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Abstract: Recent studies have shown that plumbagin has anti-inflammatory, anti-allergic,
antibacterial, and anti-cancer activities; however, it has not yet been shown whether plumbagin
suppresses alpha-melanocyte stimulating hormone (α-MSH)-induced melanin synthesis to prevent
hyperpigmentation. In this study, we demonstrated that plumbagin significantly suppresses
α-MSH-stimulated melanin synthesis in B16F10 mouse melanoma cells. To understand the inhibitory
mechanism of plumbagin on melanin synthesis, we performed cellular or cell-free tyrosinase activity
assays and analyzed melanogenesis-related gene expression. We demonstrated that plumbagin
directly suppresses tyrosinase activity independent of the transcriptional machinery associated with
melanogenesis, which includes micropthalmia-associated transcription factor (MITF), tyrosinase
(TYR), and tyrosinase-related protein 1 (TYRP1). We also investigated whether plumbagin was toxic
to normal human keratinocytes (HaCaT) and lens epithelial cells (B3) that may be injured by using
skin-care cosmetics. Surprisingly, lower plumbagin concentrations (0.5–1 µM) effectively inhibited
melanin synthesis and tyrosinase activity but do not cause toxicity in keratinocytes, lens epithelial
cells, and B16F10 mouse melanoma cells, suggesting that plumbagin is safe for dermal application.
Taken together, these results suggest that the inhibitory effect of plumbagin to pigmentation may
make it an acceptable and safe component for use in skin-care cosmetic formulations used for
skin whitening.
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1. Introduction

Melanin consists of a group of pigments synthesized in epidermal melanocytes that plays
an important role in defending skin against ultraviolet (UV) radiation damage [1]. Abnormal
melanogenesis, either increased or decreased production of melanin, is closely associated with a
number of skin diseases including melanoma and the pigmentation disorders, such as chloasma
and freckles [2,3]. Biosynthesis of melanin is initiated by multiple stimuli including UV irradiation,
inflammatory cytokines, and hormonal signaling. Specifically, α-melanocyte stimulating hormone
(α-MSH) released from UV-exposed keratinocytes can stimulate melanin biosynthesis in epidermal
melanocytes by activating the cAMP-PKA-CREB (cyclic adenosine monophosphate-protein kinase
A-cAMP response element binding protein) axis [3]. The activated cAMP-PKA-CREB axis leads to an
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increase in mRNA encoding micropthalmia-associated transcription factor (MITF). MITF increases
the gene expression of tyrosinase (TYR), tyrosinase-related protein 2 (TYRP1), and tyrosinase-related
protein 2 (TYRP2) upon α-MSH stimulation in melanocytes [3,4]. In addition, many signaling pathways
that control cell growth, including mitogen-activated protein kinases (MAPKs), extracellular response
kinase (ERK), and AKT, are essential to melanogenesis by regulating MITF stability and activity [5].

The enzyme tyrosinase, a multifunctional copper-containing oxidase, plays an essential
role in melanin biosynthesis by catalyzing the reactions in which L-tyrosine is hydroxylated to
L-dihydroxyphenylalanine (L-DOPA) and L-DOPA is oxidized into o-quinone (dopaquinone) [5,6].
Therefore, some tyrosinase inhibitors also inhibit melanin biosynthesis, and these include resveratrol,
arbutin, and hinokitiol, which have all been used in skin-whitening cosmetic applications [7].

Plumbagin is a simple hydroxyl-naphthoquinone, was first extracted from the roots of the
Plumbago genus of plants, and has been shown to have remarkable medicinal properties [8].
Anti-inflammatory, anti-cancer, anti-allergic, and antibacterial activities of plumbagin have been
reported [8,9]. Indeed, it has been reported that plumbagin inhibits neutrophil activation, angiogenesis,
and collagenase expression by suppressing topoisomerase-II, suggesting the use of plumbagin as
a potential drug in the treatment of rheumatoid arthritis [10]. In addition, several reports have
shown that plumbagin exhibits anti-cancer activity in multiple types of cancer, including breast [11],
prostate [12], ovarian [13], lung [14], skin carcinoma [15], and liver cancer [16]. Although it is becoming
clear that plumbagin may be useful as a therapeutic intervention in the treatment of various human
diseases, the inhibitory effect of plumbagin on melanogenesis linked to hyperpigmentation has never
been reported.

