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Abstract: Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic
decision-making by utilizing patients’ genomic information. Big Data analytics uncovers hidden
patterns, unknown correlations, and other insights through examining large-scale various data sets.
While integration and manipulation of diverse genomic data and comprehensive electronic health
records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible
opportunity to develop an efficient and effective approach to identify clinically actionable genetic
variants for individualized diagnosis and therapy. In this paper, we review the challenges of
manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived
from the EHRs for genomic medicine. We introduce possible solutions for different challenges in
manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine.
Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic
variants using high-throughput NGS data and EHRs.

Keywords: Big Data analytics; clinically actionable genetic variants; electronic health records;
healthcare; next-generation sequencing

1. Introduction

Next-generation sequencing (NGS) technologies, such as whole-genome sequencing (WGS),
whole-exome sequencing (WES), and/or targeted sequencing, are progressively more applied to
biomedical study and medical practice to identify disease- and/or drug-associated genetic variants
to advance precision medicine [1,2]. Precision medicine allows scientists and clinicians to predict
more accurately which therapeutic and preventive approaches to a specific illness can work effectively
in subgroups of patients based on their genetic make-up, lifestyle, and environmental factors [3].
To date, over 6000 Mendelian disorders have been studied at the genetic level [4,5] and over
1500 clinically-relevant complex traits have been studied with genome-wide association study (GWAS)
approaches [6]. Clinical research leveraging electronic health records (EHRs) has become feasible as
EHRs have been widely implemented [7]. Additionally, a number of studies have been designed to
combine genomic and EHR data to improve clinical research and/or healthcare outcome (Table 1).
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Leveraging large-scale genomic data with comprehensive clinical data derived from EHRs
can implicate disease- and/or drug-associated variants for individualized diagnosis and therapy.
NGS technological advancements in clinical genome sequencing and the adoption of EHRs will very
likely create patient-centered precision medicine in clinical practice. Genomic data generated by NGS
technologies are a vital component in supporting genomic medicine, but the volume and complexity
of the data raise challenges for its use in clinical practice [8]. For instance, sequencing a single whole
genome generates more than 100 gigabytes of data. Therefore, the development of novel bioinformatics
infrastructures is required to implement NGS in clinical practice.

Big Data is a term used to describe data sets with such large volume or complexity that
conventional data processing methods are not good enough to deal with them. Big Data has been
described disparately by different people [9]. The most popular definition of Big Data is the 5Vs,
which are Volume, Velocity, Variety, Verification/Veracity, and Value [10]. The definition of Big Data
might be subjected to technological advances in the future. Big Data infrastructure is a framework,
which covers important components including Hadoop (hadoop.apache.org), NoSQL databases,
massively parallel processing (MPP), and others, that is used for storing, processing, and analyzing
Big Data. Big Data analytics covers collection, manipulation, and analyses of massive, diverse data sets
that contain a variety of data types including genomic data and EHRs to reveal hidden patterns, cryptic
correlations, and other intuitions on a Big Data infrastructure [11]. Due to its effectiveness, Big Data
analytics is widely used in different research fields [12]. In this review, we describe how one type of
Big Data, genomic data, is applied to improve clinical research and healthcare. We give an overview of
the challenges in processing genomic data and EHRs, provide possible solutions to overcome these
challenges using approaches that ensure the safety of genomic data, and present a Big Data solution
for identifying clinically actionable variants in sequence data. We also discuss the requirement for the
efficient integration of genomic information into EHRs.
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Table 1. Studies and efforts of leveraging genomic data and EHRs for genomic research/medicine.

