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Abstract: Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of
reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic
ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to
the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane
regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity
showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers
in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion
cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2
(BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold
increase in length versus controls was indicated, as well as the enrichment of both total ascorbate
in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of
AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase
(DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and
influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the
suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant
induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA)
treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in
transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control
of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber
cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the
auxin-mediated signaling pathway.
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1. Introduction

Cotton fibers derived from the seed coat as single epidermal cells are the most important materials
in the textile industry. Fiber length and strength are the two most important parameters of fiber
quality, determined by the overlapping process of fast elongation and secondary wall deposition [1].
Owing to its exceptional cell length, cotton fiber provides an excellent model material to study plant
cell elongation development [2,3]. Cell elongation or enlargement is a crucial process in plant growth
and morphogenesis. The plant hormone auxin and its mediated regulators, including reactive oxygen
species (ROS), perform important roles in plant cell elongation and enlargement [4,5].
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The apoplast comprises all of the external space outside of the plasmalemma including the cell
wall and has a crucial role in the control of plant cell growth through regulating the reduction/oxidation
(redox) balance of the cell. In apoplasts, ascorbate (Asc) is the unique small antioxidant molecule
responsible for controlling the redox signaling and associating with ROS directly [6], and it exists in
two forms including ascorbic acid (AsA) (reduced form) and dehydroascorbic acid (DHA) (oxidative
form). DHA generated by apoplastic ascorbate oxidase (AO) was the key oxidative component that
determines the redox status of the apoplast, thereby performing a decisive function in auxin signal
transduction from the outside to the inside of the cell. Accumulated DHA resulted in the inhibition of
auxin signal transmission by affecting the alteration of the membrane channel regulated by apoplastic
transmembrane protein auxin-binding protein (ABP1) [6,7].

Ascorbate oxidase (AO) is the only key enzyme to produce the oxidative molecule DHA in the
apoplast, and plays a significant role in cell elongation and enlargement development with extracellular
localization and high activity in rapidly-expanding tissues [8–10]. In AO-overexpressing tobacco
plants, the shoot elongation was dominantly promoted with a 3.5-fold enrichment of apoplastic DHA
concentration and a 40-fold increase of AO enzyme activity [6]. The promotion or suppression of stem
cell growth was observed in AO sense- or antisense-expressing tobacco plants [11]. The function of AO
is inseparable from auxin; AO expression at the mRNA level was regulated by auxin in pumpkins [8],
and AO can cause a change of auxin receptor sensitivity through the regulation of the oxidation of
apoplasts, and, thus, influences auxin signal transduction [6,7].

Previously, we obtained the promoter sequence of the cotton ascorbate oxidase gene (GhAO1)
and studied the promoter function in tobacco (Nicotiana benthamiana) plants [12]. In this work, we
investigate the important role of the apoplastic GhAO1 gene on cell growth in cultured tobacco bright
yellow-2 (BY-2) cells. GhAO1 protein was localized in the cell wall and GhAO1 was dominantly
expressed in fiber elongating stages both at mRNA and protein levels. In GhAO1-overexpressing
cultured tobacco BY-2 cells, cell growth was significantly promoted with accumulations of DHA and
H2O2 in the apoplast, as well as an increase in apoplastic AO and monodehydroascorbate reductase
(MDAR) enzyme activities. NtAO expression was enhanced or suppressed in wild type (WT) or
GhAO1-overexpressing BY-2 cells under indole-3-acetic acid (IAA) treatment, respectively. We conclude
that GhAO1 may participate in fiber cell development by involvement in the auxin-mediated
signaling pathway.

