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Abstract: In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans
constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and
recognition are referred to as “glycogenes”. The extreme complexity of the glycome requires the
regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present
glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers.
In this review, we discuss how cancer-associated alterations of promoter methylation, histone
methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant
phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene
silencing. However, treatment with demethylating agents sometimes results in silencing, rather
than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent
regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant
glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific
and promising approach than the use of drugs, which broad target methylation/acetylation. A very
specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only
regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription
factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral
part of the epigenetic code.
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1. Introduction

As a part of the genome, genes involved in the biosynthesis, degradation, transport,
and recognition of the sugar portions of glycoconjugates (collectively referred to as glycogenes)
undergo epigenetic regulation. While the simple gene expression/protein expression model could at
best account for primary gene products, the existence of epigenetic mechanisms adds another layer
of complexity and opportunity for regulating biological functions. Since glycans are not primary
gene products, but secondary products of a complex interplay among glycogenes, the epigenetic
regulation of the glycome moves a step forward to understanding the complexity and opportunity of
biological regulation. It has been hypothesized that the epigenetic regulation of glycogenes provides
mammalians with a quick and heritable mechanism generating glycome plasticity to cope with
microorganisms [1,2]. As a consequence of epigenetic regulation of glycogenes in solid tissues,
the whole glycome of plasma proteins can be modulated. This leads to important functional changes,
as well as to the appearance of disease-related glycomic markers [3–5]. In light of the enormous impact
of epigenetics on human cancers, which are very frequently associated with dramatic deregulation of
glycan expression, a growing number of reports have focused on the epigenetic mechanisms affecting
glycosylation in cancer.

Int. J. Mol. Sci. 2017, 18, 998; doi:10.3390/ijms18050998 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2017, 18, 998 2 of 19

In this review, we discuss the glycogenes that were found to be regulated by promoter
methylation [6–8], histone methylation/acetylation [9–11], and microRNAs [12,13], in cancer. We see
how different epigenetic mechanisms converge to regulate specific pathways of cancer-associated
carbohydrate structures. We also summarize the case of O-linked GlcNAc, in which glycosylation is
not only the target of epigenetic mechanisms, but contributes to the generation of the epigenetic code.
We expect that the relatively small number of glycogenes epigenetically modulated in cancer so far
identified are only a minority of those actually undergoing epigenetic regulation.

2. Epigenetic-Regulation of Cancer Associated Structures

2.1. Core Glycosylation of N-Linked Chains

In this section, we will discuss the epigenetic regulation of three well-known cancer associated
carbohydrate structures present in the internal core of N-glycans.

2.1.1. Core Fucosylation

Core fucosylation consists in the addition of a Fuc residue α1,6-linked to the innermost GlcNAc
residue of N-linked chain (Figure 1A). The biosynthesis of this structure is due to a single enzyme:
fucosyltransferase 8, encoded by the FUT8 gene [14]. In mice, the genetic ablation of FUT8 dysregulates
TGF-β signaling, leading to abnormal lung development and emphysema-like phenotype [15].
Increased core fucosylation has been reported during hepatocarcinogenesis, in both cell-associated
and secreted proteins, including α-fetoprotein and α1-antitrypsin, which are plasma markers of
the disease [16]. However, the expression of FUT8 in cancer biology is double-hedged—it can be
associated with both increased [17] or decreased [18] malignancy in different tissues. FUT8 is the
target of different miRNA. In colorectal cancer, miR-198 up-regulates FUT8 expression at both the
mRNA and protein level, leading to an invasive phenotype [19]. In liver cancer cells, FUT8 appears to
be down-regulated by miR-122, miR-34a [20], miR-26a, miR-34a, and miR-146a [21]. In some cases,
miR-34a modifies protein but not mRNA levels [20], showing that some miRNAs can exert their effects
only at a translational level.

2.1.2. Bisecting GlcNAc, β1,6 and β1,4 Branching

Bisecting GlcNAc consists of a GlcNAc residue β1,4-linked to the innermost Man residue of the
N-glycan core (Figure 1A). Its biosynthesis is due to β-N-acetylglucosaminyltransferase 3, product
of the gene MGAT3. The addition of GlcNAc residues either with a β1,4- or a β1,6-linkage to the
two external Man residues of the core is mediated by β-N-acetylglucosaminyltransferases 4 and -5,
product of the genes MGAT4 and MGAT5, respectively (Figure 1A). The epigenetically regulated
alternative addition of the bisecting GlcNAc, or of the β1,6-linked GlcNAc, to the N-glycans of
E-cadherin [22] provides a very good example of the modulation of a basic cancer property by glycans.
When bisecting GlcNAc is replaced with β1,6-linked GlcNAc on the N-glycans of E-cadherin because
of decreased MGAT3 expression β-catenin (which is usually leashed by binding to the cytoplasmic
side of E-cadherin), it is released in the cytoplasm, leading to epithelial to mesenchymal transition
(EMT) [23–25]. The methylation of the MGAT3 promoter is responsible for MGAT3 down-regulation
and the consequent EMT [25]. In general, the presence of bisecting GlcNAc is associated with reduced
malignancy, mainly because it prevents the addition of the metastasis-associated β1,6-branching.
However, in some cases, an association with increased malignancy has also been reported [26]. Among
epigenetic mechanisms, promoter methylation appears to play a pivotal role in inhibiting MGAT3
gene expression. Bisecting GlcNAc is up-regulated in ovarian cancers, while treatment with 5-AZA
of ovarian cancer cell lines induces MGAT3, bisecting GlcNAc expression [27], and changes in the
pattern of glycosylation of secreted glycoproteins [28]. Among ovarian and breast basal-like cancer
patients, high MGAT3 promoter methylation correlates with longer survival [26]. 5-AZA treatment
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of epatocarcinoma HepG2 cells resulted in modulation of about 20% of the glycogenes, although the
consequent glycomic changes where mainly consistent with increased expression of MGAT3 [29].Int. J. Mol. Sci. 2017, 18, 998 3 of 19 