Project Start Year Aims Website Country

deCODE
genetics 1996 To utilize population-based genomic data and EHRs to investigate inherited

causes of common diseases http://www.decode.com/ [13] USA

PMRP 2002
To enroll >20,000 participants to form a resource enabling researchers to study
which genes cause diseases, which genes predict reactions to drugs, and how

environment and genes work together to cause diseases
http://www.marshfieldresearch.org/chg/pmrp/ [14] USA

I2B2 2004
To enable clinical researchers to use existing clinical data and genomic data for
discovery research; to facilitate the design of targeted therapies for individual

patients with diseases having genetic origins
http://www.i2b2.org/ [15] USA

CKB 2004 To identify the complex interplay between genes and environmental factors on
the risks of common chronic diseases http://www.ckbiobank.org/ [16] China

eMERGE 2007 To develop methods and best strategies for utilizing EHRs for genomic research
in support of implementing genomic medicine http://emerge-network.org/ [17] USA

UK Biobank 2007
To improve the prevention, diagnosis, and treatment of a wide range of serious

and life-threatening illnesses through a collection of 500,000 volunteers’
biosamples and medical records

http://www.ukbiobank.ac.uk/ [18] UK

GANI_MED 2009

To develop targeted strategies for the prevention, diagnosis, and therapy of
diseases, tailored to the specific characteristics of an individual patient or
a well-defined patient group. Specifically, these strategies should improve

prediction models for health and disease outcomes and also avoid inefficient
therapy strategies and adverse side effects

http://www2.medizin.uni-greifswald.de/gani_med/
index.php?L=1&id=603 [19] Germany

KP RPGEH 2009 To explore the genetic and environmental factors that influence common disease http://www.rpgeh.kaiser.org/ [20] USA

SCAN-B
Initiative 2010

To improve survival and quality of life for breast cancer patients through the
introduction of gene expression and genomic tumor profiling into the clinical

routine for breast cancer
http://scan.bmc.lu.se/index.php/Main_Page [21] Sweden

PGPop 2010 To understand how a person’s genetic make-up affects his or her response
to medications http://pgpop.mc.vanderbilt.edu/ [22] USA

MVP 2011 To enroll one million volunteers and use their clinical and genetic data to
improve health care for veterans http://www.research.va.gov/mvp/ [23] USA

Cancer 2015
Study 2015 To classify cancers molecularly using MPS to promote more targeted treatment

of cancer patients and improve patient survival and outcomes [24] Australia

Precision
Medicine
Initiative

2016

To gain better insights into the biological, environmental, and behavioral
influences for disease treatment and prevention that takes into account

individual variability in genes, environment, and lifestyle by using the genomic
and clinical data of a million Americans

https://www.nih.gov/precision-medicine-initiative-
cohort-program [1] USA

http://www.decode.com/
http://www.marshfieldresearch.org/chg/pmrp/
http://www.i2b2.org/
http://www.ckbiobank.org/
http://emerge-network.org/
http://www.ukbiobank.ac.uk/
http://www2.medizin.uni-greifswald.de/gani_med/index.php?L=1&id=603
http://www2.medizin.uni-greifswald.de/gani_med/index.php?L=1&id=603
http://www.rpgeh.kaiser.org/
http://scan.bmc.lu.se/index.php/Main_Page
http://pgpop.mc.vanderbilt.edu/
http://www.research.va.gov/mvp/
https://www.nih.gov/precision-medicine-initiative-cohort-program
https://www.nih.gov/precision-medicine-initiative-cohort-program
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2. Challenges of Handling Genomic and Clinical Data

