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Abstract: Riboswitches, which are located within certain noncoding RNA region perform functions
as genetic “switches”, regulating when and where genes are expressed in response to certain ligands.
Understanding the numerous functions of riboswitches requires computation models to predict
structures and structural changes of the aptamer domains. Although aptamers often form a complex
structure, computational approaches, such as RNAComposer and Rosetta, have already been applied
to model the tertiary (three-dimensional (3D)) structure for several aptamers. As structural changes
in aptamers must be achieved within the certain time window for effective regulation, kinetics
is another key point for understanding aptamer function in riboswitch-mediated gene regulation.
The coarse-grained self-organized polymer (SOP) model using Langevin dynamics simulation has
been successfully developed to investigate folding kinetics of aptamers, while their co-transcriptional
folding kinetics can be modeled by the helix-based computational method and BarMap approach.
Based on the known aptamers, the web server Riboswitch Calculator and other theoretical methods
provide a new tool to design synthetic riboswitches. This review will represent an overview of
these computational methods for modeling structure and kinetics of riboswitch aptamers and for
designing riboswitches.
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1. Introduction

Many noncoding RNAs (ncRNAs) have been found to bear important and diverse biological
functions in all domains of life, including catalysis, protection of genomes, and regulation of cell
activities [1–3]. This diversity in biological functions is attributed to the remarkable structure
variety accommodated by RNAs. Riboswitches, which present a fundamental example of ncRNAs,
are involved in cellular regulation through vast structural rearrangement in response to the intracellular
physical signals, such as metabolites [1,4,5] and ions [6–10]. Among previously validated riboswitches,
metabolite-specific riboswitches are the most widespread and the nature of their ligands is well defined
in most cases, except for several “riboswitch-like”, presumably cis-acting, RNA structures for which
no ligand has been found yet [11,12]. In order to function, most riboswitches usually consist of two
domains: a conserved aptamer domain that is responsible for ligand binding, and an expression
platform that converts changes in the aptamer domain into changes in gene expression. In contrast to
these riboswitches, the SMK (SAM-III) riboswitch is the one that can use single domain for both ligand
binding and gene regulation [13–15]. Aptamer domains, which are typically 35~200 nucleotides in
length [16–18], often form a ligand-binding pocket (the aptamer structure) to bind the ligands with
high specificity. To date, according to the aptamer structures (Figure 1), more than 30 riboswitch classes
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have been found in all three kingdoms of life [19–21]. Due to their specificity and function as genetic
regulators, riboswitches represent a novel class of molecular target for developing antibiotics and
chemical tools [22]. Thus, a comprehensive understanding of riboswitches is important to facilitate the
design for riboswitch-targeted drug, molecular robotics, and new molecular sensors.
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Figure 1. Structural models of aptamers from several extensively studied riboswitch candidates.  
The structures can bind their nature ligands, such as S-adenosylmethionine (SAM), thiamine 
pyrophosphate (TPP), adenine and flavin mononucleotide (FMN), to form a ligand bound 
conformation. Except the SAM-II riboswitch from the Sargasso Sea metagenome [23,24] and TPP 
riboswitch aptamer from Neurospora crassa [25], other aptamers are from bacteria. Nucleotides within 
helices P1, P2, P3, P4, P5, and P6 found within the bound aptamers, are colored differently. The dash 
line denotes the long helix region in the structure of TPP riboswitch aptamer. 

The signal-dependent conformational shifts of riboswitches, usually between two distinct 
functional states, i.e., ligand bound state and unbound state, regulate the downstream gene 
expression (Figure 2). One of the alternative states serves as the genetic off state (OFF state) by 
forming an intrinsic terminator hairpin or a repression stem to repress gene expression [26–28].  
The other state acts as the genetic on state (ON state), which induces gene expression by preventing 
the formation of these regulatory elements. Riboswitches can also regulate RNA splicing by 
controlling the structural flexibility near the relevant splice site [25]. During the regulatory activities, 
one of the two structures is adopted by riboswitches, depending on whether the aptamer domain can 
form the pocket and bind its ligand on time or not. Therefore, to investigate the regulation mechanism 
of these functional ncRNAs, one of the major challenges is the information of the aptamer structure 
(Figure 2). In contrast to proteins, a much smaller number of RNA structures have been solved by 
using the traditional experimental methods [29], such as nuclear magnetic resonance (NMR) 
spectroscopy and X-ray crystallography [15,30]. Sensitive X-ray crystallography must take special 

Figure 1. Structural models of aptamers from several extensively studied riboswitch
candidates. The structures can bind their nature ligands, such as S-adenosylmethionine (SAM),
thiamine pyrophosphate (TPP), adenine and flavin mononucleotide (FMN), to form a ligand bound
conformation. Except the SAM-II riboswitch from the Sargasso Sea metagenome [23,24] and TPP
riboswitch aptamer from Neurospora crassa [25], other aptamers are from bacteria. Nucleotides within
helices P1, P2, P3, P4, P5, and P6 found within the bound aptamers, are colored differently. The dash
line denotes the long helix region in the structure of TPP riboswitch aptamer.