In the present study, we evaluated the inhibitory effects of plumbagin on melanogenesis
stimulated by α-MSH. Here we show that plumbagin significantly suppresses α-MSH-induced melanin
biosynthesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity but that it does not
inhibit MITF-mediated gene expression associated with melanogenesis.

2. Results

2.1. Chemical Structure and Cytotoxic Effects of Plumbagin in B16F10 Mouse Melanoma Cells

Before studying the anti-melanogenic effects of plumbagin, we first assessed its toxicity in
melanin-producing B16F10 mouse melanoma cells. The chemical structure of plumbagin is shown in
Figure 1A. The results of our cytotoxicity assay wherein plumbagin concentrations less than 5 µM did
not affect cell viability in B16F10 cells are shown in Figure 1B.
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2.2. Plumbagin Suppresses α-MSH-Induced Melanin Synthesis in B16F10 Mouse Melanoma Cells

We next investigated the inhibitory effects of plumbagin on α-melanocyte stimulating hormone
(α-MSH)-induced melanin synthesis in B16F10 cells. We demonstrated that plumbagin strongly
suppresses α-MSH-induced melanin accumulation in a cultured medium of B16F10 cells (Figure 2A).
To confirm the inhibitory effect of plumbagin on α-MSH-induced melanin synthesis, we determined
the extracellular or intracellular melanin content in the absence or presence of plumbagin in
α-MSH-stimulated B16F10 cells. Figure 2B,C show that plumbagin significantly decreases extracellular
and intracellular melanin content.
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Figure 2. Effects of plumbagin on melanin production in B16F10 mouse melanoma cells. (A) Plumbagin
suppressed α-MSH-induced melanin production. Cells were pre-incubated in the absence or presence
of plumbagin for 1 h, following which α-MSH (0.2 mM) was added and the cells were incubated for
3 or 4 days. Color changes in the cultured medium are shown; (B) extracellular and (C) intracellular
melanin content increased by α-MSH treatment alone and decreased when plumbagin treatment
was also given. Cells were pre-incubated with arbutin (1 mM), kojic acid (0.2 mM), or plumbagin
(0.5, 1 µM) for 1 h, and then further incubated with α-MSH (0.2 mM) for 3 or 4 days as indicated. Values
represent means ± SD of three independent experiments performed in duplicate; # p < 0.05, ## p < 0.01,
and ** p < 0.01.

2.3. Plumbagin Does Not Regulate α-MSH-Induced Melanogenesis Gene Expression and Signal
Transduction Cascades

Because micropthalmia-associated transcription factor (MITF) is an essential transcription
factor that regulates melanogenesis-associated gene expression through the α-MSH-PKA-CREB axis,
we investigated whether plumbagin could regulate MITF-mediated gene expression associated with
melanogenesis. First, we determined a time point of maximal melanogenesis gene expression
for MITF, tyrosinase (TYR), and tyrosinase-related protein 1 (TYRP1) under α-MSH stimulation.
MITF is strongly upregulated after α-MSH treatment for 2 h (Figure 3A). TYR and TYRP1 were
dramatically upregulated after 48 h of α-MSH treatment (Figure 3A). MITF and tyrosinase protein
levels increased in response to α-MSH treatment and were not suppressed by the plumbagin treatment
(Figure 3B). Consistently, plumbagin did not inhibit MITF, TYR, and TYRP1 mRNA levels after
α-MSH stimulation, suggesting that plumbagin does not regulate the transcriptional machinery
related to melanogenesis gene expression in B16F10 cells (Figure 3C). Because phosphorylation and
activation of AKT, ERK1/2, and CREB (major signal transduction cascades that regulate melanogenesis)
are required for melanogenesis [3], we further investigated whether plumbagin regulates these
melanogenesis-associated signal transduction pathways. Our results, described in Figure 3D, show
that plumbagin does not alter AKT, ERK1/2, or CREB signaling after α-MSH treatment.
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Figure 3. Plumbagin does not affect the transcriptional machinery and signal transduction cascade
associated with melanogenesis. (A) Determination of time to mRNA expression associated with
melanogenesis. Cells were incubated with 0.2 mM of α-MSH for indicated time periods, following
which melanogenesis-related gene-specific mRNA expression level was measured. Values represent
means ± SD of two independent experiments performed in triplicate; * p < 0.05, ** p < 0.01,
and *** p < 0.001; (B) effects of plumbagin on MITF and tyrosinase protein expression levels. B16F10
cells pre-incubated with plumbagin (0.25, 0.5, 1, 2 µM) were further incubated with 0.2 mM α-MSH.
MITF and tyrosinase protein expression levels were measured via immunoblotting as described in the
materials and methods section; (C) effect of plumbagin on MITF, TYR, and TYRP1 mRNA expression.
B16F10 cells were incubated in the absence or presence of α-MSH and plumbagin (1, 2 µM) for 4 h
(MITF mRNA) or 48 h (TYR and TYRP1 mRNA). MITF, TYR, and TYRP1 mRNA expression levels were
measured using quantitative RT-PCR. Values represent means ± SD of three independent experiments
performed in triplicate; * p < 0.05, ** p < 0.01, and NS (not significant); (D) regulatory effects of
plumbagin on signal transduction proteins that participate in melanogenesis. Cells were pre-incubated
with plumbagin for 1 h, and cells were then further incubated with α-MSH (0.2 mM) for 3 h. Indicated
protein levels were measured via immunoblotting.