 

 

Figure 1. Structure of some core glycans. Monosaccharides are depicted according to this 
representation: blue square—GlcNAc, N-acetylglucosamine; yellow square—GalNAc, N-
acetylgalactosamine; yellow circle—Gal, galactose; blue circle—Glc, glucose; green circle—Man, 
mannose; red triangle—Fuc, fucose; pink diamond—sialic acid, Sia. Anomers, linkage positions, and 
enzymes involved in relevant reactions are indicated. (A) N-glycans. As an example, the reactions are 
indicated using only the simple bi-antennary core structure as the substrate. Note that they are not 
alternative and can occur in various orders, because many of the indicated products can act as the 
substrate for several of the reported enzymes. An exception is represented by MGAT3 (bisecting 
enzyme) and MGAT5 (branching enzyme), whose reactions are mutually exclusive; (B) O-glycans; 
(C) Gangliosides. In both panels, the enzymes are indicated in the order in which they act. 

The link between β1,6 branching and metastasis is supported by a large body of evidence [30], 
but the underlying mechanisms are complex and only partially understood. A key role is certainly 
played by the preferential binding of galectin-3 to terminal structures carried by β1,6-linked branches 
[31]. It is not clear whether MGAT5 is directly regulated by promoter methylation. In fact, changes in 
glycans of glycoproteins secreted by 5-AZA-treated ovarian cancer cells have been attributed to 
changes in MGAT5 expression [28]. On the other hand, in macrophage-melanoma fusion hybrids, 
treatment with 5-AZA does not result in the activation of MGAT5 transcription, but results in its 
down-regulation. This was explained with the demethylation-induced up-regulation of the negative 
regulator nm23 encoded by the NME1 gene [32]. 

The addition of β1,4-linked GlcNAc, catalyzed by MGAT4, can be inhibited in mammary 
epithelial cells by miR-424, leading to cell cycle arrest through CCND1 down-regulation [33]. 

2.2. Mucin-Type O-Glycosylation 

The addition of the first GalNAc O-linked to serine or threonine of mucin-type glycans is 
mediated by a family of 20 peptides: GalNAc transferases (Figure 1B), which are the products of 
genes GALNT1-GALNT20. Members of the GALNT family are aberrantly expressed in various cancer 
types, mainly as a consequence of deregulated miRNA expression. 

Figure 1. Structure of some core glycans. Monosaccharides are depicted according to this representation:
blue square—GlcNAc, N-acetylglucosamine; yellow square—GalNAc, N-acetylgalactosamine; yellow
circle—Gal, galactose; blue circle—Glc, glucose; green circle—Man, mannose; red triangle—Fuc,
fucose; pink diamond—sialic acid, Sia. Anomers, linkage positions, and enzymes involved in relevant
reactions are indicated. (A) N-glycans. As an example, the reactions are indicated using only the simple
bi-antennary core structure as the substrate. Note that they are not alternative and can occur in various
orders, because many of the indicated products can act as the substrate for several of the reported
enzymes. An exception is represented by MGAT3 (bisecting enzyme) and MGAT5 (branching enzyme),
whose reactions are mutually exclusive; (B) O-glycans; (C) Gangliosides. In both panels, the enzymes
are indicated in the order in which they act.

The link between β1,6 branching and metastasis is supported by a large body of evidence [30],
but the underlying mechanisms are complex and only partially understood. A key role is certainly
played by the preferential binding of galectin-3 to terminal structures carried by β1,6-linked
branches [31]. It is not clear whether MGAT5 is directly regulated by promoter methylation. In fact,
changes in glycans of glycoproteins secreted by 5-AZA-treated ovarian cancer cells have been attributed
to changes in MGAT5 expression [28]. On the other hand, in macrophage-melanoma fusion hybrids,
treatment with 5-AZA does not result in the activation of MGAT5 transcription, but results in its
down-regulation. This was explained with the demethylation-induced up-regulation of the negative
regulator nm23 encoded by the NME1 gene [32].

The addition of β1,4-linked GlcNAc, catalyzed by MGAT4, can be inhibited in mammary epithelial
cells by miR-424, leading to cell cycle arrest through CCND1 down-regulation [33].