The signal-dependent conformational shifts of riboswitches, usually between two distinct
functional states, i.e., ligand bound state and unbound state, regulate the downstream gene expression
(Figure 2). One of the alternative states serves as the genetic off state (OFF state) by forming an
intrinsic terminator hairpin or a repression stem to repress gene expression [26–28]. The other
state acts as the genetic on state (ON state), which induces gene expression by preventing the
formation of these regulatory elements. Riboswitches can also regulate RNA splicing by controlling
the structural flexibility near the relevant splice site [25]. During the regulatory activities, one of the
two structures is adopted by riboswitches, depending on whether the aptamer domain can form the
pocket and bind its ligand on time or not. Therefore, to investigate the regulation mechanism of these
functional ncRNAs, one of the major challenges is the information of the aptamer structure (Figure 2).
In contrast to proteins, a much smaller number of RNA structures have been solved by using the
traditional experimental methods [29], such as nuclear magnetic resonance (NMR) spectroscopy and
X-ray crystallography [15,30]. Sensitive X-ray crystallography must take special care to avoid RNA
aggregation and misfolding prior to crystal formation, and NMR experiments easily suffer from poor
long-range correlations for RNA. These create a great demand to obtain information of RNA structures
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by using theoretical approaches. Up to now, many packages and methods have been developed to
predict RNA secondary structure (two-dimensional (2D)) [31–33], as well as the three-dimensional
(3D) structure for small RNAs [32–38]. These methods can quickly produce structure for a given RNA
based on the input data. Some computational methods, such as RNAComposer and Rosetta [34,35,39],
have been successfully applied to modeling 3D structure for several complex aptamers. As classical
experimental methods may be limited in applicability to RNA [40], these theoretical approaches are
likely to circumvent the bottleneck from experimental methods.
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Another scientific challenge for the elucidation of the riboswitch function is to model aptamer 
kinetics, which is intrinsic to folding and conformational switching. Traditional molecular dynamics 
(MD) simulations [41,42], are able to provide a direct link between structure and dynamics. 
Nonetheless, due to the extreme complexity of force fields, a large number of atoms and a high 
number of degrees of freedom in RNA molecules, the detailed all of the atom simulations are difficult 
to produce trajectories in the time frame relevant for function of aptamers, which usually need to 
undergo large structural changes for purposes. Coarse-grained structural model with a less 
exhaustive representation is therefore particularly efficient to deal with these problems [43,44].  
For example, the folding kinetics of pbuE [45], addA, and SMK riboswitch aptamers [43,46], have 
already been studied by using the coarse-grained SOP model. Another efficient alternative based on 
coarse-grained model is to investigate the kinetics of RNA 2D structure [47,48], which can also 
capture enough detail to understand the functions of aptamers. 

Like protein, which can fold as soon as the N-terminal part emerges from the ribosome  
(co-translational folding) [49], nascent RNA also folds spontaneously as the nucleotides are 
synthesized by RNA polymerase in living cells (co-transcriptional folding) [50]. As riboswitches fold 
co-transcriptionally, folding patterns of the aptamer domain can direct the folding of the downstream 
expression platform. In fact, since many riboswitches regulate transcription, ligand binding can only 
occur during transcription for these to control gene expression [26,51–53]. Hence, the co-
transcriptional folding kinetics is crucial for understanding the intracellular function of aptamers. 
Besides the optical-trapping assay and other experimental approaches [28,50,54], the kinetic Monte 
Carlo (MC) method was used to study the co-transcriptional folding of riboswitches [55], but it only 
considered the base pairing interactions closed in the native structures. By combining the master 
equation and the free energy landscape, BarMap and the helix-based computational methods have 

Figure 2. Schematic representation of riboswitch behaviors in cells. Nascent chain of the riboswitch
and the ligand are colored red and blue respectively. The green line denotes the ribosome binding
site (RBS) and RNA polymerase (RNAP) is denoted by yellow-green. The structure, structural
changes, and co-transcriptional folding should be investigated for fully understanding the regulation
mechanisms of riboswitches.