2. Results

2.1. Identification of Cotton Ascorbate Oxidase

We obtained the ascorbate oxidase gene GhAO1 (GenBank accession number: KT794559) from fast
elongating fiber tissues by RT-PCR. The GhAO1 full-length cDNA contained a 1716-bp open reading
frame (ORF) and encoded a protein of 571 amino acid residues with a predicted molecular weight
(Mw) of 62.8 kDa. As shown in Figure 1, in alignments with homologous sequences from species
including Theobroma cacao, Elaeis guineensis, Zea mays, and Arabidopsis thalina, the deduced amino
acid sequence of GhAO1 displayed conservative characteristics of functional domains and belonged
to the multicopper oxidase (MCO) family. A predicted signal peptide of 27 amino acid residues at
the N-terminus and three transmembrane regions were found, implying that GhAO1 is a secreted
extracellular protein. GhAO1 included three typical functional cupredoxin domain repeats distributed
at residues of 44–161, 176–336 and 399–565, respectively, which are separated by several amino acid
link sequences. In addition, three conserved-feature residue patterns, including two trinuclear copper
binding sites characterized by conserved H–H–H–H copper ligands (asterisks) and one Type 1 (T1)
copper binding site characterized by conserved H–C–H–M copper ligands (triangles), were discovered.
These data provide the possibility that GhAO1 may function in ascorbate oxidation as a transmembrane
extracellular protein using copper as a ligand.



Int. J. Mol. Sci. 2017, 18, 1346 3 of 15

Figure 1. Amino acid sequence alignment of cotton (Gossypium hirsutum) ascorbate oxidase
(GhAO1) protein. GhAO1 (Genbank accession no. KT794559) and four other plant ascorbate
oxidase (AO) proteins of TcAO (Genbank accession no. XP_007016684.1), EgAO (Genbank accession
no. XP_010925442.1), ZmAO (Genbank accession no. NP_001141087.1), and AtAO (Genbank accession
no. NP_680176.5) were used for sequence alignment. Black shading indicates strictly-conserved residues
whereas gray shading presents regions of less-strict conservation. Signal peptides, transmembrane
regions, and three cupredoxin domains are indicated. Asterisks (*) indicate trinuclear copper binding
sites and triangles (∆) present Type 1 (T1) copper binding sites.

2.2. Cotton (Gossypium hirsutum) Ascorbate Oxidase Gene (GhAO1) Is Preferentially Expressed during the
Fiber Cell Fast Elongation Period at the mRNA Level and Total Protein Activity

The expression patterns of GhAO1 in different fiber developmental stages were examined by
quantitative real-time polymerase chain reaction (QRT-PCR) (Figure 2a). GhAO1 mRNA increased
~7-fold in 15-day post-anthesis (dpa) (the point of fastest fiber cell elongation) wild-type (WT) cotton
ovules associated with fibers compared with 15 dpa fl mutant ovules, displaying that GhAO1 was
particularly accumulated during fiber elongation development. The total AO activity showed the
highest value at 15 dpa, which is consistent with the transcriptional level of the gene (Figure 2a).
To further detect the tissue-specific feature of GhAO1, different cotton tissues including roots, leaves,
stems, 15 dpa ovules and fibers were used for QRT-PCR and enzyme activity analysis. QRT-PCR
analysis using RNA samples extracted from various tissues revealed that GhAO1 was abundantly
expressed in WT fiber tissue, whereas relatively low levels of transcripts were observed in all of
the other tissues. AO activity was measured through determining the oxidation rate of ascorbate.
The total AO activities indicated a similar expression pattern with QRT-PCR data (Figure 2b).
These results suggest that the expression of GhAO1 is specifically upregulated during cotton fiber
elongation development.
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Figure 2. Expression pattern analysis of GhAO1 during cotton fiber development stages. (a) Analyses
of transcript and enzyme activity indicate that GhAO1 is preferentially expressed in fast elongating
fiber tissues. Wild-type cotton ovules associated with fibers at −3, 0, 6, 9, 12, 15, 18, 21 dpa and
10 dpa fuzzless-lintless (fl) mutant ovules were used for total RNA extraction and quantitative real-time
polymerase chain reaction (QRT-PCR) analysis. QRT-PCR data of 10 dpa fl was artificially set to 1;
(b) Tissue-specific analysis of GhAO1 in different cotton materials. Different tissues of cotton plants,
including ovules (O), fibers (F), and ovules associated with fibers (O+F) of 15 dpa wild type (WT), and
15 dpa fl mutant ovules, as well as roots, stems, and leaves, were used for QRT-PCR and enzyme activity
analysis. The cotton ubiquitin gene GhUBQ7 (Genbank accession no. AY189972) was included as the
template control. Enzyme activity was determined by assaying the ascorbate oxidation photometrically
and monitoring the absorbance at 265 nm using protein samples extracted from tissues of the different
cotton plants presented. Error bars indicate the standard error from three independent experiments.

