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Abstract: Our understanding of the role of oxygen in cell physiology has evolved from its long-
recognized importance as an essential factor in oxidative metabolism to its recognition as an
important player in cell signaling. With regard to the latter, oxygen is needed for the generation of
reactive oxygen species (ROS), which regulate a number of different cellular functions including
differentiation, proliferation, apoptosis, migration, and contraction. Data specifically concerning the
role of ROS-dependent signaling in cutaneous wound repair are very limited, especially regarding
wound contraction. In this review we provide an overview of the current literature on the role of
molecular and reactive oxygen in the physiology of wound repair as well as in the pathophysiology
and therapy of chronic wounds, especially under ischemic and hyperglycemic conditions.
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1. Introduction

Oxygen is needed in virtually every step of wound repair as the energy needed during
biosynthesis, intracellular transportation and cell movement relies on adenosine triphosphate (ATP),
which is most efficiently synthesized in an oxygen-dependent manner. During wound repair,
high proliferation rates and the production of extracellular matrix (ECM) components (most notably
collagen) increase the demand for energy and thus for oxygen [1].

Oxygen supply at the wound site is dependent on a variety of different factors including
pulmonary gas exchange, cardiac output, peripheral perfusion rate, capillary density in the wound
and its surroundings, and the oxygen consumption rate of reparative cells in the wound [2]. Oxygen
delivery from the capillaries to the cells relies exclusively on diffusion and is therefore dependent on
arterial oxygen tension and perfusion [3]. The distance between cells in the granulation tissue and the
next capillary is of crucial importance [4,5].

Wound repair is dependent on oxygen not only for energy supply but also because it is needed in
a variety of key enzymatic reactions. In fact, over the last few decades the understanding of the role of
oxygen in cell physiology has evolved from its long-recognized importance as an essential factor in
oxidative metabolism and its germicide role in host defense to its recognition as an important player in
cell signaling [6,7].
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Reactive oxygen species (ROS) are small oxygen-derived molecules that are either oxidizing
agents or are easily converted into oxygen radicals. They react with a variety of molecules including
other small inorganic molecules, carbohydrates, lipids, proteins, and nucleic acids [8]. It is widely
accepted that ROS are major contributors to cell damage during the ageing process [9]. However,
ROS also play beneficial roles. The concerted production of large amounts of ROS by immune cells
is of great importance for effective host defense [10]. In addition, it has become increasingly clear
that ROS (in low concentrations) are involved in a myriad of physiological cell signaling pathways,
referred to as redox signaling pathways [8]. There is also increasing evidence that ROS are crucial for
wound repair, not only as germicides but also for cellular signaling [11,12].

ROS are produced physiologically as byproducts of other biological reactions involving
mitochondria, peroxisomes, cytochrome P-450, and many others [13]. However, ROS can also be
produced specifically by specialized enzymes, notably nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases of the NOX family. NOX enzymes are membrane-bound complexes that transport
electrons across biological membranes to reduce oxygen to superoxide (O2-) [8]. Superoxide then reacts
to form other reactive oxygen species, such as hydrogen peroxide (H,O,), peroxide anion (HO, ™),
and hydroxyl radical (*OH) [14], which are involved in a number of different cellular functions
including differentiation, proliferation, apoptosis, migration, and contraction [8,11,15]. Seven isoforms
of NOX enzymes have been described: NOX1, NOX2 (classic phagocyte oxidase), NOX3, NOX4, NOXS5,
DUOX1, and DUOX2. Despite their similar structure, they differ in their function and mechanism
of activation [8]. Oxygen being their principal substrate, all members of the NOX family are strictly
depending on oxygen and it has been reported that they require in vitro oxygen tensions between 40
and 80 mmHg to work at 50% enzymatic speed [14,16].

Wound repair is a complex, dynamic, and interactive process involving a variety of cells,
soluble mediators, and extracellular matrix components, implicated in the processes of coagulation,
inflammation, angiogenesis, re-epithelialization, fibroplasia, and contraction. Wound repair is
traditionally described in four highly interconnected phases: (1) coagulation, (2) inflammation,
(3) proliferation, and (4) maturation [17]. The two main mechanisms leading to wound closure
during the proliferation phase are re-epithelialization and contraction, the latter leading to a reduction
in wound size more rapidly than the former. NOX isoforms are involved in microbial killing [18],
chemotaxis of neutrophils [16,19], and a variety of signal transduction cascades in response to growth
factors relevant for the abovementioned processes of cutaneous wound repair [20]. However, this is
an emerging field and data specifically concerning the role of NOX enzymes in cutaneous wound
repair are limited. The following sections provide an overview of the current understanding of
the role of ROS and redox signaling in the abovementioned phenomena known to play a role in
wound repair, mainly relying on data obtained in research fields other than cutaneous wound repair.
Furthermore, we will address their role in the development of chronic wounds and discuss potential
therapeutic implications.

