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Abstract: It was reported that substance P had beneficial effects in the healing of acute tendon injury.
However, the relationship between substance P and degenerative tendinopathy development remains
unclear. The purpose of this study was to determine the role of substance P in the pathogenesis
of tendinopathy. Healthy and tendinopathy tendon were harvested from human and tenocytes
were cultured individually. The expression levels of genes associated with tendinopathy were
compared. Next, substance P was exogenously administered to the healthy tenocyte and the effect
was evaluated. The results showed that tendinopathy tenocytes had higher levels of COL3A1,
MMP1, COX2, SCX, ACTA2, and substance P gene expression compared to healthy tenocytes.
Next, substance P treatment on the healthy tenocyte displayed similar changes to that of the
tendinopathy tenocytes. These differences between the two groups were also determined by Western
blot. Additionally, cells with substance P had the tendinopathy change morphologically although
cellular proliferation was significantly higher compared to that of the control group. In conclusion,
substance P enhanced cellular proliferation, but concomitantly increased immature collagen (type
3 collagen). Substance P plays a crucial role in tendinopathy development and could be a future
therapeutic target for treatment.
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1. Introduction

Tendinopathy is a chronic degenerative musculoskeletal condition that affects various parts of the
body including the Achilles, patellar, rotator cuff, and forearm extensor tendons. This condition is a
concern in the developed world since increased involvement in recreational sports is correlated with
the rise of tendinopathy incidence [1]. Runners, for example, have a 30% risk of exhibiting Achilles
tendinopathy with an annual incidence of about 7–9% [2].

While it is known that tendinopathy is mainly caused by the accumulation of small-scale injuries
that do not heal properly, the exact pathogenesis is poorly understood. Theories suggest that the
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causes are likely to be multifactorial, which may include ischemia, oxygen-free radical injuries,
imbalance between vasoconstrictor and vasodilator innervations, micro-tears, and degenerative
changes [3,4]. Recently, researchers have reported that neuronal regulation by various neuro-mediators
such as substance P (SP) and calcitonin gene-related peptide (CGRP) play an essential role in tendon
homeostasis and the disruption of this regulation contributes to the development of neurogenic
inflammation and tendinopathy [5–8]. Neurogenic inflammation arises from the local release
of neuro-mediators and can explain why patients with tendinopathy experience symptoms of
inflammation such as pain and edema despite the lack of infiltration of inflammatory cells such
as macrophages and lymphocytes. Under healthy conditions, neuro-mediators are found only in
the surrounding structures of intact tendons such as the paratenon, endotenon, and epitenon. The
tendon proper, in contrast, is practically devoid of neuro-mediators. However, in tendinopathy, there
is extensive nerve ingrowth and up-regulation of neuro-mediators into the tendon proper [9–14]. It
has also been shown that tenocytes have the ability to produce neuro-mediators on their own in
tendinopathy [15]. In acute tendon injury or rupture, SP is known to be involved in tissue healing
through multiple functions such as inflammatory response, pain transmission, increased vascular
permeability and blood flow, and cellular proliferation [6,16–18]. However, the actual role of SP among
the various neuro-mediators in the pathogenesis of degenerative tendinopathy (e.g., chronic tendon
injury) is still being debated.

In this experiment, we hypothesized that although SP can play a role in cellular proliferation,
it also has the potential to induce a healthy tenocyte into a tendinopathy tenocyte. To test this
hypothesis, we first harvested and cultured healthy and tendinopathy tenocytes, then compared
the expression levels of several genes and proteins known to be associated with the pathogenesis of
tendinopathy. SP was then exogenously administered to the cultured healthy tenocyte and its effect
on the healthy tenocyte was evaluated by analyzing the changes in cell viability, as well as gene and
protein expressions.

2. Results

All tenocytes were successfully grown in culture. To confirm that the cultured cells were tenocytes,
we performed immunocytochemistry (ICC). The images showed that most of the cultured cells from
healthy samples and tendinopathy samples expressed the surface marker for vimentin (red) and
tenomodulin (green), and had elongated appearances under microscopy (Figure 1).