2.3. GhAO1 Is a Cell Wall Protein

The subcellular distribution of GhAO1 was examined to further elucidate the regulation
mechanism. The GhAO1 gene was cloned into a modified pCAMBIA 2300-GFP vector to generate
the 35S::GhAO1-GFP construct. The fusion construct was driven by the cauliflower mosaic virus
(CaMV) 35S promoter and ectopic overexpression was performed by transforming them into the onion
epidermal cells using the agrobacterium-mediated method. After a subculture for 24 h, fluorescence
microscopy visualizations of GhAO1::GFP displayed that the green fluorescent protein (GFP) signals
overlapped in the extracellular space following detection by laser confocal imaging microscopy.
Successive plasmolysis experiments of the transgenic onion cells were performed to verify, in-depth,
the GhAO1 localization, which indicated that GFP green fluorescence were observed in the cell wall
(Figure 3). The results supply a further confirmation that GhAO1 is a cell wall protein and may exert
its biological function in the apoplastic space of the cell.
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Figure 3. Subcellular localization of the GhAO1 protein in onion cells. Onion cells were transformed
with GhAO1::GFP via the agrobacterium-mediated method. Mannitol was used to induce plasmolysis.
Images are shown under bright, fluorescence, and merge conditions are indicated by confocal
microscopy. Bar: 100 µm.

2.4. Overexpression of GhAO1 Promotes Cell Growth in Tobacco Bright Yellow-2 (BY-2) Cells

Cultured tobacco BY-2 cells were utilized to ascertain the correlation between GhAO1 and
cell growth. Among a set of generated 35S::GhAO1 BY-2 cell overexpression lines through the
agrobacterium-mediated transformation method, overexpression lines with GhAO1-stable expression
at transcription and protein activity levels were selected for successive detection, and the cells
transformed with the vector were used as the control. Subculture transgenic cell lines were observed
after staining with fluorescein diacetate (FDA) as well as a morphological test of cell length and
width. Morphological observation and statistic data presented that the GhAO1 transgenic cells were
significantly promoted with a ~1.52-fold increase in length compared with the control cells (Figure 4),
demonstrating that GhAO1 is able to induce cell elongation growth predominantly.

Figure 4. Cont.
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Figure 4. Cell morphological change of GhAO1-overexpressing transgenic BY-2 cells. (a) Representative
cell morphology of transgenic BY-2 cells with ectopic overexpression of the vector and GhAO1.
Images are shown under a fluorescence microscope. Bar: 100 µm; (b) Statistics of cell length and
width. CK, transgenic cultured tobacco BY-2 cells overexpressing vector; GhAO1, transgenic tobacco
BY-2 cells overexpressing 35S::GhAO1; each value was the average of 100 mature BY-2 cells selected
randomly in triplicate, independently. Error bars indicate the standard error from three independent
experiments. Asterisks indicate significant differences according to Student’s t tests between CK and
GhAO1 transgenic BY-2 cells at the p < 0.01 level.