2.2. Mucin-Type O-Glycosylation

The addition of the first GalNAc O-linked to serine or threonine of mucin-type glycans is
mediated by a family of 20 peptides: GalNAc transferases (Figure 1B), which are the products of genes
GALNT1-GALNT20. Members of the GALNT family are aberrantly expressed in various cancer types,
mainly as a consequence of deregulated miRNA expression.
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GALNT1 is negatively regulated by miR-129 in bladder cancer [34]. In hepatocellular
carcinoma [35] and in cervical cancer cells [36], down-regulation of GALNT4 by miR-9 promotes
invasive growth. Depending on the cancer type, GALNT7 displays opposite tumor-promoting
or tumor-suppressing activities, and is regulated by different miRNAs. In laryngeal squamous
cell carcinoma, it is down-regulated by miR-34a and miR-34c, with consequent reduced cell
proliferation and invasion [37]. GALNT7 promotes tumor growth also in esophageal squamous
cell carcinoma, where it is overexpressed because of reduced miR-214 [38]. On the other hand,
miR-30b/30d upregulation in melanoma correlates with stage, metastatic potential, shorter time
to recurrence, and reduced overall survival, because of reduced expression of GALNT7. This leads
to increased synthesis of the immunosuppressive cytokine IL-10, and to reduced immune cell
activation [39]. GALNT7 displays a tumor-suppressor effect also in hepatocellular carcinoma cells.
In fact, targeting GALNT7 by the passenger miR-17-3p enhances proliferation and migration [40].
Interestingly, the mature miR-17-5p also enhances tumor growth by targeting the tumor suppressor
PTEN [40]. Decreased expression of miR-122, which is under the control of hepatocyte nuclear factor
4α in hepatitis B virus hepatocarcinoma, leads to overexpression of GALNT10 and consequently to
increased O-glycosylation and signaling through the EGF pathway [41]. In mammary epithelial cells,
miR-424 down-regulates GALNT13 [33]. miR-125a regulates ovarian cancer proliferation and invasion
by repressing GALNT14 [42].

Without further sugar additions, the O-linked GalNAc forms the Tn antigen, which is a
well-known cancer-associated structure. The second step of the biosynthesis of the O-linked chains
is often represented by the addition of a β1,3-linked galactose residue to GalNAc, forming the Core
1 or Thomsen-Friedenreich (or T) antigen (Figure 1B), mediated by core 1 β1,3-galactosyltransferase
(C1GALT1 or T-synthase). This enzyme requires the molecular chaperone Cosmc for its activity. In the
presence of a dysfunctional Cosmc, the Tn antigen accumulates. Cosmc expression is down-regulated
by promoter methylation [43], and together with T-synthase, provides a good example of coordinated,
but differential, expression. In fact, both genes are regulated by transcription factors of the same
SP/Kruppel-like transcription factors, but in a B cell line only the Cosmc promoter undergoes
methylation, despite the presence of CpG islands in the promoter region of both genes [44].

The addition of α2,6-linked sialic acid to the Tn antigen, mainly mediated by ST6GALNAC1,
leads to the formation of the cancer-associated sialyl-Tn antigen and blocks further chain elongation
(Figure 1B). The ST6GALNAC1 gene undergoes hypermethylation out of the promoter region in breast
cancer patients positive for both estrogen and progesterone receptors, but not in those negative [45].
The effect of such differential DNA methylation on ST6GALNAC1 expression is not reported yet.
Conversely, ST6GALNAC1 down-regulation was reported in esophageal squamous cell carcinoma
patients, and was found to be associated with promoter methylation in cell lines [46].

2.3. Gangliosides

Gangliosides are sialylated glycolipids whose expression is frequently deranged in cancer [47].
The final sialylation of gangliosides is mediated by several sialyltransferases, some of which are
regulated by promoter methylation or miRNAs. In prostate cancer cell lines, the biosynthesis of
ganglioside GD1a (Figure 1C) is regulated by sialyltransferase ST3GAL2, whose promoter methylation
blocks the transcriptional stimulation operated by testosterone [48]. Sialyltransferase ST6GALNAC5,
responsible for GD1α biosynthesis, displays CpG hypermethylation in both adenomas and carcinomas
of the colon, but without effect on gene expression [49]. In one study, it was shown that three
glycosyltransferases, ST3GAL5, ST6GALNAC5, and B3GLCT (the first two involved in ganglioside
biosynthesis, the third in elongation of O-linked fucosylglycans), affect EMT, and are regulated by
miRNAs of the miR-200 family. Silencing of these glycogenes induces EMT, like the expression of
miR-200f, indicating a causal role of these gangliosides in EMT [50]. A very recent study confirmed
that targeting the 3′UTR of ST3GAL5 by miR-26a, miR-548l and miR-34a downregulates enzyme
expression and the growth of hepatocarcinoma cells [51].
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2.4. Type 1 and Type 2 Chain Elongation