Int. J. Mol. Sci. 2017, 18, 1241  2 of 13 

 

While it is known that tendinopathy is mainly caused by the accumulation of small-scale injuries 
that do not heal properly, the exact pathogenesis is poorly understood. Theories suggest that the 
causes are likely to be multifactorial, which may include ischemia, oxygen-free radical injuries, 
imbalance between vasoconstrictor and vasodilator innervations, micro-tears, and degenerative 
changes [3,4]. Recently, researchers have reported that neuronal regulation by various neuro-
mediators such as substance P (SP) and calcitonin gene-related peptide (CGRP) play an essential role 
in tendon homeostasis and the disruption of this regulation contributes to the development of 
neurogenic inflammation and tendinopathy [5–8]. Neurogenic inflammation arises from the local 
release of neuro-mediators and can explain why patients with tendinopathy experience symptoms of 
inflammation such as pain and edema despite the lack of infiltration of inflammatory cells such as 
macrophages and lymphocytes. Under healthy conditions, neuro-mediators are found only in the 
surrounding structures of intact tendons such as the paratenon, endotenon, and epitenon. The tendon 
proper, in contrast, is practically devoid of neuro-mediators. However, in tendinopathy, there is 
extensive nerve ingrowth and up-regulation of neuro-mediators into the tendon proper [9–14]. It has 
also been shown that tenocytes have the ability to produce neuro-mediators on their own in 
tendinopathy [15]. In acute tendon injury or rupture, SP is known to be involved in tissue healing 
through multiple functions such as inflammatory response, pain transmission, increased vascular 
permeability and blood flow, and cellular proliferation [6,16–18]. However, the actual role of SP 
among the various neuro-mediators in the pathogenesis of degenerative tendinopathy (e.g., chronic 
tendon injury) is still being debated. 

In this experiment, we hypothesized that although SP can play a role in cellular proliferation, it 
also has the potential to induce a healthy tenocyte into a tendinopathy tenocyte. To test this 
hypothesis, we first harvested and cultured healthy and tendinopathy tenocytes, then compared the 
expression levels of several genes and proteins known to be associated with the pathogenesis of 
tendinopathy. SP was then exogenously administered to the cultured healthy tenocyte and its effect 
on the healthy tenocyte was evaluated by analyzing the changes in cell viability, as well as gene and 
protein expressions. 

2. Results 

All tenocytes were successfully grown in culture. To confirm that the cultured cells were 
tenocytes, we performed immunocytochemistry (ICC). The images showed that most of the cultured 
cells from healthy samples and tendinopathy samples expressed the surface marker for vimentin 
(red) and tenomodulin (green), and had elongated appearances under microscopy (Figure 1). 

 
Figure 1. Identification of healthy and tendinopathy tenocytes. Under light microscopy, the 
morphology of cells from each group was observed (A); The morphology of the tendinopathy group 
had short elongated processes with more round or oval nuclei compared to the cells from healthy 
group (A,B); Cells from healthy and tendinopathy tenocyte cultures stained with 
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Original magnification: 400× for A and B; DAPI: 4′,6-diamidino-2-phenylindole dihydrochloride. 

Figure 1. Identification of healthy and tendinopathy tenocytes. Under light microscopy, the
morphology of cells from each group was observed (A); The morphology of the tendinopathy group
had short elongated processes with more round or oval nuclei compared to the cells from healthy
group (A,B); Cells from healthy and tendinopathy tenocyte cultures stained with immunocytochemical
methods (B). The majority of cells expressed the surface marker for vimentin (red) and tenomodulin
(green). The cells are counterstained with DAPI to mark the nuclei (blue). Original magnification: 400×
for A and B; DAPI: 4′,6-diamidino-2-phenylindole dihydrochloride.
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2.1. Comparison between the Healthy Tenocyte and the Tendinopathy Tenocyte

2.1.1. Gross Description of Cell Shape

We observed the cultured cells of healthy and tendinopathy samples under light microscope and
fluorescence microscope when the cells reached passage 3 and when the confluency of cells was 80%.
The tendinopathy cells were less spindle-shaped with round or oval nuclei, and small or less elongated
processes compared with those from the healthy group (Figure 1).

