Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP\textsubscript{83-96}) Epitope to Function as T-cell Receptor Antagonists

Mary-Patricia Yannakakis1,2, Carmen Simal1, Haralambos Tzoupis1, Maria Rodi3, Narges Dargahi4, Monica Prakash4, Athanasia Mouzaki3, James A. Platts2, Vasso Apostolopoulos4,*,† and Theodore V. Tselios1,*,†

1 Department of Chemistry, University of Patras, Rion Patras 26504, Greece; yannakakism@gmail.com (M.-P.Y.); carmen.simal@gmail.com (C.S.); haralambostz@gmail.com (H.T.)

2 School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, Wales, UK; platts@cardiff.ac.uk

3 Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Rion, Patras 26500, Greece; marodi_biol@yahoo.gr (M.R.); mouzaki@upatras.gr (A.M.)

4 Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC 3021, Australia; Narges.dargahi@live.vu.edu.au (N.D.); monica.prakash@vu.edu.au (M.P.)

* Correspondence: vasso.apostolopoulos@vu.edu.au (V.A.); ttselios@upatras.gr (T.V.T.); Tel.: +61-3-9919-2025 (V.A.); +30-261-099-7905 (T.V.T.)

† These authors have equal contribution.

Academic Editor: Christoph Kleinschnitz
Received: 26 April 2017; Accepted: 2 June 2017; Published: date
Figure S1. (a) Plot of rms values over time for the Cα atoms of T cell receptor (TCR) residues in complex with compounds 14-19, (b) atomic positional fluctuations for the different residues in the TCR for the different molecular dynamics (MD) simulation runs, and (c) rms values for compounds 14-19, during the MD simulations.

Table S1. The chemical structures and properties of compounds 1-13, purchased from Ambinter Chemicals.

<table>
<thead>
<tr>
<th>Ambinter Code</th>
<th>Structure</th>
<th>Molecular Weight</th>
<th>logPa</th>
<th>PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amb11063559</td>
<td></td>
<td>430.545</td>
<td>3.2859</td>
<td>58.67</td>
</tr>
<tr>
<td>Amb10213450</td>
<td></td>
<td>420.504</td>
<td>4.1151</td>
<td>89.16</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Molecular Formula</td>
<td>Molecular Weight</td>
<td>PLogp</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Amb11124336</td>
<td></td>
<td>C₂₆H₂₈N₄O₂S</td>
<td>436.57</td>
<td>4.5836</td>
</tr>
<tr>
<td>Amb11124920</td>
<td></td>
<td>C₂₇H₂₆N₆O₂S</td>
<td>498.599</td>
<td>5.5493</td>
</tr>
<tr>
<td>Amb11049469</td>
<td></td>
<td>C₂₁H₃₁N₇O₂</td>
<td>413.517</td>
<td>0.2879</td>
</tr>
<tr>
<td>Amb11020966</td>
<td></td>
<td>C₂₆H₃₅N₃O₄</td>
<td>476.551</td>
<td>2.6686</td>
</tr>
<tr>
<td>Amb11084608</td>
<td></td>
<td>C₂₅H₂₇ClN₂O</td>
<td>418.919</td>
<td>5.3195</td>
</tr>
<tr>
<td>Amb20310491</td>
<td></td>
<td>C₂₅H₂₉N₃O₄</td>
<td>445.51</td>
<td>3.392</td>
</tr>
<tr>
<td>Amb562959</td>
<td></td>
<td>439.466</td>
<td>4.5193</td>
<td>94.06</td>
</tr>
<tr>
<td>Amb499010</td>
<td></td>
<td>495.572</td>
<td>5.2454</td>
<td>94.06</td>
</tr>
<tr>
<td>Amb409596</td>
<td></td>
<td>469.578</td>
<td>5.4761</td>
<td>79.26</td>
</tr>
<tr>
<td>Amb509000</td>
<td></td>
<td>470.612</td>
<td>5.7381</td>
<td>122.06</td>
</tr>
<tr>
<td>Amb58395</td>
<td></td>
<td>427.495</td>
<td>5.212</td>
<td>65.38</td>
</tr>
</tbody>
</table>

LogP and PSA values are reported as shown on Ambinter Chemicals catalogue: http://www.ambinter.com/
Table S2. Semi-empirical (SE) binding energy in solvent, for molecule 15 in complex with the whole TCR and with selected binding site residues (kcal/mol).