2.5. DHA Is Enriched in GhAO1-Overexpressing Tobacco BY-2 Cells

Contents of total Asc, AsA, and DHA, as well as enzyme activities of AO, dehydroascorbate
reductase (DHAR), and MDAR were measured to verify the relationship between AO expression
and alterations of Asc different oxidation/reduction situations. In comparison of WT tobacco
cells, GhAO1-overexpressing tobacco BY-2 cells indicated increased content of total Asc and DHA
significantly in both the whole-cell and apoplastic space of the cell (Figure 5a). Meanwhile, in
overexpressing tobacco BY-2 cells, AO and MDAR activities were enhanced in both the apoplast
and whole-cell, and enzyme activity of DHAR, which is responsible for AsA recycling of the cell,
showed a boosted expression in the whole-cell (Figure 5b). The results indicate that the induced
generation of DHA through the AO catalyzing oxidation of AsA may be involved in the cell growth of
transgenic tobacco BY-2 cells overexpressing GhAO1.

Figure 5. Cont.
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Figure 5. Changes in the levels of ascorbate acid (AsA) and dehydroascorbate acid (DHA) content
and related metabolic enzyme activity in transgenic BY-2 cells. (a) Levels of AsA and DHA in
whole-cell and apoplastic spaces of CK and GhAO1 transgenic BY-2 cells; (b) Activity changes of
AO, MDAR, and DHAR in whole-cell and apoplastic spaces of CK and GhAO1 transgenic BY-2 cells.
CK, transgenic cultured tobacco BY-2 cells overexpressing vector; GhAO1, transgenic tobacco BY-2 cells
overexpressing 35S::GhAO1; AO, ascorbate oxidase; MDAR, monodehydroascorbate reductase; DHAR,
dehydroascorbate reductase. Values show the average of three independent measurements. Asterisks
indicate significant differences according to Student’s t tests between CK and GhAO1, ** p < 0.01;
*** p < 0.001.

2.6. Ascorbate Oxidase (AO) Induces H2O2 Accumulation

In light of the crucial role played by H2O2 in cell elongation, we investigated the change of H2O2

content in transgenic BY-2 cells. H2O2 content was determined in different cell compartments of the
whole-cell and apoplast. The result showed that H2O2 was substantially accumulated in whole-cells
and apoplasts of transgenic tobacco BY-2 cells (Figure 6).

Figure 6. H2O2 is accumulated in the apoplastic space of transgenic BY-2 cells. H2O2 contents were
determined in different cell compartments of whole-cells, apoplasts, and cytosols of transgenic tobacco
BY-2 cells overexpressing vector or 35S::GhAO1. Each value indicates the average of three independent
measurements. CK, cultured tobacco BY-2 cells overexpressing vector; GhAO1, transgenic tobacco BY-2
cells overexpressing 35S::GhAO1. Asterisks show significant differences according to Student’s t test
between CK and GhAO1 at the p < 0.01 level.

2.7. AO Affects Expression of Ca2+ Channel Genes

In view of the critical role performed by calcium-mediated signal transduction in plant cell growth,
the transcript expression levels of Ca2+ channel genes containing NtMPK9, NtCPK5, and NtTPC1B



Int. J. Mol. Sci. 2017, 18, 1346 8 of 15

were measured in WT and transgenic tobacco BY-2 cells though QRT-PCR. In transgenic tobacco BY-2
cells overexpressing GhAO1, the activation of NtMPK9 and NtCPK5 with over 13- and 14-fold increase
was observed, respectively, while the expression of NtTPC1B was distinctly suppressed with a 60%
decrease (Figure 7).

Figure 7. Expression analysis of Ca2+ channel genes in transgenic tobacco BY-2 cells. Transcript
abundance was measured by QRT-PCR using total RNA extracted from materials of WT and transgenic
tobacco BY-2 cells overexpressing GhAO1 as template. Relative expression levels of NtMPK9, NtCPK5,
and NtTPC1B were included, and the tobacco gene 18S rRNA (Genbank accession no. AJ236016) was
used as an internal control. Error bars indicate the standard error from three independent experiments.