Another scientific challenge for the elucidation of the riboswitch function is to model aptamer
kinetics, which is intrinsic to folding and conformational switching. Traditional molecular dynamics
(MD) simulations [41,42], are able to provide a direct link between structure and dynamics.
Nonetheless, due to the extreme complexity of force fields, a large number of atoms and a high
number of degrees of freedom in RNA molecules, the detailed all of the atom simulations are difficult
to produce trajectories in the time frame relevant for function of aptamers, which usually need to
undergo large structural changes for purposes. Coarse-grained structural model with a less exhaustive
representation is therefore particularly efficient to deal with these problems [43,44]. For example,
the folding kinetics of pbuE [45], addA, and SMK riboswitch aptamers [43,46], have already been studied
by using the coarse-grained SOP model. Another efficient alternative based on coarse-grained model
is to investigate the kinetics of RNA 2D structure [47,48], which can also capture enough detail to
understand the functions of aptamers.

Like protein, which can fold as soon as the N-terminal part emerges from the ribosome
(co-translational folding) [49], nascent RNA also folds spontaneously as the nucleotides are
synthesized by RNA polymerase in living cells (co-transcriptional folding) [50]. As riboswitches fold
co-transcriptionally, folding patterns of the aptamer domain can direct the folding of the downstream
expression platform. In fact, since many riboswitches regulate transcription, ligand binding can only
occur during transcription for these to control gene expression [26,51–53]. Hence, the co-transcriptional
folding kinetics is crucial for understanding the intracellular function of aptamers. Besides the
optical-trapping assay and other experimental approaches [28,50,54], the kinetic Monte Carlo (MC)
method was used to study the co-transcriptional folding of riboswitches [55], but it only considered the
base pairing interactions closed in the native structures. By combining the master equation and the free
energy landscape, BarMap and the helix-based computational methods have been applied to modeling
the co-transcriptional folding behaviors for several riboswitches [56–60]. The results suggest that the
aptamer domain folds into the pocket structure as soon as the nucleotides are transcribed [57,58],
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while the riboswitch without a separate aptamer domain is more likely to form an alternative structure
instead of the pocket during the transcription [56]. These computation models, which can predict
stable and metastable structures, kinetics, and transition states, bridge the gap in understanding the
relationship between the structure and biological function of aptamers. Furthermore, computational
RNA design has also made a great progress to construct synthetic riboswitches by using different
strategies [61,62]. Here, we will provide a collection of these computational methods for modeling the
structure and kinetics of aptamers, and for designing riboswitches.

2. Computational Method for Predicting Aptamer Structures

Since the structure of RNA determines its biological function, a complete understanding of the
aptamer structure is the necessary prerequisite to understand the riboswitch-mediated regulation
processes in the cell. RNAs fold into complex structures; the linear ribonucleotide sequence is the
determinant of base-pairing interactions (2D structure), which in turn, determines the spatial shape
(3D structure). Since most computational methods use the input of 2D structure to produce the RNA
3D structure [29,32,63], the precise prediction of 2D structure becomes more and more important.
Early computational approaches for predicting RNA 2D structure (e.g., RNAfold [64]), only find the
structure with the lowest free energy for a given RNA. As the functional structure may not be the one
with the lowest energy, methods such as mfold and RNAsubopt [31,65] are developed to predict a set
of low-energy structures. Other prediction methods, such as PPfold and RNAalifold [66,67], are based
on evolutionary considerations. For a given aptamer, these methods can quickly produce 2D structure
and the free energy. The methods for the modeling structure do not consist of a process that assumes
co-transcriptional folding. Recently, RNA 2D structure prediction has been reinforced by incorporating
the constraints from the experiments [65].

2.1. RNAComposer

RNA 2D structure is a crucial step in the functional characterization, but a thorough understanding
of aptamer functions depends critically on the 3D structure, which is the key determinant of their
interactions with ions and other molecules in cell. Based on the 2D structure tree graph representation
and homology of structural elements, the RNAComposer method (Table 1) was developed to
automatically predict the 3D structure for large RNAs [29]. As a knowledge-based method, it uses RNA
sequence and 2D structure topology in dot-bracket notation as an input for 3D structure prediction
(Figure 3). In this notation [64], unpaired nucleotides and the nucleotides that are involved in base
pairs are represented by dots and brackets, respectively; square brackets and curly brackets refer
to first-order pseudoknots and higher order structures, respectively. Although the input RNA 2D
structure can be obtained by using the methods that are incorporated within the RNAComposer
system: RNAfold, RNAstructure, and Contrafold, experimentally adjusted 2D structure is able to
largely improve quality of the prediction [39].