2.1. Challenges in Manipulating Genomic Data

Although more than 6000 Mendelian disorders have been studied at the genetic level so far, we still
do not have a clear understanding of the majority of their roles in health and diseases [25]. Over the
past eight years, the size of the NIH sequence read archive (SRA) database has grown exponentially
(Figure 1). While the development of NGS technologies has made it increasingly easier to sequence
a whole genome or exome, there continue to be considerable challenges in terms of handling, analyzing,
and interpreting the genomic information generated by NGS. Since there are over three billion base
pairs (sites) on a human genome, sequencing a whole genome generates more than 100 gigabytes of data
in BAM (the binary version of sequence alignment/map) and VCF (Variant Call Format) file formats.
The actual size of a BAM file is determined by the coverage (the average number of times each base
is read; read depth) and read length in a sequencing experiment. Given a 30× WGS data for a single
sample, the size of its FASTQ file can be approximately 250 GB, the BAM file can be approximately
100 GB, the VCF file can be about 1 GB, and the annotated files can be approximately 1 GB as well.
The approximate file sizes of different NGS data formats and running times of generating those different
format files are described in Figure 2. Big Data infrastructures can greatly facilitate the analysis of
these data. For example, Big Data-based Burrows-Wheeler Aligner (BWA) can increase the alignment
speed 36-fold compared to the original BWA [26]. Currently, most analytical methods for sequencing
data use VCF files that assume all “no-call sites” are the same as reference alleles. In fact, many “no-call
sites” may be caused by low quality coverage. Therefore, the data quality information, such as coverage
and Phred-scaled base quality scores for every site, needs to be utilized to pinpoint whether “no-call
sites” are reference-consistent with high coverage or reference-inconsistent caused by low coverage
in the downstream data analysis [27]. A number of toolsets for data compression, cloud computing,
variant prioritization, copy number variation (CNV) detection, data sharing, and phenotypes on
exome sequencing data have been reviewed by Lelieveld et al. [28]. Because VCFs are much
smaller than BAM files, analytical tools on VCFs may not always require a Big Data infrastructure.
However, researchers are currently facing substantial challenges in storing, managing, manipulating,
analyzing, and interpreting WGS data for moderate numbers of individuals if they need to take into
account of data quality information stored in BAM files. These challenges will become exacerbated
when millions of individuals are sequenced, which embodies the goals of the precision medicine
initiative (PMI) in the U.S. and similar efforts of the same scale elsewhere in the world. Leveraging the
distribution and scalability inherent in Big Data’s infrastructures, it can be feasible to develop a Big
Data system to manage and analyze the extensive genomic data compatible with clinical workflows.

2.2. Challenges in Manipulating Clinical Data

Up until the previous decade, approximately 90% of clinicians in the U.S. routinely recorded
patient medical records by hand and stored them in color-coded files. In the past five years,
the percentage of clinicians using certified EHR systems has grown dramatically [29]. Clinical data
extracted from the EHRs for each patient can include the international classification of diseases
(ICD) codes, drugs, treatments, procedure (CPT) codes, laboratory values, clinician notes, as well
as self-reported dietary and physical activity data. The ICD code is a clinical cataloging system
utilized by clinics and hospitals to classify and code diagnosis, symptom, procedure, and treatment in
the U.S. Not only are ICD codes used for disease classification, but also as medical billing codes [30].
The volume of clinical data extracted from EHRs can be considerable. For example, the EHR data
of ~20,000 patients enrolled in the Personalized Medicine Research Project (PMRP) at Marshfield
Clinic is approximately 3.3 GB. The elements in clinical data can be used to classify and measure
associations between environmental exposures and clinical consequences. An important application of
mining clinical data is patient classification [31–34]. Without stringent and appropriate phenotyping
approaches, the classification cannot be appropriately measured, resulting in false positive or negative
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associations [31]. Machine learning (ML) involves training an algorithm to systematically classify
patients into phenotypic groups [35]. To do this, the ML classifier needs to learn which elements in
clinical data are providing useful insights for distinguishing the different phenotypic groups. With the
proliferation of EHR adoption, computational phenotyping characterization has shown its advantage
in classifying research subjects [36]. In addition, millions of data points regarding tens of thousands of
clinical elements within the EHRs are available for EHR-based phenotyping. Like sequence data, it will
also become a significant challenge to store, manage, manipulate, and mine the complete clinical data
of millions of individuals. Therefore, it is necessary to develop advanced and efficient ML approaches
for subject characterization and/or better phenotyping. Meanwhile, some ML tasks may take one or
two days or even several days to run specific data mining algorithms. For example, to mine large-scale
literature, ML approaches on a Big Data infrastructure could be performed 100 times faster than any of
the existing ML tools without using any Big Data infrastructures [37].
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3. Big Data on the Cloud

3.1. Cloud Computing

Cloud computing providers offer services that provide the infrastructure, software,
and programming platforms to clients, and are accountable for the cost for development and
maintenance [38]. Compared to creating and maintaining an in-house database, cloud computing is
an economical approach to genomic data management because clients pay only for the services that
they need. An example of an open-source framework used to develop infrastructure for processing
genomic data in a cloud computing environment is Hadoop. It breaks the data into small fragments,
distributes them across many data nodes, delivers the computational code to the nodes so that they
are processed in parallel, and collectively assembles the results at the end. The parallel processing of
many small pieces of data, known as MapReduce, greatly shortens the computing time. Challenges of
using cloud computing for genomic data include lengthy data transfers for uploading NGS data to the
cloud server, the perceived lack of information safety in cloud computing, and the requirement for
developers with advanced programming skills to develop programs on the Hadoop [38].