2.4. Plumbagin Inhibits Tyrosinase Activity

Because it is clear that direct or indirect tyrosinase-inhibiting natural products could be useful
for the development of skin-whitening cosmetics, we next investigated the inhibitory effect of
plumbagin on tyrosinase enzyme activity. In this study, we demonstrated that plumbagin significantly
suppresses α-MSH-induced cellular tyrosinase enzymatic activity in B16F10 cells (Figure 4A).
To understand whether plumbagin inhibits tyrosinase activity directly or indirectly, cell-free tyrosinase
activity was measured. Plumbagin strongly inhibits L-DOPA oxidation activity of mushroom-derived
tyrosinase as well, suggesting that plumbagin suppresses melanogenesis by directly inhibiting
tyrosinase activity (Figure 4B). In addition, significant elevation in radical scavenging activities using
a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was observed in samples treated with vitamin C and
plumbagin at concentrations ranging from 0.1 to 5 mg/mL. Consequently, 5 mg/mL of plumbagin
exhibited a similar effect on radical scavenging activity to those of 0.1 mg/mL of vitamin C (Figure 4C).
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activity. Tyrosinase activity was determined by measuring L-DOPA oxidation to dopachrome, and
this oxidation of L-DOPA was read using an absorbance reader at 475 nm; (C) antioxidants activity of
plumbagin. DPPH scavenging activity was examined at indicated concentrations using plumbagin
or vitamin C as a positive control. Values represent means ± SD of three independent experiments
performed in triplicate; * p < 0.05, ** p < 0.01, *** p < 0.001 and # p < 0.05.

2.5. Plumbagin Is Not Toxic in Normal Keratinocytes and Lens Epithelial Cells

Because cosmetics such as skin cream are for external use and cytotoxicity could cause skin
problems, we further investigated whether plumbagin is toxic to normal keratinocytes (HaCaT) and
lens epithelial cells (B3) and whether it may be useful for the development of skin-whitening cosmetics.
Consequently, we found that lower plumbagin concentrations (1–5 µM) do not cause toxicity in
HaCaT and B3 cells, but are effective on inhibition of melanin synthesis (Figure 5A). In addition,
plumbagin did not induce DNA damage-related γH2AX and reduce cellular apoptosis-related
poly (ADP-ribose) polymerase (PARP) and caspase-3 proteins in HaCaT and B3 cells (Figure 5B),
suggesting that plumbagin may be acceptable for use in skin-whitening products without exhibiting
any dermal toxicity.
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Figure 5. Cytotoxic effects of plumbagin in B3 and HaCaT cells. (A) Cytotoxicity of plumbagin in B3
and HaCaT cells. Cells were incubated with various concentrations (1, 2, 5, 10, 20 µM) of plumbagin
for 3 days. Values (left panel) represent means ± SD of three independent experiments performed in
duplicate; ** p < 0.01. Crystal violet staining images were shown (right panel); (B) plumbagin does not
cause DNA damage and apoptosis in B3 and HaCaT cells. Cells were incubated with or without 2 µM
of plumbagin for 3 days, and protein levels were then measured via immunoblotting.
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3. Discussion

Plumbagin is a plant-derived secondary metabolite and shows several biological functions,
including anti-inflammatory, anti-cancer, anti-allergic, and antibacterial activities [8,9]. However, it was
not known whether plumbagin had an inhibitory effect on melanogenesis linked to hyperpigmentation
and melanoma. In this study, we demonstrated that plumbagin strongly suppresses melanogenesis
in B16F10 melanoma cells, and this work could provide an opportunity for developing skin-care
cosmetics based on the anti-inflammatory, anti-allergic, antibacterial, and anti-melanogenesis activities
of plumbagin.