The input RNA 2D structure first is divided into stems, loops, and single strands in the program.
3D structure elements corresponding to these fragmentations are searched within the structure elements
dictionary, which is tailored from the RNA FRABASE database and consists of a 3D structural element
with good structural properties [68]. After the searching process, the 3D elements whose heavy-atom
root mean square deviation (RMSD) is lower than 1.0 Å relative to the parent PDB structure, are selected
according to the 2D structure topology, sequence similarity, and so on. By merging the selected
3D structure elements, the initial RNA 3D structure is obtained, and then refined by the energy
minimization in the torsion angle space and Cartesian atom coordinate space to get the final 3D
structure. RNAComposer has been used to accurately build the 3D structure of several complex
riboswitch families [39], such as FMN riboswitch aptamer, TPP, and purine riboswitch aptamers. It is
offered at two sites: http://rnacomposer.ibch.poznan.pl and http://rnacomposer.cs.put.poznan.pl.
By typing the 2D structure of THI riboswitch aptamer in Figure 3 on the website [69], the related 3D
structure will be released in PDB formatted file to users within 10 s. RNAComposer is automated,

http://rnacomposer.ibch.poznan.pl
http://rnacomposer.cs.put.poznan.pl
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efficient, especially suited for RNA 3D structure prediction of large RNAs, but it highly depends on
the 3D structural elemental dictionary, and the applicability of the method is limited to RNAs with
a few complex kink turn motifs.
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Figure 3. Three-dimensional (3D) structure for THF riboswitch aptamer (PDB code: 3SD3) predicted
by using RNAComposer program online.

2.2. Rosetta and Discrete Molecular Dynamics

RNAComposer is motif library-based, while Rosetta is a fragment-based method that is available
online [35]. In the Rosetta approach, according to the RNA 2D structure and the experimental
proximity mapping data, low-resolution models are generated by using Fragment Assembly of RNA
(FARNA) [34], where models are assembled using RNA fragments from a crystallographic database
via a MC algorithm. The Rosetta all-atom energy function is then used to minimize a small number
of the low-resolution models with the lowest Rosetta energy scores. To select a representative set
of 3D models, the largest and lowest-energy subsets of models that fall within a certain RMSD
threshold of each other are collected to reflect the native fold of the RNA. Taking the aptamer from
Fusobacterium nucleatum double glycine riboswitch as an example, the Rosetta 3D modeling can give
a similar prediction as RMdetect and JAR3D [70–73].

Table 1. Methods which have been used for modeling 3D structure for aptamers.

Methods Description Availability Reference

RNAComposer A motif library-based method that uses the dictionary tailored from
RNA FRABASED database to build initial 3D structure. Web server [39]

Rosetta A fragment-based method that uses FARFAR optimizes RNA
conformations in the context of a physically realistic energy function.

Local
installation [72]

RMdetect A bioinformatics tool for identifying known 3D structural modules on
genomic sequences.

Local
installation [73]

JAR3D Scoring sequences to motif groups based on sequences’ ability to form
the same pattern of interactions in motif. Web server [70]

RAGTOP Predicting RNA topologies by a coarse-grained sampling of 3D graphs
guided by statistical knowledge-based potentials.

Not available
online [74]

iFoldRNA Incorporating SHAPE into discrete molecular dynamics to predict
RNA structure. Web server [75]

Also, starting from 2D structures, a hierarchical computational approach (RAGTOP) was modified
to predict 10 representative riboswitch aptamers with diverse structural features [74], by combining the
coarse-grained graph sampling approach [76]. Through integration of computational and experimental
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methods, a three-bead coarse-grained model of RNA for discrete molecular dynamics simulation have
gotten precise 3D structure predictions for the M-box riboswitch and TPP riboswitch aptamers [77],
and for RNA in the range of a few hundred nucleotides [40]. In this coarse-grained model, each RNA
nucleotide is represented by three beads corresponding to the base, sugar, and phosphate groups.
The potential terms includes bonded, non-bonded interactions, and additional potential terms based
on the experimental hydroxyl radical probing data. This method uses RNA sequences and base pairing
as inputs to generate structures, and then applies replica exchange simulations with the potential
to find a representative structure. Based on this method, the web server iFoldRNA was created for
prediction of RNA 3D structure [75].

The 3D structures of aptamers modeled by these approaches suggest that the aptamer domains
often form a compact structure involving many complicated tertiary interactions. Since the entire
prediction of these approaches depends on the input data, the correct 2D structure is critical for the
accurate 3D structure modeling. Experimental data provides powerful constraints to reinforce 2D
structure prediction, but these methods currently can only achieve subhelix-resolution accuracy or
near-atomic accuracy for RNAs.