2. The Role of ROS and Redox Signaling during the Coagulation Phase

Blood coagulation through activation and recruitment of platelets following vessel-wall injury
occurs concomitantly with a sharp increase of ROS production at the wound site [21], suggesting that
redox signaling regulates wound repair as early as during the coagulation phase [11]. When active
tissue factor is exposed to blood after injury, the coagulation cascade is initiated, leading to the
formation of thrombin. Besides its well-known role in the coagulation cascade, thrombin induces ROS
generation by NOX enzymes in vascular cells, which subsequently promote a thrombogenic cycle via
upregulation of tissue factor expression [22,23]. Consistently, HyO, has been shown to activate latent
cell surface tissue factor on vascular smooth muscle cells (VSMCs) [24]. Platelets have been shown to
produce ROS [25], and the upregulation of tissue factor expression by activated platelets is mediated
through ROS generation by NOX enzymes in VSMCs [19,26]. When platelets come into contact with
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collagen they start producing ROS in a NOX-dependent manner, which results in increased platelet
recruitment [27].

Platelet-derived growth factor (PDGF), released by platelets upon activation, plays an important
role in the recruitment and proliferation of various cells during wound repair and is dependent on
H,O, [28]. When PDGEF binds to its receptor, H,O, is produced in non-phagocytic cells in a Racl
dependent manner [29]. Rac is a small GTPase of the Rho family and it has been shown to play
an important role in the regulation of NOX1 and NOX2, possibly also of NOX3 and NOX4 [8,20].
This is of particular interest given that recombinant PDGF (PDGF-BB or Becaplermin) is currently
the only growth factor approved by the Food and Drug Administration for the treatment of chronic
wounds [30]. Sufficient oxygenation of the wound might be required to make the wound receptive to
PDGF-BB treatment.

3. The Role of ROS and Redox Signaling during the Inflammation Phase

It is clear that ROS production during inflammation occupies a central role as a direct germicide
used by neutrophils and macrophages. The isoform NOX2 plays a predominant role in microbial killing
as it is responsible for producing large amounts of ROS in what is called the respiratory burst [10,18].
Inside phagosomes, high concentrations of ROS create a toxic oxidative stress environment for
phagocytozed microbes leading to DNA damage, lipid peroxidation and oxidation of amino acids [31].
Patients with chronic granulomatous disease, a rare congenital abnormality of the phagocyte NOX2
system, show impaired wound repair and susceptibility to wound infection [32,33]. Besides ROS,
reactive nitrogen species (RNS) contribute to microbial killing. RNS are produced following the
reaction of nitric oxide (NO) with superoxide resulting in highly reactive species than can directly
interact with various biological targets [34].

Besides direct microbial killing, ROS are emerging as central signaling molecules modulating the
inflammatory response. Depending on its concentration and via NF-«B signaling cascades, H;O; can
either induce a pro-inflammatory control loop that increases pathogen removal or an anti-inflammatory
control loop, which avoids an exacerbated harmful inflammatory response [35]. Other compelling
examples for the role of ROS in the regulation of inflammation are that HyO, in low concentrations
induces neutrophil chemotaxis [36], and that the overexpression of thioredoxin, a ROS degrading
protein, suppresses leucocyte recruitment [37]. Furthermore, H,O, and superoxide modulate leukocyte
adhesion molecule expression and leukocyte endothelial adhesion [38]. ROS induce spreading of
macrophages via extracellular signal-regulated kinases [39]. Monocytes are activated when they adhere
to the extracellular matrix by their specific integrin receptors. This adhesion can be induced by H,O,
in vitro [40]. TNFa and IL-6 induce neutrophil and macrophage migration and facilitate phagocytosis.
Their biosynthesis has been shown to be ROS-inducible [41]. IL-6 plays an essential role in skin wound
repair, as evidenced by delayed wound healing in IL-6-deficient mice [42].

The isoform NOX4 might play a role in phagocyte recruitment as NOX4 deficiency is associated
with a decrease in phagocytic cell presence. In our laboratory, we have observed that NOX4 deficiency
leads to a decreased expression of NOX2 during cutaneous wound repair, implying a role for NOX4
in phagocytic cell recruitment [43]. This recruitment could take place through NOX4 dependent
IL-6 expression, similar to what has been shown in human microglia and non-small cell lung cancer
cells [44,45].