3.2. Privacy and Security Challenges of Cloud Computing

Cloud computing infrastructures could be deployed with miscellaneous platforms and
configurations in which each platform could be configured with diverse security, confidentiality,
and authentication settings [39]. These unique aspects could exacerbate security and privacy
challenges [40]. Some cloud service providers including Microsoft Azure [41] and Amazon Web
Services [42] provide the health insurance portability and accountability act (HIPAA) amenable
services for analyzing biomedical data. In addition, data security and privacy in cloud computing is
an active research field involving the use of virtual machines [43] and sandboxing techniques [44] for
biomedical data management on the cloud.

4. Big Data Analytics in Genomic Studies

4.1. NGS Read Alignment

NGS involves breaking DNA into large amounts of segments. Each segment is called
a ‘read’. Due to biases in sample processing, library preparation, sequencing-platform chemistry,
and bioinformatics methods for genomic alignment and assembly of the reads, the distribution and/or
length of reads across the genome can be uneven [45,46]. Therefore, some genomic regions are covered
with more reads and others with fewer reads. As mentioned previously, read depth denotes the
average number of times each base is read. For instance, a 10× read depth means that each base is
present in an average of 10 reads. For RNAseq, read depth is more often designated as number of
millions of reads. Read alignment involves lining up the sequence reads to a reference sequence [47,48]
to allow comparison of sequence data from a sample sequenced with the reference genome. A number
of alignment tools including CloudBurst [49], Crossbow [50], and SEAL [51] have been developed on
Big Data infrastructures. More programs designed for short-read sequence alignment are shown in
Table S1. Alignment allows a number of quality control (QC) measures, such as the proportion of all
reads aligned to a reference sequence, the ratio of unique reads aligned to a reference sequence, and the
number of reads aligned at a specific locus. These QC measures affect the accuracy of variant calling.

4.2. Calling Variants

Variant calling is more reliable with higher read depth, which is especially valuable for
detecting rare genetic variants with higher confidence. The read depth needed for accurately calling
variants relies on various factors, including presence of repetitive genomic regions, error rate of the
sequencing platform, and algorithm used for assembling reads into a genomic sequence. Read depth,
such as 100× for heterozygous single nucleotide variant (SNV) detection by WES [52], 35× for
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genotype detection by WGS [53], and 60× for detecting insertions/deletions (INDELs) by WGS [54],
may be required. Some widely-used programs for germline variant calling include SAMtools [55],
GATK [56], FreeBayes [57], and Atlas2 [58]. SAMtools comprises a number of utilities for manipulating
aligned sequence reads and calling SNV and/or INDEL variants. GATK is a NGS analysis suite
designed to identify SNVs and INDELs in germline DNA and RNAseq data. It estimates the likelihood
of genotype based on the observed sequence reads at a locus by leveraging a Bayesian model.
In addition, it employs a MapReduce infrastructure to accelerate the procedure of processing large
amounts of sequence aligned reads in parallel [59,60]. Now, it has been expanded to include somatic
variant calling tools by incorporating MuTect [61], and to tackle CNVs and structural variations
(SVs) as well. The major difference between SAMtools and GATK is the estimation of the genotype
likelihood of SNVs and INDELs for calling variants. Regarding the filtering steps, SAMtools uses
predefined filters while GATK learns the filters from the data. FreeBayes is a haplotype-based tool
that concurrently discovers SNVs, INDELs, multiallelic sites, polyploidy, and CNVs in a sample,
pooled multiple samples, or mixed populations [62]. Atlas2 [58] can be used to analyze data generated
by the SOLiDTM platform via logistic regression models trained on validated WES data to detect
SNVs and INDELs. This tool can also analyze data generated by the Illumina platform using logistic
regression models to call INDELs and a mixture of logistic regression and a Bayesian model to call
SNVs [63]. To evaluate various programs/tools, Hwang et al. have systematically examined 13 variant
calling programs using gold standard personal exome variants [64].