Both N- and O-glycans can be elongated by repeating units of galactose linked to GlcNAc either
through a β1,3 or a β1,4 linkage, giving rise to type 1 or type 2 (lactosamininc) chains, respectively
(Figure 2A). Several β1,3-galactosyltransferases (B3GALTs) or β1,4-galactosyltransferases (B4GALTs)
mediate the elongation of type 1 or type 2 chains, respectively, and are regulated by epigenetic
mechanisms. B3GALT5, which is responsible for switching oligosaccharide elongation to the type 1
chain in many epithelial cells, provides quite a complex example of epigenetic regulation. Two main
transcripts were described with different 3′ UTR, but with an identical coding sequence. One, named
the native transcript since it is conserved through the evolution, is driven by a promoter affected
by the ubiquitous NF-Y transcription factor, and is placed in the context of two CpG islands [52].
In colon cancer, hypermethylation of the native promoter results in gene silencing [53]. The same
promoter appears to be hypomethylated in both normal and cancer pancreatic tissues, allowing
relevant expression of the transcript [54]. The other B3GALT5 transcript, named the LTR transcript
due to its retroviral origin, appeared late in the evolution [55], and is driven by a promoter affected by
HNF1 transcription factor [56]. This promoter is very strong in normal colon mucosa giving rise to a
very high expression of B3GALT5, but is silenced in colon cancer due the demethylation of a distant
DNA sequence [56], probably located about 1 kb far from the transcription initiation site [54]. Treating
cell lines that express the LTR transcript with 5-AZA dramatically impairs B3GALT5 expression. In the
pancreas, the LTR transcript is expressed at low levels and is not apparently regulated in cancer,
where the same DNA region is not differentially methylated [54]. Among other galactosyltransferases
regulated in cancer by epigenetic mechanisms, B4GALT1 is down-regulated because of promoter
methylation in a significant percentage of colon cancer cases [57]. An unconventional example
of stimulation of gene expression by miRNA is provided by miR-27a, which binds to the 3’UTR
of B4GALT3, resulting in its overexpression, and contributing to its oncogenic activity in cervical
cancer cells [58].
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Figure 2. Structure of some oligosaccharide chain terminations. Monosaccharides are depicted as
in Figure 1. Anomers, linkage positions, and enzymes involved in relevant reactions are indicated.
(A) Origin of type 1 and 2 chains, and termination by bioactive ends; (B) AB0 antigens.

The B3GNT7 gene encodes β1,3-N-acetylglucosaminyltransferase 7, that mainly acts on extending
sulfated polylactosaminic chains (Figure 1A) on which sLex and sLea antigens are mounted.
The down-regulation of B3GNT7 observed in colon cancer is partially due to promoter methylation [59].
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2.5. Type 1 and type 2 Chain Termination

2.5.1. Major Glycosyltransferases Involved in Chain Termination

The termination of type 1 or type 2 chains frequently occurs by the addition of a few types of
monosaccharides, arranged in well-defined structures recognized by antibodies or lectins. The addition
of these monosaccharides is mediated by specific glycosyltransferases, many of which display
epigenetic regulation. Sialic acids are a group of sugars carrying a negative electric charge at
physiological pH values always mounted in terminal position, except in the case of polysialic acids,
where sialic acid residues form linear polymers. Sialyltransferases, the enzymes which transfer sialic
acids, are a family of 20 enzymes which can be grouped according to the sugar acceptor (Gal, GalNAc,
GlcNAc, Sia) and the position (α2,3-α2,6-α2,8-) of the linkage they form [60–62].

Members of the fucosyltransferase family [63] mostly involved in the elaboration of terminal
epitopes are FUT1 and FUT2, which mediate the α1,2-fucosylation of terminal galactose, and FUT3-10,
which catalyze the α1,3/4-fucosylation of the subterminal GlcNAc residue, giving rise to the group of
Lewis antigens [63–65].

Relevant examples of chain termination are provided by the α2,3-sialylated/α1,3/4 fucosylated
sialyl-Lewis type antigens, the Sda antigen, the Sia6LacNAc, and the well-known AB0 antigens.

2.5.2. Lewis and Sda Antigens

The biological relevance of Lewis type, and in particular of sialyl-Lewis (sLe) type antigens,
in cancer biology is vast [64] and is mainly related to the ability of these structures to serve as ligands
for cell adhesion molecules of the selectin family, favoring the metastatic process and angiogenesis [66].
The terminal steps of the biosynthesis of sLe structures are represented by the α2,3-sialylation of type 1
or type 2 chains, and by the successive addition of fucose to GlcNAc in α1,4- or α1,3 linkage, yielding
sLea and sLex, respectively. Both the sialylation and fucosylation steps can be mediated by multiple
enzymes (Figure 2A).