3. Computation Model to Characterize Structural Changes in Aptamers

A key event in the biological function of riboswitches is the structural change within the aptamer
domain. This change can lead to a change of the folding pattern within the expression platform,
thereby directly modulating the gene expression. For effective flipping of riboswitches, the structural
change of aptamers must be achieved within the certain time window. Therefore, characterizing
the structural changes of aptamers is also important for fully understanding their function in the
cell. The conventional all atom MD simulation has been widely used to describe the time-dependent
motions of biological molecules [78]. However, even though modern parallelization of MD simulation
is able to model trajectories on the order of milliseconds, it still fails to address the majority of
biological processes, including folding or unfolding of aptamers that occur on much longer timescales
(in seconds). In order to model time-dependent structural changes of aptamers, an effective solution is
to use a coarse-grained structural model.

3.1. The Master Equation Approach

The master equation approach or kinetic MC method based on coarse-grained system [79–81],
namely RNA 2D structure, is advantageous for accessing behaviors at long time scales, even minutes
or hours [80]. In the master equation approach, structural changes are usually modeled on the
RNA energy landscape, which specifies the conformation space and the transition rates between
conformations. For a given RNA, the conformation space is sampled by all of the possible 2D structures
that are constructed by using the formation or disruption of an entire helix as the elementary step
to allow for large structural changes. Their free energies can be calculated using the Turner energy
parameters [82,83]. The transition rates between states are obtained based on the free energy landscape
analysis [48,80,81]: (1) formation; (2) disruption of a helix; and, (3) helix formation with concomitant
partial melting of a competing helix. With these key concepts, the folding process can be described by
the master equation:

dpi(t)/dt = ∑
i 6=i

[k j→i pj(t)−ki→j pi(t)] (1)

where pi(t) is the population of state i at time t and ki→j is the transition rate from state i to state
j. This computational method which integrates RNA 2D structure with the static energy landscape,
provides a basic idea to predict the folding kinetics of the Hepatitis delta virus ribozyme and SMK

riboswitch [56,80].
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3.2. Coarse-Grained SOP Model

Besides these approaches, the coarse-grained SOP model using Langevin dynamics simulation can
also be used to study the kinetics of RNA molecules by characterizing the folding landscape [43,45,46].
Actually, many complex biological processes, such as unfolding and refolding of various RNA and
proteins [44,84,85], are described with great success by using the SOP model. In this coarse-grained
model, each nucleotide, as well as the ligand, is represented as a single site. The total potential energy
of the bound aptamer is

VT = VAPT + VAPT−L (2)

where VAPT is the energy function of the aptamer; and, VAPT−L is the interaction between the ligand
and the aptamer. The dynamics of the system can be simulated by using Brownian dynamics or the
Langevin equation in the overdamped limit. During the force ramp simulation, the 5′-end of RNA is
attached to a spring pulled with a constant speed, while the 3′-end is fixed. The free energy profiles
are obtained using

Gz = −kBT ln P(z) (3)

where kB and T are the Boltzmann constant and temperature, respectively; and, the probability P(z) of
the extension between z and z + dz, is calculated from the folding trajectories. Based on the theory of
mean first-passage times [84], the transition rate between two folding states can be calculated from the
time traces of the extension.

The kinetics of the SAM-III and addA riboswitch aptamers have been successfully studied
with this approach [43,46]. As the crystal structure of pbuE riboswitch aptamer is not available,
its atomic structure is produced via conformational sampling with MD by substituting the sequence
of pbuE aptamer into the crystal structure of addA aptamer (PDB code: 1Y26), when considering the
structural similarity between the two aptamers. But despite this structural similarity, their folding
behaviors are different in the pulling simulation [43,45]. In addA riboswitch aptamer (Figure 1),
the unfolding occurs in the order of F→ P2|P3→ P3→ U, while the unfolding order of pbuE aptamer
is F→ P2|P3→ P2→ U, where F and U denote the fully folded state and unfolded state, respectively;
Pi is the hairpin structure with helix Pi; P2|P3 denotes the state with helices P2 and P3. The different
unfolding order of P2 and P3 in the two aptamers suggests that the riboswitches carry out different
regulatory activities in bacteria, even though they belong to the same class. Helix P3 in pbuE riboswitch
is unfolded ahead of helix P2, because of its unstability. This can explain why helix P3 is disrupted
in OFF state of pbuE riboswitch but keeps folded in that of addA riboswitch [28,86]. Due to this
greater conformational change in pbuE riboswitch, its OFF state can hardly transit to the aptamer
structure, implying an irreversible kinetic riboswitch [57]. On the contrary, addA riboswitch is able to
quickly reach equilibrium between the OFF state and the aptamer structure, which is consistent with
a reversible thermodynamic switch [28]. The different unfolding kinetics of the aptamers under force
thus can provide the information of their function.

