Next Article in Journal
PPARγ Modulates Long Chain Fatty Acid Processing in the Intestinal Epithelium
Previous Article in Journal
Effect of Dietary Acidolysis-Oxidized Konjac Glucomannan Supplementation on Serum Immune Parameters and Intestinal Immune-Related Gene Expression of Schizothorax prenanti
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2017, 18(12), 2552; doi:10.3390/ijms18122552

Analysis of MicroRNA Expression in Newborns with Differential Birth Weight Using Newborn Screening Cards

Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, San Luis Potosí 78216, SLP, México
Present address: Academic Division, Universidad Tecnológica de Corregidora, Corregidora 76900, Querétaro, México.
*
Author to whom correspondence should be addressed.
Received: 27 October 2017 / Revised: 17 November 2017 / Accepted: 21 November 2017 / Published: 28 November 2017
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
View Full-Text   |   Download PDF [5095 KB, uploaded 28 November 2017]   |  

Abstract

Birth weight is an early predictor for metabolic diseases and microRNAs (miRNAs) are proposed as fetal programming participants. To evaluate the use of dried blood spots (DBS) on newborn screening cards (NSC) as a source of analyzable miRNAs, we optimized a commercial protocol to recover total miRNA from normal birth weight (NBW, n = 17–20), low birth weight (LBW, n = 17–20) and high birth weight (macrosomia, n = 17–20) newborns and analyzed the relative expression of selected miRNAs by stem-loop RT-qPCR. The possible role of miRNAs on the fetal programming of metabolic diseases was explored by bioinformatic tools. The optimized extraction of RNA resulted in a 1.2-fold enrichment of miRNAs respect to the commercial kit. miR-33b and miR-375 were overexpressed in macrosomia 9.8-fold (p < 0.001) and 1.7-fold, (p < 0.05), respectively and miR-454-3p was overexpressed in both LBW and macrosomia (19.7-fold, p < 0.001 and 10.8-fold, p < 0.001, respectively), as compared to NBW. Potential target genes for these miRNAs are associated to cyclic-guanosine monophosphate (cGMP)-dependent protein kinase (PKG), mitogen-activated protein kinase (MAPK), type 2 diabetes, transforming growth factor-β (TGF-β)and Forkhead box O protein (FoxO) pathways. In summary, we improved a protocol for analyzing miRNAs from NSC and provide the first evidence that birth weight modifies the expression of miRNAs associated to adult metabolic dysfunctions. Our work suggests archived NSC are an invaluable resource in the search for fetal programming biomarkers. View Full-Text
Keywords: circulating microRNAs; newborn screening cards; birth weight; fetal programming circulating microRNAs; newborn screening cards; birth weight; fetal programming
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Rodil-Garcia, P.; Arellanes-Licea, E.C.; Montoya-Contreras, A.; Salazar-Olivo, L.A. Analysis of MicroRNA Expression in Newborns with Differential Birth Weight Using Newborn Screening Cards. Int. J. Mol. Sci. 2017, 18, 2552.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top