<table>
<thead>
<tr>
<th>Method</th>
<th>Whole Receptor</th>
<th>Selected Site Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM7</td>
<td>-34.39</td>
<td>-24.09</td>
</tr>
<tr>
<td>PM6-D</td>
<td>6.00</td>
<td>0.26</td>
</tr>
<tr>
<td>PM6-DH2</td>
<td>-0.57</td>
<td>-6.16</td>
</tr>
<tr>
<td>AM1</td>
<td>19.30</td>
<td>16.41</td>
</tr>
<tr>
<td>PM6</td>
<td>27.89</td>
<td>18.178</td>
</tr>
<tr>
<td>RM1</td>
<td>28.60</td>
<td>23.21</td>
</tr>
<tr>
<td>PM3</td>
<td>25.65</td>
<td>18.71</td>
</tr>
<tr>
<td>PM6-D3</td>
<td>-1.02</td>
<td>-6.21</td>
</tr>
<tr>
<td>PM6-DH+</td>
<td>-1.56</td>
<td>-5.87</td>
</tr>
</tbody>
</table>
Table S3. Interaction energies for 20 MD snapshots of analogue 15, using PM7 in solvent.

<table>
<thead>
<tr>
<th>MD Snapshot</th>
<th>Analogue 15 Interaction Energy (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-53.6571</td>
</tr>
<tr>
<td>2</td>
<td>-68.5798</td>
</tr>
<tr>
<td>3</td>
<td>-51.6185</td>
</tr>
<tr>
<td>4</td>
<td>-52.5194</td>
</tr>
<tr>
<td>5</td>
<td>-43.5009</td>
</tr>
<tr>
<td>6</td>
<td>-47.5047</td>
</tr>
<tr>
<td>7</td>
<td>-46.076</td>
</tr>
<tr>
<td>8</td>
<td>-43.8191</td>
</tr>
<tr>
<td>9</td>
<td>-39.9552</td>
</tr>
<tr>
<td>10</td>
<td>-55.3105</td>
</tr>
<tr>
<td>11</td>
<td>-48.8477</td>
</tr>
<tr>
<td>12</td>
<td>-50.9680</td>
</tr>
<tr>
<td>13</td>
<td>-28.8528</td>
</tr>
<tr>
<td>14</td>
<td>-44.3055</td>
</tr>
<tr>
<td>15</td>
<td>-45.3845</td>
</tr>
<tr>
<td>16</td>
<td>-42.7999</td>
</tr>
<tr>
<td>17</td>
<td>-52.5803</td>
</tr>
<tr>
<td>18</td>
<td>-38.2581</td>
</tr>
<tr>
<td>19</td>
<td>-44.1766</td>
</tr>
<tr>
<td>20</td>
<td>-48.007</td>
</tr>
<tr>
<td>Mean</td>
<td>-47.2926</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>7.9095</td>
</tr>
<tr>
<td>Standard Error (SE)</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Table S4. Interaction energy for molecule 15 in solvent as calculated by different density functional theory (DFT) methodologies, employing different basis sets.

<table>
<thead>
<tr>
<th>DFT Method in Solvent</th>
<th>cc-pVTZ</th>
<th>cc-pVDZ</th>
<th>6-311G</th>
<th>6-31G</th>
<th>6-31G**</th>
<th>6-31+G**</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3lyp</td>
<td>-10.88</td>
<td>-24.40</td>
<td>-18.46</td>
<td>-23.84</td>
<td>-23.78</td>
<td>-6.66</td>
</tr>
<tr>
<td>Cam-b3lyp</td>
<td>-18.58</td>
<td>-32.12</td>
<td>-26.74</td>
<td>-31.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M06</td>
<td>-33.25</td>
<td>-40.09</td>
<td></td>
<td></td>
<td>-38.58</td>
<td></td>
</tr>
<tr>
<td>M06-2X</td>
<td>-31.63</td>
<td>-40.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B97D</td>
<td>-42.41</td>
<td></td>
<td>-54.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPW1PW91</td>
<td>-11.33</td>
<td></td>
<td>-22.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHandH</td>
<td>-41.77</td>
<td></td>
<td>-51.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3lyp-D</td>
<td>-42.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S5. Interaction energies for analogues 17-19, using PM7.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Interaction Energy (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>-35.39</td>
</tr>
<tr>
<td>18</td>
<td>-37.28</td>
</tr>
<tr>
<td>19</td>
<td>-35.40</td>
</tr>
</tbody>
</table>
Figure S2. RP-HPLC chromatogram (top) and ESI-MS (bottom) of final analogue 15 (MW\textsubscript{theoretical}: 285.34).