4. Methods to Predict the Structure Transitions during Transcription

RNA folding occurs in two different ways [87]: (i) folding after synthesis of the entire RNA
molecule (refolding); and, (ii) sequential folding occurs during transcription, namely co-transcriptional
folding. In vivo, most RNAs fold co-transcriptionally, due to the sequential nature of RNA
synthesis. The sequential folding during transcription is crucial for riboswitches, especially the
kinetic riboswitches, to exert their regulation. Since kinetic switches are trapped in one state depending
on whether the trigger is present at the time of folding, the mechanism of their function can only be
understood in the context of co-transcriptional folding. For example, the full length pbuE riboswitch
quickly folds to OFF state, which hinders adenine binding, while the aptamer structure that is
responsible for ligand binding is not observed [53,57]. However, as nucleotides of the aptamer
domain are transcribed first, the sequential folding may allow for the aptamer to form the pocket and
bind to the ligand before formation of OFF state during transcription. Thus, the co-transcriptional
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folding kinetics of aptamers during transcription plays an important role for understanding their
function in living cells.

In the case of co-transcriptional folding, as the RNA chain grows, the whole transcription process
can be divided into a series of transcription steps [48,57,59], with each corresponding to adding one
nucleotide. RNA folding kinetics within each step is modeled on the energy landscape as a certain RNA
chain. But a link between two consecutive steps should be constructed due to the sequential folding in
the transcription context. Based on this idea, the BarMap approach and helix-based computational
approach have been developed to investigate the folding behaviors of several riboswitches under
different transcription conditions [56–58,88].

4.1. BarMap

The BarMap approach integrates RNA 2D structure with the dynamic energy landscape to explore
co-transcriptional folding kinetics [59]. The main idea of this approach is to model RNA kinetics on
individual landscapes, where external triggers are considered as discrete changes. For successive
kinetic simulations, a map between states of adjacent landscapes is computed to define the transfer of
population densities.

In the case of transcription, the folding is treated as a process on a time-varying landscape in this
approach. For each RNA elongation step, an energy landscape is first computed using the barriers
program, which can simulate RNA folding kinetics [89,90]. Then, BarMap constructs a map between the
landscapes of two successive steps, as shown in Figure 4a. According to this map, the final population at
the previous step can be mapped to the initial population on the landscape at the current step. Finally,
starting with the first landscape with more than one state, RNA folding kinetics can be simulated by the
treekin program [59], which integrates the master equation for arbitrary times through calculating the
matrix exponential. The amount of time t on a particular landscape corresponds to the elongation time
of the polymerase. Co-transcriptional folding behaviors of RNAs can be obtained from the relationship
between the population density and the transcription step that is given by the approach.

The BarMap approach has been used to study the RNA thermometer, RNA refolding during pore
translocation, and co-transcriptional folding [59,88]. The effects of transcriptional pause sites, transcription
rates and ligand concentrations, can easily be included in the approach by specifying the amount of time
t and changing the binding energy added to all of the ligand-competent states, respectively. Using the
example of a recently designed theophylline-dependent RS10 riboswitch, the BarMap approach predicts
the folding behaviors in good agreement with experimental observations [88].

4.2. The Helix-Based Computational Method

In helix-based computation model [60], the folding time window for each RNA elongation step
also depends on the time required for RNAP to transcribe the relevant nucleotide. At each step,
the population kinetics is calculated in the same manner as the refolding kinetics that are calculated
in the master equation approach [48,60]: first, the conformation space is generated and the transition
rates are calculated; then, the population relaxation within the folding time window is described with
the master equation, where the initial population at the current step is determined by the folding
results of the previous step. Based on possible structural changes as the RNA chain is elongated by
one nucleotide, a link between the initial population distribution at the current step and the final
population distribution at the previous step is constructed in Figure 4b. Like the BarMap approach,
the effects of the transcription speed, transcriptional pause, and ligand concentration can be mimicked
by modifying the folding time window for each step and the binding energy in this method.

The helix-based computational method has been used to explore the regulation mechanisms
of several well-studied riboswitches, such as pbuE [57], SMK [56], metF, and yitJ riboswitches [58].
The results show an excellent agreement of predicted trajectories with that from experiments and
other methods [50,55,91]. The folding behavior of addA riboswitch aptamer, as shown in Figure 5,
suggests that as the chain grows, the nascent RNA chain folds through a series of discrete intermediate
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states (from S0 to S5). When the first 25th nucleotide is transcribed, the open RNA chain S0 begins
to form structure S1, which is replaced by S2 from step on 32. As the 49th nucleotide is free to form
structures, S3 is formed and occupies most of the population till the 59th step. From step on 59,
S3 begins to transit to S4. When helix P1 can be nucleated, the chain folds into S5.
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computational method (b) between two adjacent steps. In (a), there are three types of events in landscapes:
(i) A one-to-one correspondence between two minima (right); (ii) A two-to-one correspondence (left); and,
(iii) a new local minima (marked by *) appears in the landscape at step N + 1. In (b), the triangles and red
dots denote the newly transcribed nucleotide at step N and N + 1, respectively. For structures belonging
to the first three types, their initial population at step N + 1 “directly inherit” from step N, while for type d,
the initial population of the structure at step N + 1 is zero.