2.1.2. Differences of Expressions at the mRNA Level

Eight genes known to be involved in the pathogenesis of tendinopathy were analyzed by
quantitative real time-polymerase chain reaction (qRT-PCR). We found higher expressions of the
genes including collagen type 3 α1 (COL3A1), prostagladin endoperoxide synthase 2 (PTGS2 = COX2),
scleraxis (SCX), matrix metalloproteinase 1 (MMP1), α-smooth muscle actin (ACTA2), tachykinin
precursor 1 (TAC1 = SP), and neurokinin-1 receptor (NK-1R) in cultured cells from the tendinopathy
tendon compared to those of the cultured cells from the healthy tendon (p < 0.01, in all). In contrast,
there was down-regulation of collagen type 1 α1 (COL1A1) in the tendinopathy cells compared to the
healthy cells without statistical significance (p > 0.05). Consequently, the ratio of COL1A1/COL3A1
was 13.2 times greater in the healthy cells. The relative expressions for all genes are shown in Figure 2.
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Twenty-four hours after applying SP on the healthy tenocytes, the morphological structure of 
the cultured tenocytes became more round; similar to what was observed in the tendinopathy 
tenocytes (Figure 3). Interestingly, the viability of cell incubation with SP was significantly higher 
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Figure 2. Differential gene expressions between healthy tenocyte and tendinopathy tenocyte. Relative
expressions by qRT-PCR of 8 genes were analyzed using cultured tenocytes. Results show that levels
of COL3A1, MMP1, COX2, SCX, ACTA2, TAC1 (SP), and NK-1R were significantly increased in the
cells cultured from tendinopathy tenocyte. However, COL1A1 was decreased in the cells cultured
from tendinopathy tenocyte without statistical significance. The result was expressed as the relative
expression level. Data were normalized on GAPDH mRNA levels. Boxplot showing the median along
with the first and third quartiles. Error bar means data range from minimum to maximum. ** p < 0.01.
SP: substance P; qRT-PCR: quantitative real time-polymerase chain reaction results.

2.2. The Effect of Substance P (SP) on the Healthy Tenocyte in the Development of Tendinopathy

2.2.1. SP Increases Cellular Proliferation and Viability

Twenty-four hours after applying SP on the healthy tenocytes, the morphological structure
of the cultured tenocytes became more round; similar to what was observed in the tendinopathy
tenocytes (Figure 3). Interestingly, the viability of cell incubation with SP was significantly
higher compared to the controls in a monosodium salt, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-
(2,4-disulfophenyl)-2H-tetrazolium (WST-1) assay at 24 h (p < 0.01). Repeated measures analysis
of variance (ANOVA) revealed that optical densities in SP treated cells increased slightly by 3.2%
(p > 0.05), whereas the optical densities in phosphate buffered saline (PBS) treated cells decreased
substantially by 12.5% at 24 h versus 0 h (p < 0.01) (Figure 4A). However, the intensities returned to
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similar levels in both SP and PBS treated groups at 48 h. Hematocytometry revealed a higher cellular
proliferation rate for the SP treated group (191%) than the PBS treated group (152%) at 24 h (Figure 4B).
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Figure 3. Effect of SP on the cell morphology. The healthy tenocytes were cultured in medium
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PBS: Phosphate buffered saline; SP: substance P.
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Figure 4. Increased cell viability and proliferation by SP in the cultured tenocytes from healthy tendon.
The healthy tenocytes were cultured in medium containing SP or PBS to compare their effects on cell
viability and proliferation. Then, cell viability and proliferation were monitored using Cell Counting
Kit-8 assay for 72 h. At 24 h, cell viability was significantly higher in the SP group compared to the
PBS-control group. However, there were no differences between the groups with and without SP at
48 h (A); The percent change of cell number compared to 0 h was calculated by hemocytometer 24 h
after PBS or SP treatment. The result showed significantly higher percent increase of cell number
in the SP-group compared to PBS-control (B). Each value represents the mean ± standard deviation.
# p < 0.05 compared to 0 h, * p < 0.05 compared to PBS-control group at the same time point. WST-1:
2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium; PBS: Phosphate buffered
saline; SP: substance P.