4. The Role of ROS and Redox Signaling during the Proliferation Phase

4.1. Angiogenesis

It is increasingly accepted that redox-signaling plays a central role during angiogenesis [7].
H,0; in low concentrations facilitates angiogenesis in wound repair in mouse wound models,
which can be reversed by adenoviral gene transfer of catalase, a HyO,-decomposing enzyme [11].
The notion that redox signaling plays an important role in angiogenesis is supported by evidence
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suggesting that a large number of antioxidants limit angiogenesis [7]. This includes Vitamin C [46],
quercetin [47], resveratrol [48], and several others. The suggested underlying mechanisms include
the downregulation of nitric oxide synthase (NOS) expression and activity [49], and interference with
vascular endothelial growth factor (VEGF) signaling [46].

Angiogenesis is a complex process that requires a solid, fibrin-rich extracellular matrix, as well
as migratory and mitotic stimulation of endothelial cells [50]. Many soluble factors are involved in
angiogenesis, including VEGF [51], fibroblast growth factors (FGFs) [52], PDGF [53], angiopoietin [54]
and many others. The expression of VEGF increases within hours after keratinocytes, fibroblasts,
and endothelial cells at the wound site are exposed to hypoxia [55-57]. There are numerous studies
showing that ROS are involved in VEGF and VEGEF receptor signaling. H,O, has been reported to
potently stimulate VEGF expression in keratinocytes [58] and macrophages in culture [59]. ROS not
only increase VEGF transcription but also increase VEGF mRNA stability and enhance VEGF
release [60]. The theory of an important role of ROS in VEGF-induced angiogenesis is further
strengthened by the presence of specific mechanisms insuring the function VEGF in an environment
of oxidative stress. When the amount of ROS increases, proteins are at risk of oxidative damage [61].
VEGEF is protected from this damage by the extracellular chaperone glypican-1, which can restore the
receptor-binding ability of oxidation-damaged VEGF [62,63].

Besides inducing the expression of VEGF, ROS seem to be involved in VEGF downstream
signaling. VEGF induces ROS production in endothelial cells by a Racl-regulated NOX-dependent
mechanism [64]. Furthermore, it has been reported that intracellular ROS is required for the activation
of the transcription factor NF-kB, which in turn is needed for VEGF-mediated vascular smooth muscle
cell migration [65]. The VEGF-induced ROS production is inhibited by the NOX inhibitor diphenylene
iodonium, as well as by overexpression of dominant-negative Racl, suggesting that VEGF induces
NOX-mediated ROS production [66].

It seems that NOX enzymes are the major source of ROS during wound angiogenesis and that
they are produced by a wide range of cells, including inflammatory cells, vascular endothelial
cells, fibroblasts and epithelial cells [11,67]. It is thus conceivable that NOX enzymes are critical
for angiogenesis. Consistently, NOX1 has been reported to be a potent trigger of the angiogenic switch
in tumors. NOX1 strongly upregulates VEGF mRNA both in cultured fibroblasts and epithelial cells,
and VEGF receptors are highly induced in vascular cells in NOX1-expressing tumors. The angiogenic
properties of NOX1 are reversed when cells co-express catalase, suggesting that NOX1-mediated
ROS are essential for the angiogenic switch [68]. As mentioned above, Racl is an import regulator
of NOX-mediated redox signaling. It has been shown that Racl gene transfer accelerates wound
contraction and closure in a mouse model, and that this is associated with a significant increase
in VEGF expression. In vitro, Racl overexpression strongly induced VEGF expression in human
keratinocytes [58]. The effects of VEGF on endothelial cell proliferation and migration are dramatically
inhibited in cells transfected with NOX2 antisense oligonucleotides, suggesting that NOX2-derived
ROS play an important role in angiogenesis in vivo [66].

Hypoxia inducible factor 1 (HIF1) is a primordial player in the cell response to hypoxia [69].
Under normoxic conditions, HIF1« is constantly degraded through hydroxylation, a process that
is strictly oxygen-dependent. Under hypoxic conditions, HIF1o escapes degradation and forms a
stable dimer with HIF1f3, the active form of the transcription factor [70]. HIF1 is a potent inducer of
VEGEF [71], inducing angiogenesis and other important processes in wound repair. VEGF regulates
vascular endothelial cell migration, proliferation and permeability, and functions as an anti-apoptotic
factor for newly formed blood vessels [72].

NOX4 could play a key role in cell responses to hypoxia during wound repair. Pulmonary
artery smooth muscle cells cultured under hypoxic conditions showed increased expression of
NOX4 [15,73] and their proliferation was NOX4-depended [74]. There is increasing evidence that
HIF stabilization can also be induced directly by ROS [75,76]. In fact, there appears to be a positive
feed-forward loop involving NOX4 and HIF1: ROS generated by NOX4 activate HIF-1c [77] and
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HIF-1x activates the expression of NOX4 [78]. However, it has been shown that ROS stimulation
of VEGF is HIF-independent [58]. In a recent study, we observed that HIF1oc and CD31 expression
during cutaneous wound repair were significantly weaker in NOX4 knockout mice suggesting that
NOX4 is involved in HIF1x expression and angiogenesis during wound repair [43]. This is in line with
earlier studies that showed that NOX4 is required for effective angiogenesis [79]. NOX4 has also been
extensively studied for its role as an oxygen sensor, and it has been demonstrated that NOX4 is capable
of generating hydrogen peroxide as a function of oxygen concentration throughout a physiological
range of pO, values [80].

