5-3′UTR-Mut; (E) Negative control inhibitor (NC inhibitor) or miR-218-5p inhibitor was
transfected into chicken primary hepatocytes. After 12, 24 and 48 h, qPCR assays were performed to
determine the expression level of ELOVL5. RNA were extracted 48 h later, and levels were accessed by
qPCR. The data represent Mean ± SEM (n = 6). * p < 0.05; ** p < 0.01.
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2.5. Host Gene SLIT2 Inhibition by Estrogen and Co-Expressed with miR-218-5p

miR-218-5p was found to be encoded from the intron 14 of slit guidance ligand 2 (SLIT2) gene in
the chicken genome (Figure 5A). To investigate whether miR-218-5p was decreased due to the host
gene SLIT2, resulting in the upregulation of ELOVL5 after 20 weeks of age in the liver of laying hens,
miR-218-5p and ELOVL5 mRNA in chicken liver at different developmental stages were detected using
qPCR. The results showed that the expression levels of SLIT2 mRNA increased from 10 to 20 weeks
of age while it decreased from 20 to 35 weeks of age. This trend was consistent with expression
of miR-218-5p in the liver from 10- to 35-week-old chickens (Figure 5B). The correlation coefficient
between miR-218-5p and SLIT2 mRNA expression in chicken liver at different developmental stages
was 0.83 (p < 0.05) (data not shown). This result suggests that the expressions of miR-218-5p and
SLIT2 mRNA are co-regulated in chicken liver at different developmental stages. To verify whether the
expression of SLIT2 mRNA was regulated by estrogen, the expression level of SLIT2 and miR-218-5p
were investigated in the livers and primary hepatocytes of chickens treated with 17 β-estradiol. The
results showed that the expression of SLIT2 and miR-218-5p decreased significantly with the increase
of estradiol concentration in vitro and in vivo (p < 0.01 and p < 0.05) (Figure 5C–H). In addition,
the ELOVL5 protein tended to increase in the liver treated with 17 β-estradiol (Figure 5I).
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Figure 5. Intronic miR-218 is co-expressed with host gene SLIT2, which is downregulated by estrogen.
(A) Chicken SLIT2 harbors a related intronic miR-218-1. The sequences encoding the pre-miRNA are
shown, with the mature miRNA sequences highlighted in red; (B) The expression levels of miR-218-5p
and SLIT2 mRNA in chicken liver at different developmental stages; (C,D) qPCR analysis and Western
blot analysis of host gene SLI T2 mRNA (C) and protein expression (D) in chicken liver. The birds were
injected intramuscularly with 0.5, 1.0 and 2.0 mg of 17 β-estradiol (dissolved in olive oil) per kg of
body weight, respectively. Vehicle group was injected intramuscularly with the same amount of olive
oil; (E,F) qPCR analysis and Western blot analysis of host gene SLIT2 mRNA (Panel E) and protein (F)
expression in primary hepatocytes incubated for 24 h with 25, 50, 100 nM 17 β-estradiol, respectively.
Vehicle group was treated with 0.1% ethanol; (G,H) The expression changes of miR-218-5p effected
by 17 β-estradiol in the liver tissue measured by qPCR (G) and semi-quantitative (H); (I) Immunoblot
analysis of ELOVL5 expression in liver treated with different concentrations of estrogen in vivo. SLIT2
and miR-218-5p expression levels are normalized to β-Actin and U6, respectively. Data represent
Mean ± SEM (n = 6). * p < 0.05; ** p < 0.01.
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2.6. Estrogen Impacts on LCPUFA Synthesis in Chicken Liver

To further test whether hepatic LCPUFA synthesis was enhanced by estrogen in vitro, fatty
acid analysis of chicken primary hepatocytes treated with 17 β-estradiol was performed. Our results
revealed an increasing trend in n-3 and n-6 LCPUFA and a marked increase in C18:0, C20:4n-6, C22:6n-3
(p < 0.01) and C22:5n-3 (p < 0.05), respectively (Figure 6).
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3. Discussion

The effect of dietary combination of fatty acids on chicken muscle tissue (n-3) long-chain PUFA
(LCPUFA) has been investigated in many studies [18–20]. The chicken elongase enzymes are unlike
any species studied to date because ELOVL5 can elongate DPA [1,4,6], whereas mammalian ELOVL5
enzymes are unable to elongate DPA and most fish ELOVL5 enzymes have low or undetectable activity
toward DPA. In other words, chicken could be a dietary source of EPA and DHA instead of, or in
addition to fish.