4.3. Variant Annotation

Large amounts of sequence data are being generated by NGS. To pinpoint a small subset of
functional variants, many annotation programs have been developed. As one of the most widely
used annotation programs, ANNOVAR [65] annotates SNVs, INDELs, and CNVs by exploring their
functional consequences on genes, conjecturing cytogenetic bands, and reporting biological functions
and various functional scores, including PolyPhen-2 score [66], Sorting Intolerant From Tolerant (SIFT)
score [67], the Combined Annotation Dependent Depletion (CADD) score [68], and others. It also
discovers variants in conserved regions and identifies variants present in dbSNP [69], the 1000 Genomes
Project [70], the NHLBI EPS6500 project [71], and the ExAC [72]. Furthermore, ANNOVAR can employ
annotation databases from the UCSC Genome Browser or any other data resources conforming
to Generic Feature Format version 3 (GFF3). Other commonly used annotation programs include
snpEff [73], and the Ensembl Variant Effect Predictor (VEP) [74]. Xin et al. have developed a web-based
service that can be run on the cloud [75]. In order to annotate a WGS data in a short period of
time, we are currently developing a cloud-based version of ANNOVAR, which is built on a Hadoop
framework and a Cassandra NoSQL database. Additional variant annotation programs are shown
in Table S2. In addition, variant annotation depends on biological knowledge in order to provide
information on the known or likely impact of variants on gene regulation and protein function [65,73].
To produce a patient report, annotated variants are interpreted in a disease-specific context and are
often classified based on their known or expected clinical impact. For instance, the ClinVar [76]
variant database, released on 5 July 2016 by the National Center for Biotechnology Information (NCBI),
contains 126,315 unique genetic variants with clinical interpretations.

4.4. Statistical Analysis of Genomic Data

Family-based analysis: Family-based NGS data enable the discovery of disease-contributing de
novo mutations [77–79]. Meanwhile, family-based research strategies can uncover many mutations
that may be contributing to recessive, inherited as homozygous or compound heterozygous diseases.
SeqHBase [27] is a reliable and scalable computational program that manipulates genome-wide
variants, functional annotations and every-site coverage, and analyzes WGS/WES data to identify
disease-contributing genes effectively. It is a Big Data-based toolset designed to analyze large-scale
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family-based sequencing data to quickly discover de novo, inherited homozygous, and/or compound
heterozygous mutations.

Population-based analysis: A number of large-scale population-based sequencing studies
are undergoing. For example, the PMI cohort program attempts to sequence one million or more
American participants for improving our ability to preclude and cure diseases based on one’s
differences in genetic make-up, lifestyle, and environmental factors. By 2025, over 100 million human
genomes could be sequenced [80]. Therefore, it is critical to develop statistical toolsets on a Big Data
infrastructure for analyzing the genomic data of millions of people.

4.5. Security of Genomic Data

Genomic data need to be protected. Therefore, its privacy and confidentiality should be
preserved similarly to other protected health information. Privacy safeguards include the utilization
of data encryption, password protection, secure data transmission, auditions of data transferring
methods, and the operation of institutional strategies against data breeches and mischievous
abuse of the data [81]. The Fair Information Practices Principles (FIPPs) offer a framework for
enabling data sharing and usage based on the guidelines adopted by the U.S. Department of
Health and Human Services [82]. These principles include: individual access, data correction,
data transparency, individual choice, data collection and disclosure limitation, data quality and
integrity, safeguards, and accountability. The Workgroup for Electronic Data Interchange (WEDI) has
released a report outlining the challenges in regards to the infrastructure, workflows, and coordination
of health IT integration [83]. These challenges include data access and integration, data exchange,
and data governance. Cloud-computing technology advancements offer easier solutions to store
large genomic data files and to consolidate data to make them more easily accessible. The use of
cloud computing presents extra security concerns because data storage and/or processing services
are provided by an entity external to the healthcare organization. Cloud services qualify as
a business associate and they must sign a business associate agreement (BAA) in order to adhere
to the modifications to the HIPAA privacy, security, enforcement, and breach notification rules [84].
Cloud service providers can address these concerns by including controlled access to the data and
building a user role based access system. Additional security measures should be taken, such as
protecting the security of the computer network using warning alarms to monitor when changes are
made to stored data, and guaranteeing the complete removal of data from its servers if the cloud
storage service is no longer being used [39].