2.8. AO Expression Is Modulated by Auxin

As reported previously, the insensitivity of AO to auxin treatment was observed in
AO-overexpressed plants [13]. To test the hypothesis in the GhAO1-overexpressing tobacco BY-2
cells, we measured the expression of the NtAO gene by QRT-PCR using RNA samples extracted
from cultured transgenic tobacco BY-2 cells under auxin treatment. The results showed that the
induced expression of NtAO was displayed in WT tobacco cells after 4 h IAA treatment, however, in
GhAO1-overexpressing tobacco cells, NtAO indicated suppressed expression when IAA exists and
illustrated a notable decrease of sensitivity to IAA (Figure 8). The data suppose that AO expression
was modulated under the control of auxin, therefore determining the auxin signal transduction from
the outside to the inside of the cell.

Figure 8. Tobacco NtAO gene expression analysis in wild-type (WT) and GhAO1 transgenic BY-2 cells
under indole-3-acetic acid (IAA) treatment. Materials of WT and transgenic BY-2 cells indicated were
used for total RNA extraction and QRT-PCR analysis. The tobacco gene 18S rRNA was applied as an
internal control. QRT-PCR data of untreated WT BY-2 cells was artificially set to 1. Error bars indicate
the standard error from three independent experiments.
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3. Discussion

In the apoplast, oxidative molecules such as ROS and DHA are crucial for the promotion of cell
growth and development through the modulation of the redox state of the cell. Apoplastic AsA, as
the unique reduced small molecule in the extracellular space, is the decisive component to the redox
buffering capacity of the apoplast [14], and has principal potential to exert a crucial influence on
cellular redox signaling [6,15–17]. Apoplastic ascorbate oxidase is the key enzyme that affects cell
growth through oxidizing AsA to produce DHA, and, thus, controls the redox ratio of the apoplast [18].
The study of AO is not widespread, and AO genes have been cloned and characterized in many
plants, including cucumber, pumpkin, tobacco, melon [19–22], etc. In the present work, an apoplastic
acsorbate oxidase gene GhAO1 was obtained from fast elongating fiber tissues, and the GhAO1 protein
contained several cupredoxin domains and copper binding sites (Figure 1), implying its potential
function in cellular redox reactions. GhAO1 was highly upregulated at transcription level and enzyme
activity during fiber cell elongation stages (Figure 2), which suggests that there is a close nexus
between GhAO1 and cell growth. Some plant AOs showed similar patterns that express high activities
in rapidly-expanding tissues [8,22–24].

The cell wall is the key component in the apoplast that decides plant cell mechanical strength,
which determines cell shape morphogenesis. Extracellular enzymes perform important functions in
cell growth via modulating the changes of the apoplast [6]. In plant cells, cell elongation or expansion
is coupled with cell wall loosening and rearrangement [25]. GhAO1 possessed a signal peptide and
three transmembrane regions (Figure 1), indicating that GhAO1 is a secreted extracellular protein.
Subcellular localization analysis showed that GhAO1 is a cell wall protein (Figure 3), providing a
conceivable role of GhAO1 that may affect cell development through leading some alteration of the
cell wall in a direct or indirect way. The study indicated that AO, at least in part, regulates cell wall
architecture through oxidizing ascorbate to DHA, causing cell wall loosening, and therefore leading to
cell growth [6].

The tobacco BY-2 cell line is an excellent material for studying cell development [26,27]. Significant
cell growth was observed in GhAO1-overexpressing tobacco BY-2 cells (Figure 4), demonstrating again
the AO’s important role in cell elongation growth. Overexpression of a pumpkin AO in tobacco BY-2
cells showed an increase of cells expanding compared to controls [28].