Because upregulation of melanogenesis is often observed in malignant melanoma with
overexpressed tyrosinase levels in blood as well as tumor tissues, it is apparent that melanogenesis
is a potential target for chemotherapy of malignant melanomas [1]. In the present study, we found
that plumbagin directly suppresses tyrosinase activity independent of the transcriptional machinery
associated with melanogenesis (Figure 6). Therefore, our results suggest that plumbagin may be
a potential component of a preventive and therapeutic strategy for the management of malignant
melanoma. Indeed, the anti-melanoma, chemosensitizing, and radiosensitizing effects of plumbagin
on melanoma therapy have been reported [17–21].
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1; L-DOPA: L-3,4-dihydroxyphenylalanine.

In previous studies dealing with the anti-cancer and anti-inflammatory effects of plumbagin,
approximately 5–10 µM of plumbagin (higher than the concentration used in this study) has been used
in in vitro models [17,22,23]. Therefore, we investigated the toxic effect of plumbagin in proliferative
cells, including normal keratinocytes (HaCaT) and lens epithelial cells (B3), that can be damaged by
skin-care cosmetics. Our results demonstrated that lower concentrations, approximately 0.5–1 µM of
plumbagin, are not toxic to normal keratinocytes and lens epithelial cells, but are effective enough to
reduce tyrosinase activity and melanin synthesis. In addition, we also found that plumbagin more
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effectively suppresses melanogenesis than 1 mM arbutin or 0.2 mM kojic acid, which are well-known
skin-whitening agents. These results suggest that plumbagin is safe for use as a component for
developing skin-whitening cosmetics.

In the present study, we studied the inhibitory effects of plumbagin on the tyrosinase enzyme
reaction using cellular and cell-free tyrosinase activity assays and based on L-DOPA oxidation.
Nevertheless, we did not suggest a precise molecular mechanism as to how plumbagin inhibits
tyrosinase activity. This mechanism should be further investigated to determine whether plumbagin
directly interacts with tyrosinase and inhibits its oxidase activity or whether it has indirect effects that
lead to decreased tyrosinase activity.

4. Materials and Methods

4.1. Reagents and Antibodies

Plumbagin, α-MSH (M4135), arbutin (A4256), kojic acid (K3125), L-DOPA (333786), and tyrosinase
(T3824) purified from mushrooms were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Antibodies against MITF (#12590), p-AKTS473 (#4060), p-AKTT308 (#13038), p-CREB (#9198), p-ERK1/2
(#4370), ERK1/2 (#9102), γH2AX (#9718), PARP (#5625), and caspase-3 (#9665) were purchased from
Cell Signaling Technology (Danvers, MA, USA). Tyrosinase (sc-7833), and β-tubulin (sc-9104) was
purchased from Santa Cruz Biotechnology (Dallas, TX, USA).

4.2. Cell Culture and Cell Viability Assay

B16F10 (mouse melanoma cells), B3 (human lens epithelial cells), and HaCaT (human keratinocyte)
cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum and 25 mM glucose. The cells were incubated in a humidified atmosphere of 95% air and
5% CO2 at 37 ◦C. To measure viability, cells were incubated with various concentrations of plumbagin
dissolved in dimethyl sulfoxide (DMSO) for 48 or 72 h. After incubation, cultured cells were washed
with PBS and then incubated with 0.5% crystal violet staining solution for 20 min at room temperature.
To measure optical density, stained cells were incubated with 1% sodium dodecyl sulfate (SDS) solution
for 15 min at room temperature, and the optical density of each well was then measured at 570 nm
(OD570) using an absorbance reader (BioTek, Winooski, VT, USA).

4.3. Immunoblotting

Cultured cells were lysed using 1% IGEPAL (octylphenoxypolyethoxyethanol), 150 mM NaCl,
50 mM Tris-HCl (pH 7.9), 10 mM NaF, and protease inhibitor cocktail in lysis buffer. Protein samples
were separated via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the
separated proteins were then transferred to a polyvinylidene difluoride (PVDF) membrane (Millipore,
Billerica, MA, USA). Membranes were incubated overnight with primary antibodies (1:1000) at 4 ◦C,
and then incubated with HRP-conjugated secondary antibodies (1:10,000) for 1 h at room temperature.
Proteins were visualized using an ECL Prime kit (GE healthcare, Pittsburgh, PA, USA).