5. Analysis of Genomic and Clinical Data

5.1. Clinically Actionable Genetic Variants

In clinical practice, the identification and return of incidental findings (IFs) for clinically
disease-contributing variants in a set of 56 “highly medically actionable” genes associated with
24 inherited conditions have been recommended by the American College of Medical Genetics
and Genomics (ACMG) [85,86]. A web-based tool for detecting clinically actionable variants in the
56 ACMG genes is developed by Daneshjou et al. [87], and a variant characterization framework
for targeted analysis of relevant reads from high-throughput sequencing data is developed by
Zhou et al. [88]. SeqHBase [27] is a bioinformatics toolset for analyzing family-based WGS/WES
data on a Big Data infrastructure. To deduce biological perceptions from large amounts of NGS data
and inclusive clinical data, we have expanded analysis functions within SeqHBase (Figure 3) to detect
disease- and/or drug-associated genetic variants quickly.
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Even though many variant prioritization tools are available, it remains a challenge to detect
clinically actionable variants. Additional efforts are required to distinguish truly clinically actionable
variants that can be used to guide clinical decisions. As one variant can be classified as different
pathogenicity by multiple clinical laboratories [89], more stringent criteria [90] and the latest ACMG
guidelines [91] should be complied to report pathogenic variants [92]. To classify the pathogenicity
of new variants, which are not recorded in the ClinVar database [76], and to reach some level
of concordance on the clinical variant interpretations, assessments from experts, such as medical
geneticists, and/or further biological functional studies are needed. To apply actionable results in
clinical practice, genetic findings need to be further complemented with highly strong pathological
evidence, along with being reviewed by clinical geneticists.

5.2. Clinically Actionable Pharmacogenetic Variants

Substantial efforts have been made to identify clinically actionable pharmacogenetics
variants, and it is instructive to review the approach being used. The Coriell Personalized
Medicine Collaborative [93], the Clinical Pharmacogenetics Implementation Consortium [94],
the Pharmacogenetics Working Group established by the Royal Dutch Association for the Advancement
of Pharmacy [95], and the Evaluation of Genomic Applications in Practice and Prevention initiative
sponsored by the Centers for Disease Control and Prevention [96] have individually developed
similar processes for selecting candidate drugs, reviewing published literature to identify drug-gene
associations, scoring evidence supporting associations between genetic variants and drug response,
and interpreting the evidence to provide therapeutic guidelines. The approach involving review and
interpretation of scientific literature by an expert committee can be considered as the gold standard
for determining whether a variant is clinically relevant or actionable, but it also can be costly and
labor-intensive. It will not be feasible for experts, either individually or in committees, to review a large
number of genetic variants identified in NGS data. Tools such as POLYPHEN-2 [66], VEP [97], Mutation
Assessor [98], and SIFT [99] can be used to predict variant effects. However, because these tools are
sometimes inaccurate [100] and often differ in their predictions for a same variant [101,102], there will
likely be many variants with no clear predicted, clinical interpretation. New methods and toolsets
need to be developed to accurately predict the pathogenicity of genetic variants generated by NGS.
More importantly, the methods should comply with the U.S. Food and Drug Administration (FDA)
guideline [103] and the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline [104].
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6. Big Data Analytics in Health Research

Clinical data derived from EHRs have expanded from digital formats of individual patient medical
records into high-dimensional data of enormous complexity. Big Data refers to novel technological
tools delivering scalable capabilities for managing and processing immense and diverse data sets.
On a single level, approaches such as natural language processing (NLP) allow incorporation and
exploration of textual data with structured sources. On a population level, Big Data provides the
possibility to conduct large-scale exploration of clinical consequences to uncover hidden patterns
and correlations [105]. The large amounts of EHRs currently available have enabled us to overcome
previously challenging obstacles, such as analyses of rare conditions, more sophisticated analyses,
and in-depth analyses of specific data elements [106]. Big Data analytics facilitates the improvement of
healthcare from depiction and record to prediction and optimized decision-making.

