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Based on the pyrolysis model proposed in Figure 1, the integrated pyrolysis mechanisms 

of other four β-O-4 type lignin dimer model compounds (phenethyl phenyl ether (PPE), 
1-methoxy-2-phenethoxybenzene (o-CH3O-PPE), 2-phenoxy-1-phenylethanol (α-OH-PPE), 
2-phenoxy-3-phenylpropan-1-ol (β-CH2OH-PPE)) are investigated, and their pyrolysis 
pathways and products are shown in Figures S1, S2, S3 and S4, respectively. In addition, the 
calculation results correspond well with previous experimental studies [18,19,29,31]. 
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Figure S1. The integrated pyrolysis mechanism of model compound PPE (unit: kJ/mol). 

Figure S1 shows the integrated pyrolysis mechanism of model compound PPE and 
energy barriers for the reaction steps in pyrolysis pathways. According to Figure S1, PPE 
mainly undergoes mechanisms 1, 2 and 11 to form the major pyrolytic products of styrene 
and phenol, which agrees well with the experimental results obtained by Britt et al. [29]. 

 

 
Figure S2. The integrated pyrolysis mechanism of model compound α-OH-PPE (unit: 

kJ/mol). 
Figure S2 shows the integrated pyrolysis mechanism of model compound α-OH-PPE 

and energy barriers for the reaction steps in pyrolysis pathways. According to Figure S2, 
α-OH-PPE mainly undergoes mechanisms 1, 2, 4, 5 and 11 to form the major pyrolytic 
products of phenol, acetophenone, styrene and 2-phenoxyvinylbenzene. Mechanism 6 is 
non-competitive due to its high energy barrier. The theoretical calculation results correspond 
with the experimental results obtained by Jiang et al. [31] and Chen et al. [19]. 



 

Figure S3. The integrated pyrolysis mechanism of model compound β-CH2OH-PPE (unit: 
kJ/mol). 

Figure S3 shows the integrated pyrolysis mechanism of model compound β-CH2OH-PPE 
and energy barriers for the reaction steps in pyrolysis pathways. According to Figure S3, 
β-CH2OH-PPE mainly undergoes mechanisms 1, 2, 7, 8 and 11 to form the major pyrolytic 
products of phenol, 3-phenylprop-2-en-1-ol, 3-phenylpropanal and allylbenzene. 

 

 



Figure S4. The integrated pyrolysis mechanism of model compound o-CH3O-PPE (unit: 
kJ/mol). 

Figure S4 shows the integrated pyrolysis mechanism of model compound o-CH3O-PPE 
and energy barriers for the reaction steps in pyrolysis pathways. According to Figure S4, 
o-CH3O-PPE mainly undergoes mechanisms 1, 2, 3, 10 and 11 to form the major pyrolytic 
products of styrene, 2-methoxyphenol, phenol, catechol and 2-hydroxybenzaldehyde, which 
agrees with the literature results [18,29].  