The elongase of ELOVL is rate limiting for long chain fatty acid (LCFA) synthesis [6]. It plays an
important role in regulating lipid biosynthesis, fatty acid metabolism and some metabolic diseases.
The de novo synthesis of fatty acids (FA) in the liver of poultry plays an important role in the deposition
of fatty acids in muscle tissue and yolk. Exogenous nutrients are the main substrates for FA de novo
synthesis, and FA synthesis in birds occurs mainly in the liver. Gregory et al. [1] found that the
relative abundance of chicken ELOVL5 is greater than that in rats. In addition, the duck and turkey
ELOVL5 enzyme activities are different from the chicken ELOVL5, which can utilize DPA to synthesize
24:5n-3 [4]. A previous study suggested that the duck and turkey ELOVL5 enzyme activities were
different from the chicken ELOVL5, which has unique DPA to 24:5n-3 activity [1,4]. Further studies
need to be conducted to explore the molecular mechanism behind the ability of chicken ELOVL5 to
elongate DPA to 24:5n-3.

In the present study, we found that ELOVL5 is highly expressed in the liver and kidney of laying
hens, and was significantly increased in peak-laying-period hens (30 weeks old) than in pre-laying
hens (20 weeks old). We focused on estrogen, which has a high concentration in laying hen plasma
comapred to immature pullets [21]. Moreover, for chicken, the liver is one of the main target organs
for estrogen. Further studies focusing on the function of chicken ELOVL5 gene in the lipid metabolism
of the kidney are needed.
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Estrogen is vitally important for sexual maturity and the development of the female reproductive
system [12,22]. Previous studies suggested that the plasma estrogen in hens reaches peak level just
before the onset of the first egg production, then goes down gradually, but still maintains a relatively
higher level than that in the immature pullets for a certain period [11,22,23]. The increased estrogen
correlates with the initiation of estrogen-dependent gene transcription [24]. Estrogen often plays
a physiological role through the estrogen/estrogen responsive element (E2/ER) complex and then
interacts with upstream estrogen response element (ERE) in target genes [25,26]. Very low density
apolipoprotein II (ApoVLDLII), a typical estrogen-dependent gene, is generally used as biological
marker to study the mechanism of estrogen. The expression of ApoVLDLII in chicken liver and
primary hepatocytes were both significantly upregulated after estrogen treatment, which indicated
that estrogen treatment was successfully established as a model in this study (Figure S1 and Figure S2).
However, in the present study, no putative estrogen receptor binding site was found in the upstream
of the ELOVL5 promoter (data not shown). Our results suggested that estrogen might not be the direct
reason for the increased expression of ELOVL5 in peak-laying period hens.

To further investigate the potential mechanism for up-regulation of ELOVL5 in the liver of
peak-laying period hens, we focused on the post-transcriptional regulators, especially miRNA, which
were recently reported to participate in hepatic lipid and fatty acids metabolism [17,27,28]. Our
previous research revealed 47 significantly downregulated miRNAs in the liver of peak-laying-period
hens. Among them, we found the seed sequences of miR-218-5p, miR-19a-3p, miR-19b-3p, miR-30a-5p,
miR-30b-5p, miR-30d-5p, and miR-30e-5p were complementary with the 3′UTR of ELOVL5 (Figure 3A).
The expression level of miR-218-5p was negatively correlated with the mRNA level of ELOVL5 in
the liver at different developmental stages (Pearson correlation r = −0.906, p = 0.034). The double
luciferase reporter assay performed by pcDNA3.1 and psiCheck2 vector system indicated a direct
targeting interaction between miR-218-5p and the 3′UTR of ELOVL5. Overexpression and knockdown
of miR-218-5p in primary hepatocytes significantly up- and down-regulated ELOVL5 expression
at both transcriptional and translational levels. To further investigate whether these miRNA
were downregulated by estrogen, we examined the expression level of these miRNA after treated
with 17 β-estradiol in vitro. The expression level of miR-218-5p, miR-30-5p and miR-19-3p was
downregulated by estrogen. Thus, our results suggested that estrogen can function as a regulator
which suppresses miRNA, thereby protecting ELOVL5 transcripts from miRNA-mediated suppression
in the liver of laying hens.

4. Materials and Methods

4.1. Ethics Statement

All animal experiments were performed in accordance with protocols and guidelines approved by
the Institutional Animal Care and Use Committee (IACUC) of Henan Agricultural University, China
(Permit Number: 11-0085; Date: 06-2011).