RP-HPLC Conditions:
- i) Column: Agilent ZORBAX Eclipse Plus C18 (3.5μm, 100x4.6mm),
- ii) Solvents: H\textsubscript{2}O (0.08% TFA), AcN (0.08% TFA),
- iii) Gradient elution: from 10% AcN to 100% AcN over 30min.
- iv) t\text{R}: 19.3 min, Purity: 99%
Figure S3. 1H NMR spectra of analogue 15 (400 MHz, CD$_3$OD) δ 7.27-7.36 (m, 4 H, Ph, Ar), 7.20-7.22 (m, 2 H, Ph), 6.78 (dd, 1 H, $J = 2.8, 2.4$ Hz, Ar), 6.52 (dd, 1 H, $J = 2.8, 2.0$ Hz, Ar), 5.13 (s, 2 H, CH$_2$Ph), 3.46 (t, 2 H, $J = 6.3$ Hz, CH$_2$), 3.35 (t, 2 H, $J = 6.3$ Hz, CH$_2$).

Figure S4. 13C NMR spectra of analogue 15 (100 MHz, CD$_3$OD) δ 168.6 (C=O), 159.0 (C=NH), 139.0 (C Ph), 129.8 (2 × CH Ph), 129.0 (CH), 128.5 (2 × CH Ph), 125.4 (CH), 123.6 (CH), 120.1 (C Ar), 109.0 (CH Ar), 54.5 (CH$_2$Ph), 42.4 (CH$_2$), 39.4 (CH$_2$).
Figure S5. RP-HPLC chromatogram (top) and ESI-MS (bottom) of final analogue 16 (MW\textsubscript{theoretical}: 285.34).

RP-HPLC Conditions:
i) Column: Agilent ZORBAX Eclipse Plus C18 (3.5\textmu m, 100x4.6mm),
ii) Solvents: H\textsubscript{2}O (0.08\% TFA), AcN (0.08\%TFA),
iii) Gradient elution: from 5\% AcN to 100\% AcN over 30min.
iv) t\textsubscript{R}: 20.2 min.

Figure S6. 1H NMR spectra of analogue 16 (600 MHz, CD\textsubscript{3}OD) \delta 7.19-7.27 (m, 3 H, Ph), 7.07 (d, 2 H, \textit{J} = 7.8 Hz, Ph), 6.97-6.98 (m, 1 H, Ar), 6.79-6.80 (m, 1 H, Ar), 6.14-6.15 (m, 1 H, Ar), 5.59 (s, 2 H, 3.40 (t, 2 H, \textit{J} = 6.3 Hz, CH\textsubscript{3}), 3.26 (t, 2 H, \textit{J} = 6.3 Hz, CH\textsubscript{3}).
Figure S7. 13C NMR spectra of analogue 16 (100 MHz, CD$_3$OD) δ 165.2 (C=O), 159.9 (C=NH), 140.6 (Ph), 129.5 (2 × CH Ph), 129.3 (CH), 128.3 (CH), 127.9 (2 × CH Ph), 126.0 (C Ar), 114.9 (CH Ar), 109.0 (CH Ar), 52.7 (CH:Ph), 42.4 (CH$_2$), 39.3 (CH$_2$).

Figure S8. RP-HPLC chromatogram (top) and ESI-MS (bottom) of final analogue 17 (MW$_{\text{theoretical}}$: 353.48).