In plants, oxidative burst is considered to be crucial for cell development. Extracelullar oxidative
molecules of ROS and DHA are important regulators in cell division and expansion [6,29–31].
Ascorbate is the only antioxidative molecule and plays multifunctions as coenzymes and cell growth
regulator [6]. DHA, as the oxidised form of ascorbate produced by the the key enzyme AO in the
apoplast, may produce a similar effect as oxidative burst leading to the apoplastic oxidation state [6,16],
and, therefore, promotes cell enlargement through inducing depolarization of the plasma membrane
and enhancing cell wall loosening [32,33]. In this work, GhAO1-overexpressing tobacco BY-2 cells
displayed significant accumulation of DHA (Figure 5a), as well as high level of AO activity (Figure 5b).
This is in accordance with the report, that in AO-overexpressing plants, DHA is significantly enriched
in the apoplast, resulting in enhanced cell growth and stem elongation [18,34].

It has been reported that ROS, for instance H2O2 and the hydroxyl radical, are involved in
plant growth and development [35]. In light of fiber development, significant ROS accumulation is
observed, with enriched H2O2, to promote fiber cell elongation [36,37]. In addition, a high content
of ROS production is observed in the fiber growth process that is catalyzed by GhPOX1 [38], which
causes a substantial effect on cell expansion or enlargement by causing cell wall loosening [39,40].
In this study, H2O2 is accumulated in the apoplast of GhAO1-overexpressing tobacco plants (Figure 6).
This is in agreement with the results that increased or decreased H2O2 content was observed in
AO-overexpressing or AO-suppressing tobacco plants, respectively [11], as well as the report that AO
overexpression induced the enhancement of H2O2 concentration [9]. An ascorbate metabolite could
induce H2O2 generation in the apoplast [41]. The study reported that DHA produced by AO-catalyzed
ascorbate degradation in the apoplast generates H2O2 [42], and H2O2 can produce DHA through
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the reaction with ascorbate, implying that DHA and H2O2 may strengthen each other co-operatively.
In AO-overexpressing tobacco plants, enhanced H2O2 content was observed coupled with the decline
of H2O2-detoxifying enzyme ascorbate peroxidase (APX), providing a possible link between H2O2

increase and APX decrease [11,43].
ROS generated in non-photosynthetic tissues catalyzed by NADPH oxidase and cell

wall-associated extracellular peroxidases, coupled with the activation of Ca2+ channel (Ca2C), has
been reported to perform a vital role in plant cell growth as a representative signaling link [44–46].
Many proteins, such as calcium-dependent protein kinase (CPK), plasmalemma-localized two-pore
Ca2+ channel-associated protein (NtTPC1B), and mitogen-activated protein kinase (MPK), are crucial
sensors or regulators in Ca2C signal transduction [13,25,47]. In transgenic tobacco BY-2 cells
overexpressing GhAO1, H2O2 enrichment, followed with significant activated expressions of NtMPK9
and NtCPK5 and inhibited expression of NtTPC1B were indicated (Figures 6 and 7), suggesting that AO
may act in similar role in producing oxidative burst, and AO-derived ROS generation influences the
Ca2C-permeable channel and thus enhances cell growth. This is consistent with the result of induced
expression of a Ca2+ channel gene in AO-overexpressing plants [13], and the report of suppressed
expression of NtTPC1B performed by AO [48]. The similar results of ROS, Ca2C, and cell growth have
also been investigated in Arabidopsis root hairs [49].

Auxin-mediated acidification in the apoplast activates oxalate oxidase, which induces H2O2

accumulation, therefore promoting cell growth [6]. In addition, auxin influences the orientation of
the cortical microtubules that determines cell wall arrangement, and auxin-induced production of
free radicals is considered to be the key factor to increase cell wall extension [4]. Auxin performs a
vital role in fiber development [4,50,51] via regulating extracellular oxidative signals, and has a direct
link with AO expression [8,48]. The tobacco NtAO gene displayed an induced expression under IAA
treatment, whereas the overexpression of GhAO1 leads to the insensitivity of the tobacco NtAO gene
to auxin (Figure 8), demonstrating that cotton GhAO1 expression is modulated under the control of
auxin. This is consistent with the result that AO induces the inactivation of IAA through catalyzing the
reaction of oxidative decarboxylation [52]. In all, our results indicate that GhAO1 is involved in fiber
cell elongation development, and may stimulate cell growth through generating oxidative molecules
regulated by auxin-mediated signal transduction.