4.2. Animals and Tissue Collection

The experimental animals used in this study were Lushi green-shell laying hens obtained from
the Animal Center of Henan Agricultural University. All birds were raised in the same environmental
conditions with ad libitum access to food and water. Forty-eight healthy individuals were sampled
randomly and then slaughtered at the stage of 1, 10, 15, 20, 30, 35 and 36–50 weeks of age. Tissues
including liver, heart, lung, kidney, duodenum, ovary, pectorals and abdominal fat were immediately
collected, snap-frozen in liquid nitrogen, and stored at −80 ◦C until RNA extraction. Healthy female
individuals (n = 32) were sampled randomly at 10 weeks of age and then divided into four groups.
The first group was the control group, the other three groups were experimental groups. 17 β-estradiol
was used at the previously recommended concentrations [22,29]. After three days of conventional
feeding, experimental groups were injected intramuscularly with 0.5, 1.0, and 2.0 mg of 17 β-estradiol
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(E2) (Sigma, St. Louis, MO, USA) (dissolved in olive oil)/kg of body weight, respectively. The birds in
control group were injected intramuscularly with olive oil alone. All the birds were killed after 12 h of
treatment. Livers were collected and stored as mentioned above.

4.3. Cell Culture

Hepatocytes were isolated from chicken embryonic livers using the method described by Fischer
and Marks [30], with some modifications. In brief, livers were removed from 18 or 19-day-old
embryonic chickens in a sterile environment, manually minced washed with D-Hanks solution
(Solarbio, Beijing, China). Then digested by collagenase type II (Solarbio) with gentle shaking at
37 ◦C for 30 min. Dispersed livers were filtered through a 100-, 200- and 500-mesh sieve. After washing
and centrifugation, hepatocytes were obtained using the discontinuous density Percoll gradient
centrifugation technique; the filtered cell suspension was resuspended in William’s E medium (Sigma),
supplemented with 10% fetal calf serum (Gibco, Australia), 0.22% NaHCO3, 100 mg/mL streptomycin
and 100 U/mL penicillin, and counted using a Luna automated cell counter (Biosystems L10001,
Anyang-si, Korea). Hepatcoytes were adjusted to a cell density to 5 × 105 cells/mL. Cell number
and viability were verified by the trypan blue exclusion test. Cells were cultured in 6-well plates
in William’s E medium at 37 ◦C with 5% CO2 in a humidified incubator. Primary hepatocytes were
cultured for approximately 24 h (the cells reached 90% confluence), the cell culture medium was
replaced by serum-free William’s E medium with streptomycin and penicillin, and incubated for 6 h.
The chicken fibroblast cell line (DF-1) was maintained in Dulbecco’s modified Eagle’s (DMEM) medium
with 10% fetal bovine serum (FBS) (Gibco), 100 mg/mL streptomycin and 100 U/mL penicillin at 37 ◦C
with 5% CO2 in a humidified incubator.

4.4. 17 β-Estradiol Treatment and Transfection of Chicken Hepatocytes

To determine the effect of estrogen on the expression of genes in hepatocytes, the cells were
divided into four groups, with six replicates in each group, and treated with 25, 50 and 100 nM of
17 β-estradiol (dissolved in ethanol), respectively. The control group was treated with ethanol alone at
a final concentration of 0.1%. To overexpress or knockdown miR-218-5p, chicken hepatocytes were
seeded at a density of 1.5 × 105 cells/mL in 6-well plates for 24 h and transfected with miR-218-5p
mimics (50 nM) or a negative control (50 nM), miR-218-5p Inhibitors (50 nM) or Inhibitors NC (50 nM)
using the TurboFect Transfection Reagent (Thermo Scientific, Waltham, MA, USA) according to the
manufacturer’s protocol. Chicken hepatocytes were washed with fresh D-Hanks solution after 12 h
incubation, and collected with trizol reagent (Takara, Dalian, China), stored at −80 ◦C until use.

4.5. miRNA Sequencing Data and Bioinformatics Analysis

The miRNA sequencing data from pre- (20-week old) and peak-laying hens’ (30-week old) liver
tissue from Lushi green-shell laying hens was obtained from our previous study [17]. The raw
data are available from the NCBI GEO database (GSE74242). Differentially expressed miRNA with
|log2FC| ≥ 1.5 and with false discovery rate (FDR) < 0.05 were selected as candidate miRNA. The
3′UTR sequences of gallus ELOVL5 were downloaded from the 3′UTR database (http://utrdb.ba.
itb.cnr.it/). The miRNA target prediction software miRDB (http://mirdb.org/miRDB), Targetscan
7.1 (http://www.targetscan.org/) and PicTar (http://pictar.org/) were employed to predict miRNA
binding sites in chicken ELOVL5 3′UTRs. The DIANA-miRPath v3.0 tool [31] (http://snf-515788.vm.
okeanos.grnet.gr/) was used for the miRNA target pathway analyses.