2.2.2. SP Up-Regulates the Relative mRNA Expressions Related to Tendinopathy Development in the
Healthy Tenocyte

The relative expressions of six genes including COL1A1, COL3A1, COX2, SCX, MMP1, and
ACTA2 were measured with qRT-PCR 24 h after SP application to the culture medium of healthy
tenocytes. As shown in the results comparing the healthy and tendinopathy samples, the relative
mRNA expressions of COL3A1, COX2, SCX, MMP1, and ACTA2 were increased by 1.4, 1.8, 2.7, 1.3, and
1.6 times in the SP-treated samples compared to the PBS-controls (p < 0.05 in all), respectively. Like the
results from the earlier comparison of the healthy and tendinopathy tenocytes, the relative expression
of COL1A1 showed no statistical difference between the PBS-control and SP-treated cells (p > 0.05)
despite the observed decrease in the SP-treated group. The COL1A1/COL3A1 ratio was calculated to
be 0.21 in the PBS-control cells and 0.11 in the SP-treated cells (Figure 5).
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M for 24 h. Results show that healthy tenocytes developed similar gene expression trends as that
of the tendinopathy tenocyte. Levels of COL1A1 decreased but COL3A1, COX2, SCX, MMP1, and
ACTA2 were significantly increased as a result of treatment with SP. The result was expressed as the
relative expression level after normalizing on GAPDH mRNA levels. Boxplot showing the median
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2.2.3. SP Increases the Protein Levels Related to Tendinopathy Development in the Healthy Tenocyte

Expression levels of tendinopathy related proteins were analyzed at 24 h after SP application on
human healthy tenocytes. Of the three proteins investigated, the densitometric analyses of the band
were normalized to that of the β-actin in band. Western blot analyses revealed that the intensities of
COL3A1, COX2, and MMP1 proteins were significantly greater in SP-treated cells compared to the
PBS-treated cells (p < 0.05 in all). Details of the analyses are summarized in Figure 6.
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Figure 6. SP induced the development of tendinopathy at protein level. Western blot for the cultured
healthy tenocyte with or without SP was performed with antibodies against COL3A1, COX2, and
MMP1 protein. Loading control was performed with an anti-β-actin antibody. Twenty-four hours of
exposure to SP resulted in strong band densities for every protein. The results were consistent with
the analysis of qRT-PCR (A); Densitometric analysis, as expected, revealed that COL3A1, COX2, and
MMP1 protein band intensities normalized to β-actin were increased by 203.8%, 129.3%, and 129.3%
respectively in SP-treated group compared with PBS-control. Boxplot showing the median along with
the first and third quartiles (B). Error bar means data range from minimum to maximum. * p < 0.05; SP:
substance P.
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3. Discussion

Using human samples, we tested our hypothesis that the neuro-mediator SP could influence the
change of a normal healthy tendon into a tendinopathy tendon. For this experiment, we cultured both
healthy and tendinopathy tenocytes and started by comparing the gene and protein levels. Next, we
exogenously applied SP to the cells cultured from healthy tenocytes, analyzed the changes of the gene
and protein expressions, and observed the effect on cell viability. Thus, in parallel with the findings in
the first comparison between the healthy and tendinopathy samples, we observed similar changes in
cell shape, and gene and protein expressions in the healthy tenocyte after SP application.

3.1. SP Is Closely Related to Tendon Healing

It was suggested that SP could stimulate healing by enhancing cellular proliferation of fibroblasts,
myofibroblasts, and stem cells, as well as increase collagen formation in skin, tendon, and corneal
injuries [19–24] SP also enhances angiogenesis, vasopermeability, and the synthesis of various
cytokines [24–28]. However, although SP induces cell proliferation for tissue healing, it was also
recently reported that SP is one of the causes of tendinopathy. Fong et al. applied SP to healthy
tenocytes and analyzed the changes in collagen remodeling [6]. The authors indicated that SP could
be initially beneficial for tendon healing, but with sustained upregulation of SP, excessive collagen
remodeling may ensue and lead to the progression of tendinopathy. These results collectively reinforce
the idea that SP plays a biological role in tissue injuries.