4. Materials and Methods

4.1. Plant Materials

Cotton plants were cultivated in the field under natural conditions. On the day of anthesis,
blooming flowers were marked. Bolls of WT cotton were harvested at −3, 0, 3, 6, 9, 12, 15, 18 and
21 dpa, respectively. After the harvest, ovules were excised from the bolls, and fibers were scraped
from the ovules. Bolls of fl mutant cotton ovules were collected at 15 dpa as the control. All materials
were immediately frozen in liquid nitrogen and stored at −80 ◦C for further use.

4.2. Functional Sequence Analysis

Protein sequences were aligned using the ClustalX program version 2.1 (European Bioinformatics
Institute, Cambridge, UK) with default settings. Online software of conserved domains (CD) at
the National Center for Biotechnology Information (NCBI) website (https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi) was used for functional motif analysis, and online software packages of
SignalP and TMpred from the ExPASy website (http://www.expasy.org/) were used for analyses of
signal peptide and transmembrane regions.

4.3. Vector Construction

To construct the overexpression of plasmid 35S::GhAO1-GFP, the GhAO1 cDNA was amplified by
PCR with specific primers (listed in Table S1) containing BamH I and Sal I restriction endonuclease

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.expasy.org/
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sites. After enzymatic digestion and ligation, the GhAO1 ORF sequence was inserted upstream of GFP
gene of the modified expression vector pCAMBIA2300-GFP (provided by Professor Xianzhong Huang)
between BamH I and Sal I sites in the sense orientation. The constructed overexpression vector was
used for further analyses of subcellular localization and tobacco genetic transformation.

4.4. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR)

Total RNA was extracted from different tissues of cotton plants and tobacco BY-2 cells, and then
was used for cDNA preparation through a reverse transcription reaction according to the supplier’s
recommendations. The cDNA was utilized as a template for further PCR analysis. The QRT-PCR
reactions were performed using SYBR Green real-time PCR master mix with specific primers for
different genes. 18S rRNA and UBQ7 were used as internal controls to normalize each sample for
variations in the amount of initial RNA. All reactions were performed in triplicate independently.
The primers used for QRT-PCR are shown in Table S1.

4.5. Subcellular Localization Analysis

Onion epidermal cells were used to detect the GhAO1 protein subcellular distribution. A piece
of leaf was peeled from fresh onion and the inside epidermal of the onion leaf was separated.
After soaking in 75% ethanol for 10 min and washing 3–4 times with sterile water, the inside epidermis
was cut and co-cultivated with Agrobacterium tumefaciens carrying the 35S::GhAO1-GFP vector on
1/2 MS medium at 28 ◦C under darkness. After a subculturing for 24 h, a confocal laser-scanning
microscope (Zeiss LSM510, Oberkochen, Germany) was used to detect the GFP signals with an
activation wavelength of 488 nm.

4.6. Isolation of Apoplastic Fluid

Tobacco BY-2 cells (~0.5 g) were collected, washed in distilled water, and infiltrated with vacuum
(−60 kPa) for 5 min at 4 ◦C in 10 mM sodium buffer (pH 6) containing 1.5% (w/v) polyvinypyrrolidone
(PVP), 1 mM ethylene diamine tetraacetic acid (EDTA), and 0.5 mM phenylmethylsulfonyl fluoride [53].
Then the material was blotted dry and placed into a 15-mL tube with a small hole penetrated in the
bottom, which was put in a larger tube. After centrifugation at 1000× g for 10 min at 4 ◦C, the apoplastic
fluid was collected. Both whole-cell and apoplastic extraction were used for further determinations of
Asc, enzyme activity, and H2O2 content.