Among the reasons for the low expression of the sLea antigen in normal colonic tissues,
an alternative biosynthesis of the disialyl-Lewis structure has been proposed, in which an additional
α2,6-linked sialic acid is mounted on the GlcNAc residue by the action of sialyltransferase
ST6GALNAC6 [67]. Treatment of the colon cancer cell line DLD-1 with 5-AZA and/or butyrate
up-regulates the transcript, suggesting that promoter methylation and/or histone deacetylation are
involved in its regulation [67]. In a gastric cancer cell line, Lea is regulated by the levels of FUT3 that
appear to be reduced by methylation of the promoter region [68]. The differential methylation of
the FUT3 promoter was recently reported to occur in tongue cancer, and to be associated with some
clinical features [69]. ST3GAL3, coding a sialyltransferase involved in the biosynthesis of type 1 chain
active ends including sLea in several tissues, was recently reported to be differentially methylated
during childhood [70], but data specifically related to cancer are not yet available. In a colon cancer
cell line, 5-AZA treatment induced sLex expression on MUC1 by stimulating ST3GAL6 transcription,
which is impaired by promoter methylation [71]. Among the mechanisms claimed to be responsible
for low sLex expression in normal colon, there is the biosynthesis of two alternative structures. One is
sialyl 6-sulfo sLex, which critically depends on the activity of the sulfate transporter DTDST, whose
down-regulated in colon cancer tissues is restored by histone deacetylase inhibitors [72].

The other structure is the Sda antigen (Figure 2A), which is formed by a α2,3-sialylated type 1,
2 or 3 chain in which a GalNAc residue is β1,4-linked to subterminal galactose (Figure 2A) [73].
The terminal step of the biosynthesis of the Sda antigen, is mediated by a single enzyme, a product of
the B4GALNT2 locus [74,75]. This enzyme and its cognate Sda antigen mediate multiple biological
and pathological functions [76]. The putative promoter regions of the human B4GALNT2 gene are
embedded in CpG islands, suggesting that DNA methylation could play a role in regulating B4GALNT2
gene expression, particularly in the down-regulation observed in gastrointestinal cancers [77–79].
It has been reported that in colon cancer cells lines, B4GALNT2 promoter methylation is associated
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with a very low level of mRNA expression. Further, demethylating treatments can induce a partial
activation of the gene, reaching an expression level which remains far below that of the normal colonic
mucosa [80]. The B4GALNT2 gene was found to be methylated in about half of the gastric cancer
cases examined, and in the majority of gastric and colon cancer cell lines [81]. Treatment of cell
lines with anti DNA-methylation agents induced a weak expression of the B4GALNT2 transcript,
and of the Sda antigen [81]. Altogether, these results are consistent with the view that methylation
of the B4GALNT2 genomic regulatory region plays a role in switching off gene expression during
carcinogenesis of gastrointestinal tissues, but that the removal of epigenetic marks is not sufficient to
drive the level of enzyme activation close to that of normal colonic mucosa. Taken together, the down
regulation of sLea [82] and Sda antigens, the up regulation of sLex [83] in colon cancer, and the
persistent expression of some Lewis antigens in pancreatic cancer [54], appear as the consequence of a
complex tissue- and cancer-specific regulation of several glycogenes operated by various epigenetic
mechanisms. At present, they cannot be recapitulated in a simplified minimal cancer-associated
signature. Consequently, a single oriented approach, i.e general DNA demethylation obtained through
methyltransferase inhibitors, could be not useful in these types of cancers.

Of the fucosyltransferases involved in the biosynthesis of Lewis type antigens, the methylation
of FUT4 promoter has been reported to be inversely correlated with gene overexpression and tumor
invasion [84]. In breast cancer cells, FUT4 overexpression, due to down-regulation of miR-224-3p,
is associated with chemoresistance [85], while its inhibition by miR-493-5p attenuates invasiveness
and tumorigenicity [86]. Although FUT6 is involved in the biosynthesis of the cancer associated sLex

antigen, it has also been reported that FUT6 down-regulation induced by miR-106b targeting leads to
increased invasion of breast cancer cells [87].

2.5.3. Sia6LAcNAc and ST6GAL1

The termination of type 2 chains with α2,6-linked sialic acid (Figure 2A), giving rise to α2,6
sialyllactosamine (Sia6LacNAc), is mainly mediated by sialyltransferase ST6GAL1 [88]. Sia6LacNAc
decorates a variety of soluble and cell membrane glycoproteins, and plays roles in cell adhesion [89]
and immune and inflammatory processes [90–92] (reviewed in [93]).

Sialyltransferase ST6GAL1 is frequently up-regulated in colon cancer [94] and other malignancies,
but its impact on cancer biology is multifaceted [60,61,93,95,96]. ST6GAL1 down-regulation by
promoter methylation has been documented in bladder cancer [97], in breast cancer patients ER/PR
positive, with TP53 mutations and high grade [98], and in gliomas [99]. In all these cases, ST6GAL1
down-regulation is associated with increased invasion.

An example of how miRNA can indirectly modulate a biological function by targeting
glycosylation is provided by miR-199a, which reduced both the sialylation and the protein level
of Nectin-like Molecule 2/Cell Adhesion Molecule 1 by targeting ST6GAL1 [100].