Consistent with the previous findings of SP’s role in healing, we observed higher proliferation
rate of cells 24 h after SP treatment in both the WST-1 assay and hematocytometry. However, the
increased proliferation capacity was highest at 24 h and disappeared at 48 h, which suggested that
the sustained SP increase might be one of the reasons for hypercellularity of tendinopathy. We also
assumed based on this result that the onset of action of SP was around 24 h and decided to analyze the
change in gene and protein levels at 24 h.

Another finding of this study was that the SCX gene was upregulated in the tendinopathy group
compared to the healthy tenocyte. SCX is a transcription factor expressed in the progenitors and
tendon tissue cells and is related to tenogenesis and collagen production. Several papers have reported
that SCX was increased in the injured tendon as the injured tendon had increased collagen production
for healing [29,30]. In this study, the tendinopathy tenocyte was fibroblastic tenocyte, which had
chronic micro-injury, thus the tendinopathy tenocyte had increased SCX. Interestingly, SP treatment
increased SCX expression, and further study will be warranted to elucidate their relationship.

3.2. SP Has a Role in the Development of Tendinopathy

Our study presents information showing that SP induces tendinopathy changes in human
tenocytes at the gene and protein level. After SP treatment in our cultured healthy cells, levels
of COL3A1, MMP1, and ACTA2 genes were increased, which were also shown in the tendinopathy
samples. However, the expression of COL1A1 was decreased without statistical significance. To find
whether there was post-translational modification of the COL1A1 gene, the COL1A1 protein level
was analyzed using an enzyme-linked immunosorbent assay, and again we found a non-significant
decrease of in COL1A1 protein level after SP treatment (Supplementary Figure S1).

COL3A1 gene and protein increased by 1.4 and 2.2 times with each with SP treatment. Type 3
collagen is the predominant collagen in tendinopathy and produces smaller, less organized fibril in
comparison to type 1 collagen. This difference in architecture between the two types of collagen has
implications on the mechanical strength of the tendon [31,32].

We observed that MMP1 was upregulated 24 h after the addition of SP. MMP1 reflects the collagen
turnover rate and has been reported to have increased activity in the degenerative suprasupinatus
tendon [33]. Cury et al. [34] reported that SP contributed to the degenerative process of a tendon
through its control over both the MMP and tissue inhibitor metalloproteinase expression levels. This
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could also be seen in cultured human gingival fibroblasts and could explain periodontal breakdown
seen in periodontal disease. Additionally, in vitro studies of Achilles tendon and collateral ligament
cells show that SP, along with CGRP, could modulate messenger RNA levels of MMP1 and/or
MMP3 [35,36].

Another important gene found to be upregulated in tendinopathy samples, as well as in healthy
samples with SP treatment, was ACTA2. ACTA2 is an important cytoskeleton gene that encodes the
α-smooth muscle actin [37–39], which is a functional marker for a fibroblast subtype that rapidly
remodels the extracellular matrix [40]. The gene and the protein it encodes are found not only in
smooth muscles, but also in pericytes or myofibroblasts [41]. The latter are known to play a major
role in tissue healing since they are specialized cells that populate areas of persistent injury, regardless
of tissue type [41,42]. Tendinopathy tendon tissues, in particular, are accompanied by increasingly
conspicuous cells that mostly have a fibroblastic or myofibroblastic appearance. Therefore, an increase
in ACTA2 expression, along with increased α-smooth muscle actin production in myofibroblasts, is
one of the hallmarks of tendinopathy lesions [43].

3.3. SP Contributed to the Development of Neurogenic Inflammation

It should be noted that SP is known to be associated with pain by triggering neurogenic
inflammation [5,9,15,16,44–49]. Our results support this, as SP application increased the COX2
gene and protein level, which is the primary culprit responsible for inflammation and pain. Lui
et al. reported an increase of SP and CGRP immunopositivity in rat tenocytes and the presence of
immunopositive staining in the tendon fibroblasts [15]. Furthermore, the immunopositivity of SP and
CGRP was found to have significant positive correlations with pain.