This aptamer domain can fold into the pocket S5 as soon as the relevant nucleotides are transcribed
(Figure 5a,d), which has also been found in pbuE [57], yitJ, and metF riboswitches [58]. During the
refolding process (Figure 5b,e), the entire molecule folds into S5 mainly through structure I and S3.
Although the refolding pathway is different from the co-transcriptional folding pathway, the aptamer
domain also can form S5 within 0.1 s, implying that the aptamer domain is highly evolved. In contrast
to these riboswitch aptamers, the SAM-III riboswitch, which utilizes a single domain to exert functions,
quickly folds to ON state instead of the pocket (OFF) structure (as shown in Figure 1) under both the
transcription context and the refolding condition (Figure 5) [56]. This thermodynamic switch is not
sensitive to co-transcriptional folding kinetics, so it can be understood by the equilibrium properties.
The co-transcriptional folding pathway of addA aptamer is similar to that of the pbuE aptamer [57],
possibly because of the conservation within the aptamer domains. For many riboswitches, since the
expression platforms are required to form a terminator or a repression stem [1,4], their sequences could
be helpful to decipher the different folding intermediates as well.

Previous studies suggest that transcriptional pause plays a key role for riboswitches and
other RNAs to exert function [92–95]. The major transcriptional pause sites found within several
riboswitches are located immediately after the aptamer domains [51,86,96]. As the time window
that is allowed for ligands binding is limited during transcription, the pauses in these regions
can give the aptamers extra time to bind to the ligands but prevent the unbound functional states
from being formed. Their effects have been assessed by the helix-based computational method and
experimental approaches [51,57,58,93]. The results from the helix-based computational method suggest
that removing the pause sites leads to a demand for an even higher ligand concentration to trigger the
switch [57,58].

The good agreement of the results from these theoretical approaches with the experiments and
other methods implies that they provide a reliable tool to understand the function of aptamers in
the riboswitch-mediated gene regulation. However, all of these approaches based on 2D structure
prediction ignore tertiary interactions and the effects of ions. Although the ligand binding can
be mimicked by modifying the binding energy from experiments, the 2D structure model still
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cannot precisely predict the ligand–RNA interactions. Hence, there is a significant requirement
in incorporating these factors to fully understand the function of riboswitches.
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5. Computation Design for Synthetic Riboswitches

Artificial riboswitches established recently demonstrate that they can be used as a new tool for the
drug-regulated expression of viral genes [97]. To design artificial riboswitches or other RNA devices
for industrial and medical applications, different computation strategies have been developed over
the years [62,98–102]. Based on a biophysical model of translation initiation, a web server called
Riboswitch Calculator can be used to design synthetic riboswitches form various RNA aptamers [62].
In this model, a riboswitch is considered as a long mRNA molecule. The interactions of RNA–RNA,
RNA–ribosome and ligand–RNA, control the translation initiation rate, which can be calculated as:

r = exp(−β∆Gtotal) (4)

where β, ∆Gtotal are the apparent Boltzmann coefficient and total energy change between mRNA and
initiating 30S ribosomal subunit. The energies of RNA folding and the ribosome binding to mRNA are
calculated using the ViennaRNA suite and RBS Calculator [64,103], respectively.

Riboswitch Calculator provides a useful tool to design translation regulating riboswitches.
The four inputs are necessary for the design: the sequence and structural constraint of an aptamer,
the ligand binding energy, and the protein coding section. These inputs are used by the optimization
algorithm to generate an initial set of riboswitch candidates. Rounds of random mutations, evaluation,
selection, and recombination are performed using these candidates. The biophysical model calculations
are employed for the fitness evaluation to select the candidates that meet the objective function
requirements, such as reaching targeted translation rates in OFF and ON states. The selected candidates
will be sent back for the next round to find the riboswitch candidates with the highest fitness.

Transcription regulating riboswitches can also be designed by using the computational
method [61]. The design algorithm used the aptamer with the known sequence and secondary
structure. When considering the terminators always with a minimal size and the U stretch, sequences
with lengths between 6 and 20 nucleotides are randomly generated to create a spacer database.
The following step is to generate the sequences that are complementary to the subsequences of
the 3′ part of the given aptamer. With these terms, a riboswitch candidate can be created by
concatenating the aptamer, a spacer, a complementary sequence, and the U stretch. Using the RNAfold
program [64], these candidates are evaluated by the folding simulations to select the elite members.
A theophylline-specific riboswitch that is generated by this approach can activate transcription on
binding of the target ligand [61].