2.5.4. Other Sialyltransferases

In breast cancer cells, the overexpression of sialyltransferase ST8SIA4, involved in polysialic
acid biosynthesis, is associated with invasive growth. A main regulatory mechanism involves
miR26a-26b, which targets the 3′UTR region of the transcript determining its down-regulation [101].
Interestingly, ST3GAL6, whose upregulation in hepatocarcinoma is associated with increased invasion,
is also targeted and negatively regulated by miR26a [102]. It has been reported that miR-4701-5p is
responsible for multi drug resistance of chronic myeloid leukemia cells, at least in part, by targeting
and down-regulating ST3GAL1 [103]. The invasive properties and tumorigenicity of human follicular
thyroid carcinoma is mediated by miR-4299, through targeting and silencing ST6GALNAC4 [104].

2.5.5. AB0

Histo-blood group AB0 antigens (Figure 2B) derive from either the addition of α1,3GalNAc
residue (group A), an α1,3Gal residue (group B), or nothing (group 0), to an α1,2-fucosylated terminal
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galactose (Figure 2B). Three allelic variants of the ABO genetic locus encoding either an α1,3GalNAc
transferase (A3GALNT), an α1,3Gal transferase (A3GALT), or an inactive molecule, are responsible for
the A, B and 0 phenotypes, respectively [105,106].

The expression of AB0 antigens in bladder cancer is frequently lost either because of allelic lost
or because promoter methylation of the AB0 gene [107]. The fact that the AB0 gene is silenced
in about two-thirds of the oral cancer cases [108] suggests that its down-regulation provides a
growth advantage [109]. However, in only one-third of the cases, silencing is due to promoter
hypermethylation, being the remaining due to allelic lost or other mechanisms [108]. AB0 promoter
hypermethylation was also found in hyperplastic or dysplastic tissues adjacent to the tumors,
suggesting that it is an early event in tumorigenesis [108]. Downregulation of microRNA-15b by
hepatitis B virus X enhances hepatocellular carcinoma proliferation, via FUT2-induced Globo H
expression [110].

2.6. Glycosaminoglycans

Glycosaminoglycans are important regulators of the growth of connective tissue cells.
In chondrosarcoma, heparan sulfate biosynthesis is inhibited because of the methylation of the
3-O-sulfotransferase [111]. The exostoses like-3 (EXTL3) gene encodes a putative tumor suppressor
glycosyltransferase involved in the biosynthesis of glycosaminoglycans. In a high percentage of the
colon cancers of the mucinous type, EXTL3 is down-regulated by promoter methylation. This results
in the loss of heparan sulfate with a probable impact on the mechanisms of growth control [112].
On the contrary, hypermethylation of EXTL3 promoter has never been reported in non-mucinous
colon cancers.

3. Epigenetic Regulation of Sugar binding Molecules: The Galectins

Galectins are a family of 15 galactose binding proteins that regulate many aspects of the cell life
through sugar-dependent, but also sugar independent, interactions. The different members of the
galectin family can play opposite effects by promoting cell growth or inducing apoptosis. The role of
galectins in cancer and immune regulation is well-known [113].

3.1. Galectin 1

The gene LGALS1, encoding galectin-1, is usually hypermethylated in colorectal cancer cells—
its induction by demethylating treatments induces apoptosis because of down-regulation of Wnt
signaling [114]. Hepatic stellate cells play a role in hepatocarcinoma development by locally
suppressing the immune response. In hepatic stellate cells of hepatocarcinoma patients, galectin-1
is much higher than in those from normal liver. Meanwhile, in MiR-22, which targets galectin-1,
was lower [115], indicating its role in the regulation of the anti-cancer immune response.

3.2. Galectin 3

The LGALS3 gene, encoding galectin-3, shows promoter methylation-dependent regulation in
different cancers. It is unmethylated in normal and benign prostate tumors, but it is silenced by
methylation in prostate cancer [116], albeit in a stage-specific manner. In fact, it is heavily methylated
in stage I and II adenocarcinoma, and lightly methylated in stage III and IV, allowing discrimination
of the stages [117]. Promoter methylation is a major mechanism of LGALS3 gene silencing also in
mucinous colorectal cancers [118], as well as in pituitary tumors, and breast and thyroid cancer cell
lines [119]. Conversely, the average hypomethylation of five CpG sites in the promoter sequence is
associated with high LGALS3 expression in thyroid cancer, and allows to distinguish it from normal
thyroid tissues [120]. One of the reasons for galectin-3 overexpression in colorectal cancer, which is
associated with disease progression and shorter survival, is the decreased levels of the inhibitory
miR-128 [121]. Mucin MUC-1 and Galectin-3 provide an example of a self-fueling loop involving a
miRNA. MUC1 is transmembrane glycoprotein whose Asn36 residue of the C-terminal subunit can be
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decorated by an N-linked chain. Owing to its dimeric nature, galectin-3 can bound in both Asn35 of
MUC1 and EGFR, activating a signal transduction pathway leading to the suppression of miR-322.
Down-regulation of miR-322 stabilizes galectin-3 transcript, leading to increased galectin-3 levels with
a positive feedback on MUC1 signaling [122].