3.4. Limitations

Our experiment had several limitations. First, we only harvested the extensor carpi radialis
brevis (ECRB) tendon from tennis elbow (lateral epicondylitis) surgery and used it as the tendinopathy
tenocyte since the ECRB tendon of the elbow is a common tendinopathy site for surgery, along with
the Achilles and rotator cuff tendons. However, it is possible that features of tenocytes from other
tendinopathy sites may differ from cells harvested from the ECRB tendon. Further studies need
to be conducted with a larger sample size focusing on longitudinal changes and any differences
between various tendinopathy sites. Next, it is debatable that TAC1 gene expression was considered as
representative of SP expression in our study, given that TAC1 not only codes for SP, but also encodes
neurokinin A [50]. This was supported by the fact that SP is well known as the major neuropeptide
synthesized from the TAC1 gene and found several studies that regarded TAC1 as representative of SP
expression [51,52]. Finally, there may have been variations in the tendinopathy cells between samples
as they were taken from different patients with heterogeneous characteristics, as well as different
histories of steroid injections and medications. However, we assumed that all of them had significant
pathognomonic changes of tendinopathy as they received surgery due to non-responsiveness to
non-surgical treatment [45].

4. Materials and Methods

4.1. Experiment Overview

All subjects gave their informed consent for inclusion before they participated in the study. The
study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the institutional review board at CHA Bundang Medical Center (2013-01-174; 5 April 2013). We
harvested and cultured tenocytes of healthy tendons (n = 10) obtained from healthy donors and
tendinopathy tendons (n = 10) from tendinopathy patients. ICC was used to confirm that the cultured
cells were tenocytes. The differences in gene expression levels related to tendinopathy development
were analyzed between the cultured healthy tenocytes and tendinopathy tenocytes. To examine if SP
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contributed to the pathogenesis of tendinopathy, the healthy tenocytes (n = 4) were cultured with either
PBS or SP (Sigma-Aldrich, St. Louis, MO, USA) at the concentration of 10−7 M, based on previous
studies in Reference [6]. After PBS or SP treatment, the gene and protein expression levels between the
two groups were analyzed at 24 h. These results were compared to those from the previous comparison
between the healthy and tendinopathy tenocytes. The changes in cell viability between PBS-treated
tenocytes and SP-treated tenocytes were also compared at 72 h.

4.2. Tissue Sampling

All the healthy donors and tendinopathy patients were female and had a mean age of 43.5 (±9.47)
years old. They did not have any systemic or local diseases that would affect the results. Samples of
healthy tendons were acquired from the tendon of the hamstrings during anterior cruciate ligament
reconstruction or the palmaris longus tendon during tendon graft surgery.

Samples of tendinopathy tendons were harvested from patients with lateral epicondylitis during
the surgical partial resection of ECRB origin by drilling the lateral condyle using the same method
as the previous study in Reference [45]. Biopsy specimens were taken strictly from the ECRB tendon
corresponding to structural changes observed during surgery. All harvested tendons were described
as dull, gray, friable, and edematous and were different from the healthy tendons. The size of the
harvested samples was around 10 × 10 × 7 mm3. All operations and sampling were performed by
one senior surgeon (Figure 7).
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Figure 7. Intraoperative photos of a healthy tendon and a tendinopathy tendon. Healthy tendon
was harvested during the anterior cruciate ligament reconstruction or PL tendon during tendon graft
procedures and used as the healthy control (A); The origin of extensor carpi radialis brevis (ECRB)
tendon from lateral epicondylitis patient was harvested as tendinopathy tendon. Note the white-grayish
discoloration and friability with fibrosis, both of which are indicative of degeneration (red line) (B).
Arrow indicates the subcutaneous adipose tissue and the tissue of musculotendinous junction. PL:
Palmaris longus; ECRB: Extensor carpi radialis brevis.