These computational methods can be applied to constructing synthetic riboswitches, but the
evaluation of synthetic riboswitch candidates is based on thermodynamic calculations in both of the
approaches. Besides the above approaches, other methods that use different strategies are developed
to design RNA devices recently [99–101,104]. It is known that co-transcriptional folding kinetics is
fundamental to the action of functional RNAs in cell. However, it is not well incorporated into these
methods, possibly because of the complexity of co-transcriptional folding. Although the transcription
context may pose a serious challenge in the quest for designing RNA devices, these methods have
made a great progress in the development of computational methods for designing RNA devices.

6. Conclusions

Since functions of biological molecules are determined by the formed structures, precise structure
precondition is crucial to a complete understanding of many RNA-mediated processes, such as the
regulation activities of riboswitches. Two domains of riboswitches, namely, the aptamer domain and
the expression platform, often share nucleotides. The aptamer domain usually needs to form a unique
ligand-binding pocket for specifically binding its ligand, which in turn, locks the conformation of
the aptamer domain and directs the folding of the downstream expression platform. However, if the
aptamer fails to bind its ligand, part of the nucleotides within the aptamer domain will pair with
the nucleotides within the expression platform to form an alternative structure. For the riboswitches
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with one single domain, conformational change induced by the ligand binding would result in the
formation of the structure that is different from the unbound functional state.

As structural changes within the aptamer domain produce a substantial change in the gene
expression, it therefore demands to characterize structure and kinetics of aptamers for a thorough
understanding of the riboswitch-mediated regulation. Given the fact that most aptamers have been
extensively studied experimentally, yet they are not well characterized in some aspects. In the
last several decades, many computational methods have been developed to investigate aptamers.
One primary concern for aptamers is to precisely model the structure that is responsible for ligand
recognizing and binding. Effective approaches, such as the motif library-based and fragment-based
methods, have made significant progress in 3D structure prediction by integrating knowledge-based
algorithm with experimental data or physics-based model. However, 3D modeling for aptamers and
other large RNAs has not achieved a consistent atomic accuracy and the data may not enable statistical
meta-analysis currently. Most of them are not suitable for predicting the 3D structure for highly
complex RNAs. Furthermore, RNA chaperones may play a role in RNA folding [87,105,106], which are
not considered in the model. High quality 3D structure prediction may require more experimental
mapping data and significant human insight to build accurate models. Further advancements may
hold great promise for making progress toward the goal.

Another important issue for aptamers comes from describing their great structural changes.
Modern parallelization of MD simulation largely improves the computation efficiency, but it still
cannot address the structural rearrangements of aptamers that occur on a seconds’ timescale.
The coarse-grained SOP model and other computational methods have been applied to characterizing
the kinetics of several riboswitch aptamers with great success. These demonstrate that the
coarse-grained structural model, which enhances the conformation sampling, can be used to study the
large scale conformational fluctuations of RNAs.

Also based on the coarse-grained structural model, a number of computational methods, such
as RNAkinetics [107], Kinefold [108], and COFOLD [47] are developed to simulate co-transcriptional
folding pathways of mRNAs from the early 1980s when key experiments show that structure formation
happens co-transcriptionally [109]. In order to investigate the riboswitch-mediated regulation
mechanisms, ligand binding should be taken into account. By incorporating the effect of ligand
binding, the BarMap package and helix-based computational method have been successfully used to
predict the co-transcriptional folding for several riboswitches. The application of these approaches
in riboswitches implies that the 2D structure model can capture enough details of their behaviors in
living cells.

Since conformational changes in aptamers can be induced by ligands, some other theoretical
approaches focus on the prediction about interactions between ligands and aptamers or other
features [110–112]. In recent years, computational methods for designing riboswitches have also
made excellent progress in synthetic biology. As discussed above, several notable limitations of these
computational methods still exist. Continuing developments in computational and hybrid methods
are expected to overcome these limitations.
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Abbreviations

ncRNA noncoding RNA
SOP Self-Organized Polymer
MC Monte Carlo
FMN Flavin Mononucleotide
SAM S-adenosylmethionine
TPP Thiamine Pyrophosphate
NMR Nuclear Magnetic Resonance
MD Molecular Dynamics
RNAP RNA polymerase
RMSD Root Mean Square Deviation
FARNA Fragment Assembly of RNA
RAGTOP RNA-As-Graph-Topologies
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