Supplementary materials

Bio-mathematical two-pathway model. The initial number of fragments $n_{0}=n_{0}(t)$ is assumed to be produced proportional to the dose rate R and a cleavage constant $k_{\text {cleav }}$. The number of fragments $n_{1, \text { fast }}=n_{1, \text { fast }}(t)$ represents fragments recruited for the fast repair-pathway by a first order kinetics process with the speed constant $k_{0, f \text { fast }}$. Following the fast repair pathway, the number $n_{2, \text { fast }}=n_{2, \text { fast }}(t)$ is counting fragments prepared for the fast final repair process by a "delayed" first order kinetics process with the speed constant $k_{1, \text { fass }}$, the delay time $t_{r, \text { fast }}$. These fragments are removed by a second order process (two fragments are linked together) with the repair constant $k_{2, \text { fast }}$. The slow repair pathway has the same structure with the number of fragments recruited for the slow repair pathway $n_{1, \text { slow }}=n_{1, \text { slow }}(t)$ by a first order kinetics process with the speed constant $k_{0, \text { slow }}$ and the number of fragments $n_{2, \text { slow }}=n_{2, \text { slow }}(t)$ prepared for the slow final repair process by a "delayed" first order kinetics process (speed constant $k_{1, \text { slow }}$; delay time $t_{r, \text { slow }}$) and removed by second order repair (repair constant $k_{2, \text { slow }}$). The total number of free fragments (visible in the Comet tail) is calculated by:

$$
\begin{equation*}
n_{\text {Comet }}=n_{0}+\sum_{i}\left(n_{i, f \text { fast }}+n_{i, s l o w}\right)+b_{n} \tag{1}
\end{equation*}
$$

where b_{n} is the base line number of fragments that can be estimated along with the other parameters. All numbers of fragments are scaled to the percentage of DNA in tail (\%DNA fragments in tail, corresponding to the experimental data). The induction-, production-, and repair rates are given by the following system of ordinary (ODE) and delay differential equations (DDE):

$$
\begin{align*}
& \frac{d n_{0}}{d t}=k_{\text {cleav }} R-\left(k_{0, \text { fast }}+k_{0, \text { slow }}\right) \cdot n_{0} \\
& \frac{d n_{1, \text { fast }}}{d t}=k_{0, f \text { fast }} n_{0}-k_{1, \text { fast }} n_{1, \text { fast }}\left(t-t_{r, \text { fast }}\right) \\
& \frac{d n_{2, \text { fast }}}{d t}=k_{1, \text { fost }} n_{1, \text { fost }}\left(t-t_{r, \text { fast }}\right)-k_{2, \text { fast }} n_{2, \text { fast }}^{2} \tag{2}\\
& \frac{d n_{1, s l o w}}{d t}=k_{0, \text { slow }} n_{0}-k_{1, \text { slow }} n_{1, \text { slow }}\left(t-t_{r, \text { slow }}\right) \\
& \frac{d n_{2, \text { slow }}}{d t}=k_{1, \text { slow }} n_{1, \text { slow }}\left(t-t_{r, \text { slow }}\right)-k_{2, \text { slow }} n_{2, \text { slow }}^{2}
\end{align*}
$$

With the initial conditions:

$$
n_{0}(0)=n_{2, \text { fast }}(0)=n_{2, \text { slow }}(0)=0
$$

and
$n_{1, \text { fast }}(t<0)=n_{1, \text { slow }}(t<0)=0$