Before surgical treatment, non-operative treatment was performed, including cessation of the
offending activity, physiotherapy (manipulation, stretching, ultrasound, electrical stimulation, and
strengthening exercises), corticosteroid injections, and anti-inflammatory agents for all patients.
Corticosteroid injections were done for all patients 1–3 times, and the surgery was performed at
least three months after the last injection to exclude the effect of corticosteroid injections. Patients did
not receive extracorporeal shock wave therapy, platelet-rich plasma, or botulinum toxin A injections
prior to surgery.

4.3. Cell Culture

Harvested samples were washed once in PBS, and minced into small pieces. The samples were
enzymatically digested for one hour in Dulbecco’s modified Eagle’s medium (D-MEM) supplemented
with 10 mg/mL Collagenase II (Gibco, Carlsbad, CA, USA) at 37 ◦C. Collagenase II was deactivated
by adding fetal bovine serum (FBS), and the pellet was centrifuged for five minutes at 1000 rpm. The
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cells obtained were seeded into a 100 φ dish and cultured with D-MEM supplemented with 10%
FBS, 50 mM ascorbic acid-2-phosphate (Gibco), and 1% Antibiotic-Antimycotic solution (Gibco) for
one week. The culture medium was changed every three days until confluence. Both healthy and
tendinopathy cell samples were cultured until passage 3 and used for experimentation.

4.4. Cell Morphology

Daily examination of the cell morphology was conducted under an inverted phase-contrast light
microscope for all samples (Nikon Eclipse TE300; Nikon, Tokyo, Japan).

4.5. Immunocytochemistry (ICC)

During cell culture, we confirmed the identity of tenocytes using the ICC with 2 × 105 cells. After
transferring 200 µL of cell culture to the 8-wells of a chamber slide, the cells were grown to confluence
with the addition of fresh media for one day. After washing with PBS, the cells were fixed with 4%
formaldehyde. Permeabilization of the membranes was done by incubating the slides with 0.25–0.5%
Triton X-100 in PBS for 10 min, followed by blocking with rabbit normal serum, donkey normal
serum, for vimentin and tenomodulin, respectively. The cells were incubated in the dark with mouse
anti-vimentin monoclonal antibody (1:100 dilution; Dako, Glostrup, Denmark; code: M0725) and
goat anti-tenomodulin antibody (1:25 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA; code:
sc-49325) for 60 min at 37 ◦C. After additional washing, the secondary antibodies were incubated in
the dark for 30 min at 37 ◦C, and mounted in a Vectashield H-1000 mounting medium for fluorescence
(Vector Laboratories, Burlingame, CA, USA). Analysis was done using an Olympus CKX41 microscope
equipped with epifluorescence and an Olympus XC10 digital camera. To determine the expression of
vimentin or tenomodulin in the cultured cells, we randomly sampled 40 views of cell staining from
two groups (healthy tenocyte, tendinopathy tenocyte), with approximately 1000 cells each.

4.6. Cell Counting Kit-8 (CCK-8) Assay

Cell viabilities were measured using a WST-1 assay under a serum starved condition. Healthy
tenocytes were seeded into 96-well plates at a density of 5 × 103 cells per well and treated with SP
for 0 (baseline), 24, 48, and 72 h. After incubation, 10 µL of the WST-1 solution (Dojindo Molecular
Technologies, Rockville, MD, USA) was added to each well, and the plates were incubated for 3 h
at 37 ◦C in 5% CO2. The optical densities were measured at 450 nm using an EON Gen 5.2 software
(Bio Tek, Vermont, VT, USA). Readings were taken at least three times at all time points for each sample.

4.7. Cell Counting

Cell count was determined by the percentage change in cell number at 24 h from the cell number
at 0 h. The D-MEM media in the 100 φ dish was removed and cells were detached by adding
trypsin-ethylenediaminetetraacetic acid (EDTA) at 37 ◦C in 5% CO2 at 95% relative humidity for 5 min.
Cell counting was performed using a hematocytometry under starved conditions.