3.3. Galectin 7

A few reports document regulation of the LGALS7 gene, encoding galectin-7, in cancer. Promoter
hypomethylation is at the basis of the up-regulation of galectin-7 during lymphoma progression [123],
while promoter hypermethylation is responsible for galectin-7 downregulation in gastric cancer, a
tumor in which it has a tumor suppressive function [124].

3.4. Galectin 9

Galectin-9 has been reported to exert anticancer activity in gallbladder cancer by modulation of
the miRNA expression profile [125]. On the other hand, in liver cancer, galectin-9 is overexpressed
because of miR-22 downregulation. As a consequence, lymphocyte apoptosis is increased and tumor
growth is promoted [126].

4. Glycosylation as a Part of the Epigenetic Code: O-GlcNAc

In the previous sections, we reviewed how epigenetic mechanisms can regulate the expression
of a variety of glycogenes. In this last section, we describe how a very peculiar type of glycosylation,
the O-linked GlcNAc (O-GlcNAc), is itself part of the epigenetic code. The addition of O-GlcNAc is
basically different from the “conventional” N- and O-glycosylation for the following reasons. GlcNAc
is added to cytoplasmic and nuclear (rather than membrane or secreted) proteins by the action
of a single enzyme: O-GlcNAc transferase (OGT), and is removed by the action of O-GlcNAc ase
(OGA). The addition/removal of O-GlcNAc is a dynamic and reversible process which prevents
phosphorylation of the Ser/Thr residues, to which O-GlcNAc is attached. The OGT activity is crucially
dependent on the availability of its donor substrate UDP-GlcNAc, whose concentration is directly
linked to the nutritional state of the cell. O-GlcNAc can be added to transcription factors involved in
embryonic development [127] and histones [128], with a large impact on gene expression. A very recent
paper reports that the inhibition of OGT results in a reduction of colon cancer stem cells population.
At least in part, this phenomenon is mediated through the O-GlcNAc-mediated methylation of the
CpG islands in the promoter region of the MYBL1 gene, encoding a transcription factor which inhibits
colon cancer stem cells growth [129]. On the other hand, OGT itself is epigenetically regulated, being a
target of miR-424 [33].

5. Concluding Remarks

The review of recently published data showed that many cancer-associated alterations of the
glycan profile of cells and tissues depend on the epigenetic deregulation of glycogenes. They include
the methylation of promoter sequence, and the aberrant expression of miRNAs, as the most frequent
mechanisms, both acting in many cases as inhibitors of glycogene expression (Figure 3). As originally
shown for tumor suppressor genes, in cancer there is a general hypermethylation of the promoter of
many genes, determining their transcriptional inhibition, and favoring the malignant phenotype.
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(yellow), a protein coding region (violet), and a 3′UTR (blue), which can be targeted by miRNA, 
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Figure 3. Summary of the common epigenetic mechanisms of glycosylation control. A hypothetical
glycogene is represented in which the activity of histone methyltransferase (HMT), histone deacetylase
(HDAC), and DNA methyltransferase (DNA MT) results in chromatin condensation determining
a transcriptionally inactive state; closely spaced red circles represent nucleosomes, black lollipops
represent methylated cytosine residues (A). The gene can be turned into a transcriptionally active
state by the activity of histone demethylase (HDM) and histone acetyltransferase (HAT), which reduce
chromatin condensation (loosely spaced green circles), and by demethylation of the promoter region
(white lollipops) (B). Transcription of the gene results in a mRNA comprised of a 5′UTR (yellow),
a protein coding region (violet), and a 3′UTR (blue), which can be targeted by miRNA, resulting in
translation inhibition; RISC, RNA-induced silencing complex (C). This hypothetical glycogene is a
paradigm of many others controlled by epigenetic mechanisms. They are involved in a variety of
biosynthetic steps that are grouped in the hypothetic N- and O-linked structures depicted in (D) and (E).
The epitopes shown in (D) and (E) are often mutually exclusive, and are presented here as a single
structure only for didactic purposes. Moreover, glycogenes encode molecules like galectins (F) involved
in the biological roles of glycans.

Gene reactivation can be obtained by DNA demethylating agents, restoring the normal levels
of gene expression. However, relevant exceptions exist, and can be useful to shed light on the
general mechanisms of epigenetic control. In fact, promoter hypermethylation can be tissue specific
and evident in cancer cell lines, but not in the corresponding native tumors [46]. Treatment with
demethylating agents, which is usually the first approach in determining whether a gene is subjected
to promoter methylation, sometimes appear unable to counteract hypermethylation and/or to restore
transcription levels [49,56,116,120]. Moreover, treatment with demethylating agents inhibits, instead
of stimulating, several glycogenes [28,54,99]. The opposite role of methylation of specific CpG pairs in
promoters, or in distinct DNA regions far from the promoter sequences, should be kept in mind in this
regard [45,56,120]. Furthermore, some of the glycogenes reactivated through demethylating agents,
and some of those inhibited by the same treatment do not attenuate, but instead sustain the malignant
phenotype [26,32,71], an observation relevant in view of the clinical use of such agents. The complexity
of the picture is recapitulated by the expanding role of miRNAs that also appear to be able to determine
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double-edged effects on glycogenes (Table 1). Being more specific and straightforward, they are thus
promising tools for therapies aimed at the inhibition of such genes.