RP-HPLC Conditions:

i) Column: Agilent ZORBAX Eclipse Plus C18 (3.5μm, 100x4.6mm),

ii) Solvents: H$_2$O (0.08% TFA), AcN (0.08% TFA),

iii) Gradient elution: from 10% AcN to 100% AcN over 30min.

iv) ts: 17.7 min, Purity: 99%
Figure S9. 1H NMR spectra of analogue 17 (600 MHz, CD$_3$OD) δ 7.95 (d, 1 H, $J = 7.8$ Hz, Ar$'$), 7.90 (s, 1 H, Ar$'$), 7.57 (t, 1 H, $J = 7.8$ Hz, Ar$'$), 7.43 (d, 1 H, $J = 7.8$ Hz, Ar$'$), 7.41 (app dd, 1 H, $J = 2.4, 1.8$ Hz, Ar), 6.85 (dd, 1 H, $J = 3.0, 2.4$ Hz, Ar), 6.56 (dd, 1 H, $J = 3.0, 1.8$ Hz, Ar), 5.26 (s, 2 H, CH$_2$Ar$'$), 3.47 (t, 2 H, $J = 6.0$ Hz, CH$_2$), 3.36 (t, 2 H, $J = 6.0$ Hz, CH$_2$).

Figure S10. 13C NMR spectra of analogue 17 (100 MHz, CD$_3$OD) δ 168.6 (C=O), 159.0 (2 × C=NH), 140.8 (C Ar$'$), 131.5 (CH), 131.1 (CH), 127.7 (CH), 127.2 (CH), 126.3 (C Ar$'$), 125.4 (CH), 123.7 (CH), 120.5 (C Ar), 109.4 (CH Ar), 54.0 (CH$_2$Ar$'$), 42.4 (CH$_2$), 39.5 (CH$_2$).
Figure S11. RP-HPLC chromatogram (top) and ESI-MS (bottom) of final analogue 18 (MW\textsubscript{theoretical} 343.39).

RP-HPLC Conditions:

i) Column: Agilent ZORBAX Eclipse Plus C18 (3.5μm, 100x4.6mm),

ii) Solvents: H\textsubscript{2}O (0.08% TFA), AcN (0.08%TFA),

iii) Gradient elution: from 10% AcN to 100% AcN over 30min.

iv) tR: 16.6 min, Purity: 98%.

Figure S12. ¹H NMR spectra of analogue 18 (600 MHz, CD\textsubscript{3}OD) δ 7.33 (app dd, 1 H, J = 2.4, 1.8 Hz, Ar), 7.27 (d, 2 H, J = 8.1 Hz, Ar′), 7.17 (d, 2 H, J = 8.1 Hz, Ar′), 6.78 (dd, 1 H, J = 3.0, 2.4 Hz, Ar), 6.52 (dd, 1 H, J = 3.0, 1.8 Hz, Ar′), 5.11 (s, 2 H, CH\textsubscript{2}Ar′), 3.59 (s, 2 H, CH\textsubscript{2}CO\textsubscript{2}H), 3.46 (t, 2 H, J = 6.0 Hz, CH\textsubscript{2}), 3.35 (t, 2 H, J = 6.0 Hz, CH\textsubscript{2}).
Figure S13. RP-HPLC chromatogram (top) and ESI-MS (bottom) of final analogue 19 (MW\textsubscript{theoretical} 343.38).

RP-HPLC Conditions:

i) Column: Agilent ZORBAX Eclipse Plus C18 (3.5 μm, 100x4.6mm),

ii) Solvents: H\textsubscript{2}O (0.08% TFA), AcN (0.08% TFA),

iii) Gradient elution: from 5% AcN to 100% AcN over 30 min.

iv) \(t_R \): 18.9 min, Purity: 99%.

Figure S14. \(^1\)H NMR spectra of analogue 19 (400 MHz, CD\textsubscript{3}OD) \(\delta \) 7.98 (d, 2 H, \(J = 8.0 \) Hz, Ar'), 7.36 (app t, 1 H, \(J = 2.0 \) Hz, Ar), 7.28 (d, 2 H, \(J = 8.0 \) Hz, Ar'), 6.81-6.82 (m, 1 H, Ar), 6.55 (dd, 1 H, \(J = 2.8, 2.0 \) Hz, Ar), 5.23 (s, 2 H, CH\textsubscript{2}Ar'), 3.89 (s, 3 H, OCH\textsubscript{3}), 3.47 (t, 2 H, \(J = 6.4 \) Hz, CH\textsubscript{3}), 3.35 (t, 2 H, \(J = 6.4 \) Hz, CH\textsubscript{3}).