4.6. Vector Construction

The 3′UTR of ELOVL5 containing a miR-218-5p binding site was amplified from chicken genome
DNA by PCR, and cloned into the XhoI–NotI site of the psiCHECK-2 vector (Promega, Maddison, WI,
USA), named psiCHECK2-ELOVL5-3′UTR-WT. A mutant 3′UTR of ELOVL5 reporter was generated
by mutating the seed region of the miR-218-5p binding sites by overlapping extension PCR, named

http://utrdb.ba.itb.cnr.it/
http://utrdb.ba.itb.cnr.it/
http://mirdb.org/miRDB
http://www.targetscan.org/
http://pictar.org/
http://snf-515788.vm.okeanos.grnet.gr/
http://snf-515788.vm.okeanos.grnet.gr/
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psiCHECK2-ELOVL5-3′UTR-Mut (Figure S4). The DNA sequence encoding the miR-218-5p precursor
was PCR amplified from chicken genomic DNA. And the PCR result was cloned into the XhoI–XbaI
site of the pcDNA3.1-EGFP vector (Invitrogen, Carlsbad, CA, USA). To confirm the constructs, bacteria
liquid PCR and sequencing (Sangon Biotech, Shanghai, China) were performed. Plasmid DNA
was extracted and purified by using the EndoFree Maxi Plasmid Kit (TIANGEN, Beijing, China).
Lipofectamine 2000 (Thermo, Shanghai, China) was used for plasmid transfection.

4.7. Luciferase Reporter Assay

To determine if miR-218-5p targets the ELOVL5 3′UTR, DF1 cells were seeded in 12-well plates
in triplicate and transfected with a wild-type or mutant construct in serum-free DMEM medium.
After 6 h of transfection, the medium was changed. Cells were harvested and lysed 48 h after
transfection. Luciferase activity was measured using the Dual-Luciferase® Report Assay System
(Promega, Maddison, WI, USA) on a Fluoroskan Ascent FL instrument (Thermo Fisher Scientifc,
Shanghai, China). Renilla luciferase activity was normalized to Firefly luciferase activity. And this
transfection experiment was performed in triplicate wells and repeated at least three times.

4.8. RNA Isolation and Quantitative Real-Time PCR (qPCR)

Total RNA for tissues and chicken primary hepatocytes was extracted with Trizol reagent
following the manufacturer’s instructions. RNA concentrations and integrity were determined
by NanoDrop 2000 spectrophotometry (Thermo Scientific, Wilmington, DE, USA) and standard
denaturing agarose gel electrophoresis, respectively. RNA was reverse-transcribed using the
PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa) according to the manufacturer’s instructions.
The cDNA was stored at −20 ◦C until use. The primers for qPCR were designed by using online
software Primer3plus (http://primer3.sourceforge.net/webif.php) and synthesized by sangon biotech
Co., Ltd. (Shanghai, China) (Table S2). The expression of miRNA was detected by stem-loop real-time
qPCR. The stem-loop primers used for the qPCR, miRNA mimics, miRNA mimics NC, miRNA
inhibitor and inhibitor NC were purchased from GenePharma Co., Ltd. (Shanghai, China). qPCR was
performed in triplicate using the SYBR® Premix Ex Taq™ II kit (Takara) on a LightCycler® 96 Real-Time
PCR system (Roche, Basel, Switzerland) according to the method of Nolan [32]. Each reaction contained
1 µL cDNA, 5 µL 2× SYBR®Premix Ex Taq™ II (TliRNaseH Plus) (TaKaRa), 0.5 µL each of forward and
reverse primers (10 µM), and 3 µL deionized water. The qPCR amplification procedure for mRNA was
as follows: 95 ◦C for 3 min; 35 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 20 s, and an extension
for 10 min at 72 ◦C. And the qPCR amplification procedure for miRNA was as follows: 95 ◦C for
3 min; 40 cycles of 95 ◦C for 12 s, 60 ◦C for 40 s, 72 ◦C for 30 s, and an extension for 10 min at 72 ◦C.
The mRNA expression levels were normalized to β-Actin. Chicken small nuclear RNA U6 was used as
the internal control for miRNA. The 2 –∆∆Ct method was used to determine the relative mRNA and
miRNA abundance [33]. The sequences of primers for this study are listed in Table S2.