4.4. Measurement of Intracellular and Extracellular Melanin Content

Melanin content was determined and quantified using a previously described method with slight
modification [2,24]. For melanin content analysis, B16F10 cells were cultured in phenol red-free DMEM
containing 10% fetal bovine serum. B16F10 cells were cultured with α-MSH treatment in the absence
or presence of plumbagin for 3 or 4 days. The cultured cells or media were harvested and pellets were
dissolved in 1N NaOH containing 10% DMSO at 80 ◦C for 1 h. The melanin content was measured
using an absorbance reader at 475 nm (OD475), and melanin content was then normalized to the cellular
protein concentration.
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4.5. RNA Isolation and Quantitative RT-PCR

Total RNA was extracted from B16F10 cells using TRIzol (Invitrogen, Waltham, MA, USA)
and 2 µg of total RNA was used for cDNA synthesis by using a high capacity cDNA reverse
transcription kit (Applied Biosystems, Waltham, MA, USA). Quantitative PCR was performed
using SYBR Green PCR Master Mix (Applied Biosystems). The sequences of the PCR primers
(5′–3′) were as follows: TCAAGTTTCCAGAGACGGGT and CATCATCAGCCTGGAATCAA for
MITF; ATAGGTGCATTGGCTTCTGG and TCTTCACCATGCTTTTGTGG for TYR; CATTTCCAG
CTGGGTTTCTC and TGGTCTGTGAATCCTTGGAA for TYRP1.

4.6. Cellular Tyrosinase Activity Assay

Cellular tyrosinase activity was determined using a previously described method with
modification [25,26]. Cultured B16F10 cells were incubated with α-MSH in the absence or presence of
plumbagin, and cells were then washed and lysed with PBS containing 1% sodium deoxycholate and
0.5% Triton X-100. After the protein concentration was determined, 50 µg of protein was incubated
with 2.0 mM L-DOPA and 0.1 M PBS (pH 6.8) for 1 h at 37 ◦C. The oxidation of L-DOPA was measured
at 475 nm (OD475) using an absorbance reader. Activity was measured using the following formula:
tyrosinase activity (%) = (OD475 of sample/OD475 of control) × 100.

4.7. Cell-Free Tyrosinase Activity Assay

To determine the inhibitory effect of plumbagin on tyrosinase activity, purified mushroom
tyrosinase was incubated for 2 h with reaction mixture containing 0.1 M PBS (pH 6.8) and 2 mM
L-DOPA in the absence or presence of plumbagin. The oxidation of L-DOPA to dopachrome was
measured at 475 nm (OD475) with an absorbance reader. Activity was measured using the following
formula: tyrosinase activity (%) = (OD475 of sample/OD475 of control) × 100.

4.8. DPPH Radical Scavenging Activity Assay

To determine the radical scavenging activity of plumbagin, a 0.2 mM DPPH solution in methanol
was prepared and used. Each sample was diluted with distilled water to final concentrations
of 0.1, 0.2, 0.5, 1, 2, and 5 mg/mL (plumbagin), or 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5 mg/mL (vitamin
C). After reaction, optical density (OD) was measured at 517 nm (OD517) using an absorbance reader.
Free radical scavenging activity was calculated using the following formula: DPPH radical scavenging
activity (%) = 10 − ((ODs/ODc) × 100), where ODs represents the absorbance of the samples,
and ODc represents the absorbance of the vehicle control.

4.9. Statistical Analysis

All data were analyzed using an unpaired Student’s t-test for two experimental comparisons and
a one-way analysis of variance (ANOVA) with Tukey’s post hoc test for multiple comparisons using
Prism (GraphPad Software Inc., La Jolla, CA, USA). Data are presented as mean ± standard deviation
(SD). Differences between mean values were considered statistically significant when the associated
p-value was less than 0.05.

5. Conclusions

The major findings of this study are that plumbagin (i) suppresses α-MSH-induced melanin
synthesis by inhibiting tyrosinase activity; (ii) does not affect the MITF-linked transcriptional machinery
and signal transduction cascades including AKT and ERK1/2 activation associated with melanogenesis;
and (iii) does not cause toxicity in normal keratinocytes (HaCaT) and lens epithelial (B3) cells
when its concentration was less than 5 µM. Taken together, plumbagin abrogates α-MSH-induced
melanin synthesis by inhibiting tyrosinase activity independent of the CREB-MITF transcriptional
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axis. These results therefore suggest a promising and safe natural product plumbagin for decreasing
hyperpigmentation by using it in the development of skin-whitening cosmetics.
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