4.8. RNA Isolation and qRT-PCR

Total mRNA was isolated from the cultured tenocytes and homogenized in TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) as per the manufacturer’s instructions. A total of 1 µg RNA
from each sample was reverse-transcribed into complementary DNA (cDNA) using an iScript™
cDNA Synthesis Kit (Bio-Rad Applied Science, Mannheim, Germany). The PCR was carried out in
triplicate using the Bio-Rad CFX96 Real-Time PCR Detection System. Amplification of total RNA
was performed using the Taq Man Gene Expression Assay (Applied Biosystems, Warrington, UK) for
the analyses of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (ABI code: Hs99999905_m1),
COL1A1 (Hs00164004_m1), COL3A1 (Hs00943809_m1), PTGS2 (COX2) (Hs00153133_m1), SCX
(Hs03054634_g1), MMP1 (Hs00899658_m1), ACTA2 (Hs00426835_g1), TAC1 (SP) (Hs00153133_m1), and
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NK-1R (Hs00185530_m1), respectively. Transcript levels were normalized against GAPDH expression,
which was expressed stably across the sample, and gene expression was calculated using 2−∆∆Ct. For
more accurate analysis, transcript levels were measured at least three times for each sample.

4.9. Western Blot

Cells were lysed by protein extraction buffer (Pro-Prep, iNtRON Biotechnology, Gyeonggi-do,
Korea). After centrifugation at 4 ◦C and 13,000 rpm for 15 min, the protein content of lysed cells was
determined by the Bradford assay. Same amounts of total protein were run on 10% SDS polyacrylamide
gels and transferred to a nitrocellulose membrane. The membranes were blocked with 5% non-fat milk
powder in room temperature, and then incubated with primary antibodies in tris-buffered saline-tween
20 (TBS-T) overnight at 4 ◦C. We used the following primary antibodies: COL3A1 protein 1:1000 (Gene
Tex, Irvine, CA, USA), COX2 protein 1:1000 (Gene Tex), and MMP1 protein 1:1000 (Gene Tex).

The membranes were then washed in TBS-T and incubated with 1:5000 goat anti-rabbit IgG
and 1:5000 rabbit anti-mouse IgG (Santa Cruz Biotechnology) secondary antibodies for 1 h at room
temperature. Next, the bands of membranes were visualized by an ECL (enhanced luminol-based
chemiluminescence) detection kit (Bio-Rad Laboratories, Hercules, CA, USA). The quantification of
protein was conducted by densitometric digital analysis of protein bands using the ChemiDoc™ XRS+
with Image Lab™ Software ver. 6.0 (Bio-Rad Laboratories). Equal loading was confirmed by re-probing
the membrane with β-actin (Cell Signaling technology, Danvers, MA, USA). Western blot analysis was
performed at least three times for each sample, and densitometric measurements were taken for each
three different bands.

4.10. Statistical Analysis

Data were collected and analyzed using R software (version 2.11.1; R Foundation for Statistical
Computing, Vienna, Austria). The Mann–Whitney U test was used to compare the healthy and
tendinopathy samples, and a Wilcoxon signed rank test was used to evaluate the effect of SP on the
healthy tenocytes. To analyze the time-dependent effects of SP on cell proliferation, repeated measures
ANOVA was used to determine whether the results were significantly different at the four time points
and the Wilcoxon signed rank test was used for the hemocytometry. Differences were considered
statistically significant when the p value was less than 0.05 (p < 0.05).

5. Conclusions

In summary, our results showed that SP enhanced cellular proliferation and increased remodeling
via the upregulation of MMP1 to repair damaged tissues. These enhanced proliferative and remodeling
effects may be beneficial to acute tendon injury repair. However, in repetitive tendon injuries such as
tendinopathy, SP had an eventual detrimental effect on tendon healing due to the increase of Type 3
collagen, which is related to the tendon structural weakness instead of Type 1 collagen. In addition, SP
was responsible for the symptoms of tendinopathy with the upregulation of COX2. In conclusion, our
results suggest that an abnormal increase in SP expression plays a crucial role in the development of
tendinopathy and associated symptoms, suggesting its use as a possible future therapeutic target for
potential treatments.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/6/1241/s1.
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