6.1. Health Informatics

In clinical practice, disease characterization is routinely collected from a number of different
streams, such as imaging, pathology, genomics, and electrophysiology. However, much of the
deeper insights into disease processes and mechanisms remain to be uncovered and interpreted
from routinely acquired clinical data. Clinical data of millions of patients at a clinic/hospital or in
a large study (e.g., PMI) exhibit many of the features of Big Data. The volume comes from large
amounts of records that can be derived from the EHRs for patients; for example, medical images
including magnetic resonance imaging (MRI) or neuroimaging data for each patient can be large,
while social media data gathered from a population can be large-scale as well. The velocity occurs
when data is accumulated at high speeds, which can be seen when monitoring a patient’s real-time
conditions through medical sensors for sleep apnea (http://www.sleepapnea.org/), for instance.
The variety refers to data sets with a large amount of varying types of independent attributes, such as
data sets that are gathered from many different resources. Veracity is a concern when working
with possibly noisy, incomplete, or erroneous data where such data need to be properly evaluated
using other relevant true evidence. Value portrays the usefulness for improving healthcare outcome.
The advance in the fields of health informatics is a vital driving force in the expansion of Big
Data, due to either the volume of clinical information produced or the complexity and variety of
biomedical data that encompasses discoveries from basic science, translational research, medical
system, and population-based study on the determining factors of healthiness. It is essential to develop
novel data analytics tools with scalable, accessible and sustainable data infrastructure to effectively
manage large, multiscale, and heterogeneous data sets and convert these data into knowledge that
can be used for cost-effective decision support, disease management, and healthcare delivery. It is
also necessary to develop Big Data infrastructures/systems to store, manage, manipulate, and analyze
large-scale clinical data.

6.2. Medical Imaging Analysis

Medical imaging data is a type of Big Data in medical research. Imaging genomics is a rapidly
growing field derived from recent advancement in multimodal imaging data and high-throughput
omics data. The remarkable complexity of these datasets present critical computational challenges.
Kitchen et al. reviewed methods for overcoming the challenges associated with integrating genomic,
transcriptomic, and neuroproteomic data [107]. There is an increasing interest in integrating
neuroimaging data into frameworks for promoting data mining and meta-analyses [108]. In the
past century, a central interest in cognitive neuroscience has been trying to understand the human
brain [109,110]. Recently, a group of neuroscience researchers used ML methods to map the human
brain in order to understand the incredibly complex human cerebral cortex [111]. Human brain
mapping is another monumental step toward precision medicine. For example, an important advance
in developing operational management and therapeutics of neurological and psychiatric disease
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empowers researchers to collect and explore data from approximately 100 billion neurons from the
brain in a much greater capacity and at an even more rapid speed. As the human brain controls
multiple spatial and chronological scales, the data can be used to understand how the brain works by
combining all relevant information [112]. Therefore, developing high-performance computing tools
based on a Big Data framework becomes critical to neuroscience for improving healthcare [113,114].

6.3. Data Sharing

In order to share EHRs across multiple healthcare providers, several key components need to
be taken into account: (1) functional interoperability, which allows data (e.g., medical records) to be
exchangeable from one EHR system to other EHR systems without any restrictions; (2) structural
interoperability, which permits the data structure to be exchangeable across all systems; (3) semantic
interoperability, which allows multiple systems to exchange data and to easily make use of the
data exchanged; and (4) interpretation, which allows clinicians to properly interpret the health
records (e.g., symptoms) as carrying the same meaning. Currently, several universal EHR providers,
including Epic, Cerner, MEDITECH, and Allscripts, have joined to establish an interoperability
initiative (http://www.beckershospitalreview.com/healthcare-information-technology/epic-cerner-
meditech-dozens-more-make-interoperability-pledge-at-himss16-5-things-to-know.html). All of these
vendors have agreed to overcome the challenges of medical record interchangeability, information
sharing, and positive patient engagement. The settlement is a critical step towards constructing
an allied healthcare system, where information is shared smoothly and in a secure manner across
various EHR systems [115].