4.7. Ascorbate Determination

Tobacco BY-2 suspension cells were centrifuged at 3500 rpm for 2 min at room temperature
to remove excess medium, and the collected precipitate was suspended with the assay mixture for
ascorbate determination. Total ascorbate (reduced ascorbate + dehydroascorbate) was measured
according to the detection of dipyridyl-Fe2+ complex generated by the reduction of Fe3+ to Fe2+

with the addition of 5 mM dithiothreitol (DTT) through the spectrophotometric method [54].
Reduced ascorbate was determined in the same way without DTT supplementation, and the
dehydroascorbate concentration was obtained through calculating the difference between the contents
of total and reduced ascorbate. Ascorbate content was calculated by comparison with standard
known concentrations.

4.8. Assays of Enzyme Activities

Different cotton tissues and tobacco BY-2 cells were collected and homogenized with two
volumes of extraction buffer containing 40 mM potassium phosphate (pH 7.0) and 0.5 mM EDTA.
The supernatant was used for enzyme assays after centrifugation at 15,000× g for 10 min at 4 ◦C.
Ascorbate oxidase activity was determined by measuring the decrease in the absorbance at 265 nm
due to AsA oxidation in the reaction mixture containing 0.15 mM AsA. Dehydroascorbate reductase
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(DHAR) and monodehydroascorbate reductase (MDAR) activities were determined with the addition
of 1 mM DTT, 2% (w/v) polyvinyl pyrrolidone (PVP), and 0.1% (v/v) Triton X-100 in the reaction
mixture. The DHAR activity was calculated as the amount of ascorbate (mmol) produced per min.
The MDAR activity was evaluated as NADH (mmol) oxidized per min. Protein assays were performed
in triplicate using bovine serum albumin as the standard via Bradford’s method [55].

4.9. Transformation of BY-2 Cells

The constructed 35S::GhAO1 vector was transferred into Agrobacterium tumefaciens (strain GV3101)
through the electroporation method and used to transfect WT tobacco (Nicotiana tabacum) bright yellow
2 (BY-2) cells. BY-2 cells were preserved on Linsmaier and Skoog solid medium under dark conditions
by subculturing every seven days and culturing at 28 ◦C in a rotary shaker at 200 rpm. The transformed
BY-2 cell colonies were obtained after culturing on fresh selection plates containing kanamycin
(100 mg/mL) for 3–4 weeks. Selected resistant transgenic BY-2 cell colonies were transferred to
liquid selection medium, including kanamycin, to generate cell suspensions for the following analysis.

4.10. Observation of BY-2 Cells

Transgenic tobacco BY-2 cells overexpressing GhAO1 or vector were cultured in liquid selection
medium for 2–3 h, and then were stained by fluorescein diacetate (FDA) for 10 min under dark
conditions. Stained liquid BY-2 cells (~0.1 mL) were placed on a slide, and approximately 100 matured
stained cells were selected randomly for measurement using a fluorescence microscope (Olympus BH2,
Tokyo, Japan) with three independent experiments.

4.11. Treatment of Tobacco BY-2 Cells

Tobacco BY-2 cell suspensions were treated with 1 mM IAA, and both IAA-induced cells and WT
control cells were harvested for subsequent analysis.

4.12. H2O2 Measurement

H2O2 concentration was determined using the spectrometric method by detecting the
hydroperoxide-titanium complex at the absorbance of 405 nm as described previously [36]. Whole-cell,
isolated apoplastic fluid, and cytosolic soluble fraction were utilized for assaying H2O2 content in
acetone mixture through forming the hydroperoxide-titanium complex after the addition of 20% TiCl4
(v/v in 11 M HCl) and NH4OH. H2O2 content was evaluated according to the standard curve with
known H2O2 concentrations.

4.13. Accession Numbers

Sequence data used in the article were obtained from GenBank with accession numbers
KT794559 (GhAO1), NM_001324873.1 (NtMPK9), FJ026805.1 (NtCPK5), AB124647 (NtTPC1B), AJ236016
(18S rRNA), and AY189972 (GhUBQ7).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/7/1346/s1.
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