4.9. Western Blot

Total protein was extracted from liver tissue and cells using a RIPA lysis buffer supplemented
with phenylmethyl sulfonyl fluoride (Servicebio, Wuhan, China) (100:1). Protein was separated on
10% SDS-PAGE gels. Separated protein was then transferred to polyvinylidene difluoride (PVDF)
membranes (ISEQ00010, Millipore, Danvers, MA, USA) and membranes were then blocked with nonfat
milk (5%) for 1 h. The membranes were washed with PBST three times (5 min/time) and incubated
with the primary antibodies (Abcam) at 4 ◦C for overnight. Then the membranes were washed three
times using PBST, and incubated with secondary antibody conjugated with HRP (GB23303, Servicebio,
China) for one hour at room temperature. Signals were enhanced by ECL Plus (Solarbio) and images
were captured and analyzed by Photoshop cs 6 and AlphaView 3.0 (Alpha Innotech, San Jose, CA,
USA). β-Actin was used as an internal control.

http://primer3.sourceforge.net/webif.php
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4.10. Fatty Acid Extraction and Analysis

The primary hepatocytes were seeded in 90-mm culture dish (Corning Inc., Corning City, NY,
USA) and incubated with 100 nM of 17 β-estradiol for 12 h. The control group was treated with
ethanol at a final concentration of 0.1%. Two groups with three repeats in each group. The FA
extraction of hepatocytes was analyzed following the method described previously [34–37], with
some modifications. Briefly, the rinsed cell pellet was extracted with 2 mL of sulfuric acid/methanol
(1:40, vol/vol), ultrasound was used to disrupt cells, then in a water bath at 80 ◦C for 60 min. After
saponification and methylation, the reaction solution was store at room temperature for 15 min, and
the total cell lipids were extracted containing 1 mL N-Hexane, 2 mL 0.1 M HCl solution. FAME were
then analyzed by GC using an Agilent 7890 A chromatograph equipped with an FID and a 30-m
fused-silica capillary column (0.32 mm, i.d.) coated with 0.25 µm Omegawax (Supleco, Bellefonte, PA,
USA). Helium was used as carrier gas at a column flow rate of 1 mL/min. The inlet split ratio was set
at 10:1.The oven temperature programming was held at 40 ◦C for 2 min before being raised to 180 ◦C
at 8 ◦C/min for 2 min and finally to 240 ◦C at 3 ◦C/min for up to 10 min. The injector and detector
temperatures were 240 ◦C. The FAME were identified by comparison of their retention times with
authentic standards.

4.11. Statistical Analyses

Statistical analyses of the qPCR results were carried out using SPSS version 19.0 (IBM , Chicago,
IL, USA). One-way ANOVA and repeated measures ANOVA were used for statistical analysis of
relative expression levels, followed by Dunnett’s test. Graphics were drawn using GraphPad Prism 5
software (San Diego, CA, USA). The results were presented as Mean ± SEM of three replicates, p < 0.05
and p < 0.01 were considered statistically significant and highly significant, respectively.

5. Conclusions

In summary, our study suggests important roles of hormones and miRNA in the hepatic synthesis
of LCPUFA, indicating that the increased secretion of estrogen promotes hepatic LCPUFA synthesis by
upregulation of ELOVL5 expression in the laying period. These data provide a novel model in the
poultry industry for the use of estrogen as an inducer of ELOVL5 expression to enhance hepatic n-3
and n-6 LCPUFA synthesis at the post-transcriptional level (Figure 7).
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level in laying hens. Briefly, with the arrival of sexual maturity, the body of blood estrogen content
increased rapidly; estrogen eliminates the suppressive effect of miRNA on the target gene ELOVL5.
Interestingly, estrogen suppresses the host SLIT2 gene thus decreasing the expression of intronic
miR-218-5p to promote hepatic synthesis of long-chain polyunsaturated fatty acids in the liver of laying
hens. VLCFA, very long chain fatty acid.
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Abbreviations

PUFA Polyunsaturated fatty acids
FA Fatty acids
EPA Eicosapentaenoic acid
DPA Docosapentaenoic acid
DHA Docosahexaenoic acid
ELOVL5 Elongase-5
SLIT2 Slit guidance ligand 2
ApoVLDLII Very low density apolipoprotein II
UTR Untranslated regions
WT Wild-type
Mut Mutant-type
E2 Estradiol
ERE Estrogen responsive element
E2/ER complex Estrogen/estrogen responsive element complex
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