7. Discussion

In order to maximize preventive measures of serious but preventable diseases, it is critical
to understand as much about the patient as early as possible. Generally, precautionary health
interventions are simpler or more cost-effective than therapies implemented at a later stage.
In addition, knowing patients’ individual characteristics is often helpful in providing effective
and individualized therapy to a disease because individual patients can respond to the same
treatment differently. Genomic medicine could change the path for preventing and treating
human diseases. However, the translation of these advances into healthcare will rely critically on
our ability to identify disease- and/or drug-associated clinically actionable variants and on our
knowledge of the roles of the genetic alterations in the illness procedure.

To conduct pilot studies on incorporating genomic data into clinical care, a number of
healthcare systems have developed bioinformatics infrastructures to process NGS data through
a group of databases supplementary to the EHRs [116–118]. Most of the infrastructures are locally
developed and proprietary, but this is because these centers are among the first healthcare providers
to use genomic data in clinical care and there are no established infrastructures to meet their
bioinformatics requirements. It requires substantial investment in resources and personnel for
developing and deploying an efficient bioinformatics infrastructure for incorporating NGS data
in clinical care. Thus, healthcare providers might want to consider cooperatively establishing a cloud
computing service designed to store and process genomic data securely for the healthcare community.
The cost of sequencing instruments may need to be taken into account as part of the infrastructure
cost by clinical laboratories. Targeted sequencing instruments are less expensive and generate less
data than the ones that perform WGS/WES. Therefore, more laboratories are likely to implement
targeted sequencing before attempting to build a framework to support WGS/WES. For instance,
a study conducted by Regeneron Genetics Center and the Geisinger Health System has highlighted the
value of integrating genomic data and EHRs to uncover a genetic variant that results in reduced levels
of triglycerides and a lower risk of coronary artery disease [119]. In addition, a study on the large-scale
analysis of more than 50,000 exomes of patients and their EHRs by Regeneron and Geisinger has found
clinically actionable genetic variants in 3.5% of individuals and several known and/or potential drug
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targets as well [120]. However, there are still challenges with integrating genomic data into EHRs in
clinical practice, including reliable bioinformatics systems/pipelines that translate raw genomic data
into meaningful and actionable variants, the role of human curation in the interpretation of genetic
variants, and the requirement for consistent standards to genomic and clinical data [121].

A vital challenge of incorporating genomic data into clinical practice is the lack of standards
for generating NGS data, bioinformatics processing, data storage, and clinical decision support.
Standards could promote interoperability in data quality. Obedience to standards would enable the
routine use of genomic data in clinical care. However, it is challenging to build standards when NGS
technology and bioinformatics tools are frequently evolving. Furthermore, approaches to clinical
decision support differ among healthcare institutions [116]. Appropriately integrating genomic data
with EHRs for the discovery of clinically actionable variants can generate novel insights into disease
mechanisms and provide better treatments. To improve our understanding on the nature of the disease
from comprehensive EHRs, new methods such as ML, NLP, and other artificial intelligence approaches
are needed. However, not all patients are likely to benefit from the use of Big Data in healthcare due
to our current knowledge gaps on how to extract useful information from large-scale genomic and
clinical data and how to interpret discovered variants properly. In the meantime, targeted therapies
are not yet available for many important genes, and regulatory issues need to be solved before some
useful bioinformatics tools can be applied to clinical setting.

8. Conclusions

In conclusion, as EHRs are exceptionally private, methods of protecting patient data need to
make certain that patient information is only shared with those with authorized access. Even with
the existing challenges, the prospective advantages that genomic data can bring to healthcare are
much more important than the potential disadvantages. The increasing development of integrating
genomic data with EHRs may cause concerns, but genomic data will certainly play an important role
in advancing genomic medicine only if patient privacy and data security can be strictly protected.
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