Table 1. List of glycogenes regulated by epigenetic mechanisms.

Target Epigenetic Mechanism Effect Tissues/Cells
Involved Reference

Galactosyltransferases

A3GALT1/A3GALNT Promoter methylation Down-regulation Bladder and oral
cancer [107,108]

B3GALT5 native Promoter methylation Down-regulation Colon cancer [53,54]

B3GALT5 LTR Distant sequence
methylation Up-regulation Colon cancer [54,56]

B4GALT1 Promoter methylation Down-regulation Colon cancer [57]
B4GALT3 miR-27a Up-regulation Cervical cancer [58]
C1GALT1

chaperone Cosmc Promoter methylation Down-regulation B lymphocyte and
other model cell lines [43,44]

N-acetyl-galactosaminyl transferases
GALNT1 miR-129 Down-regulation Bladder cancer [34]

GALNT4 miR-9 Down-regulation Liver and
cervical cancer [35,36]

GALNT7
miR-34◦ -34c Down-regulation Laryngeal cancer [37]

miR-214 Down-regulation Esophageal cancer [38]

miR-17-3p Down-regulation Liver cell lines and
mouse model [40]

GALNT10 miR-122 Down-regulation Liver cancer [41]

GALNT13 miR-424 Down-regulation Breast and
HEK293 cell lines [33]

GALNT14 miR-125a Down-regulation Ovarian cancer [42]

A3GALNT/A3GALT1 Promoter methylation Down-regulation Bladder and
oral cancer [107,108]

B4GALNT2 Promoter methylation Down-regulation Gastrointestinal cancer [80,81]
N-acetyl-glucosaminyl transferases

MGAT3 Promoter methylation Down-regulation
Mammary model
and ovarian and

liver cell lines
[25–29]

MGAT4 miR-424 Down-regulation Breast and
HEK293 cell lines [33]

MGAT5 Distant methylation Down-regulation Ovarian cell line [28]

MGAT5 Distant methylation Up-regulation Melanoma hybrid
cell line [32]

B3GLCT miR-200 Down-regulation Breast cell line [50]
B3GNT7 Promoter methylation Down-regulation Colon cancer [59]

OGT miR-424 unclear Breast and
HEK293 cell lines [33]

Sialyltransferases

ST3GAL1 miR-4701-5p Down-regulation Chronic myeloid
leukemia [103]

ST3GAL2 Promoter methylation Down-regulation Prostate cell lines [48]
ST3GAL3 Promoter methylation unknown Whole methylome [70]

ST3GAL5
miR-200 Down-regulation Breast cell line [50]

miR-26a, miR-548l,
miR-34a Down-regulation Liver cancer [51]

ST3GAL6
Promoter methylation Down-regulation Colon cancer cell line [71]

miR-26a Down-regulation Liver cancer [102]

ST6GAL1
Promoter methylation Down-regulation Glioma, bladder and

breast cancer [97–99]

miR-199a Down-regulation Lung and
HEK293 cell lines [100]
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Table 1. Cont.

Target Epigenetic Mechanism Effect Tissues/Cells
Involved Reference

ST6GALNAC1 Promoter methylation Down-regulation Esophageal cancer [46]
ST6GALNAC4 miR-4299 Down-regulation Thyroid cancer [104]

ST6GALNAC5
Promoter methylation No regulation Colon cancer [49]

miR-200 Down-regulation Breast cell line [50]

ST6GALNAC6
Putative promoter

methylation/ histone
deacetylation

Down-regulation Colon cancer [67]

ST8SIA4 miR26a-26b Down-regulation Breast cancer [101]
Fucosyltransferases

FUT2 miR-15b Down-regulation Liver cancer [110]

FUT3 Promoter methylation Down-regulation Gastric and tongue cell
lines [68,69]

FUT4
Promoter methylation Down-regulation Skin cell lines [84]

miR-224-3p Down-regulation Breast cancer [85]
miR-493-5p Down-regulation Breast cancer [86]

FUT6 miR-106b Down-regulation Breast cancer [87]

FUT8
miR-198 Up-regulation Colon cancer [19]

miR-122 -34a 26a -146a Down-regulation Liver cancer [20,21]
Sulfotransferases

HS3STs Promoter methylation Down-regulation Chondrosarcoma
cell line [111]

Nucleotide donor transporters
DTDST Histone deacetylation Down-regulation Colon cancer [72]

Galectins

LGALS3

Promoter methylation Down-regulation Colon, prostate and
pituitary cancer [16–119]

Promoter
hypomethylation Up-regulation Thyroid cancer [120]

miR-322 Down-regulation Breast, lung, prostate
and HEK293 cell lines [122]

miR-128 Down-regulation Colon cancer [121]

LGALS7 Promoter methylation Down-regulation Gastric cancer and
lymphomas [123,124]

LGALS9 miR-22 Down-regulation Liver cancer [126]
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