NO s a free radical gas that has been known since the 1970s for its role in vasodilation, also playing
an important role in platelet activation and vascular cell signaling. Cutaneous wound repair is
associated with a significant increase in the expression of gens that regulate the production of NO,
including the inducible nitric oxide synthase (iNOS) [81,82]. High levels of NO are associated with the
stabilization of HIF1x and thus mimic a hypoxic state under normoxic conditions [83]. Consistently,
it has been reported that NO triggers VEGF expression in cultured keratinocytes and during wound
repair [84].

4.2. Re-Epithelialization

Besides wound contraction, re-epithelialization is an important process for effective wound
closure. Wound re-epithelialization relies on the migration, proliferation and differentiation of
keratinocytes at the wound edge and at any transected wound appendages (hair follicles, sweat
ducts) [85]. Recent data suggest that epithelial cells are capable of regulated ROS production
via NOX complexes [86] but this is an emerging field of research. Recent data also suggest that
keratinocytes produce ROS via NOX enzymes, including NOX4 [86,87]. It has been shown that ROS at
low concentrations induces keratinocyte migration in vitro [88,89]. The isoform NOX1 has been studied
in epithelial repair of intestinal mucosa healing and it has been reported that NOX1 mediates epithelial
migration through activation and modification of focal adhesion proteins involved in regulating cell
migration [90]. IGF-1 plays an important role in epidermal keratinocyte migration by facilitating
membrane protrusion via activation of Rho family proteins [91]. It has been shown that the regulation
of the structure and function of IGF-1 is redox-sensitive [92,93]. Other sources of ROS involved in
re-epithelialization include xanthine oxidoreductase, which has the unique capacity to produce both
ROS and NO and has been reported to stimulate keratinocyte proliferation and angiogenesis in a
mouse model of skin wound repair [94].

Migrating keratinocytes dissect the wound, separating eschar from viable tissue, producing MMPs
and activating plasmin by plasminogen activators [95]. MMP-1 is an important constituent of the
matrix-degrading apparatus of keratinocytes and is expressed in a NOX4-mediated, ROS-dependent
way [96]. MMP-2 and MMP-9 also contribute to keratinocyte migration since their inhibition seems
to hinder migration [97,98]. It has been shown that H,O, activates MMP-2 through the NF-kB
pathway [99]. Furthermore, the oxidative modification of fibrin by ROS is specific and favors
fibrinolysis [100].

Besides migration, the continuous proliferation of epidermal keratinocytes is crucial for
providing a sufficient supply of migrating cells during re-epithelialization. EGF, TGFx and KGF
promote this process. HyO, plays a central role in the regulation of EGF signaling and receptor
phosphorylation [101,102]. Keratinocytes bordering the defect and in hair follicles show high expression
of TNFo [103], which seems to have an autocrine stimulating effect [104]. TNFo stimulation leads
to restructuring of the cytoskeleton of keratinocytes, an oxygen-dependent process that is initiated
within hours after injury [105]. ROS induce TGFo expression in fibroblasts suggesting that oxidative
stress in fibroblasts in the granulation tissue could contribute to re-epithelialization [106]. KGF plays
an important role as a stimulator of keratinocyte proliferation. It has been reported that transfected
keratinocytes and fibroblasts stably expressing KGF, applied on a membrane carrier to burn wounds
in pigs, significantly increases re-epithelialization [107], and it has been reported that ROS can directly
trigger the activation and internalization of the KGF receptor [108].
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4.3. Wound Contraction

In order to guarantee rapid wound closure, wound contraction is of utmost importance. When the
wound contracts, the uninjured skin surrounding the wound is pulled into the defect, significantly
reducing the amount of time and tissue needs to reestablish the integrity of the skin barrier after
injury [109]. There are still some open questions regarding the exact mechanisms that lead to the
generation of contractile forces within the wound bed. There seem to be two major mechanisms of
wound contraction: (1) organization and stiffening of the ECM [110] and (2) cellular contraction of
myofibroblasts [111,112]. Myofibroblasts are specialized contractile fibroblasts largely responsible for
ECM remodeling and contraction in mature granulation tissue [113]. Myofibroblast differentiation
occurs in response to growth factors and mechanical stress and is characterized by the formation of
large stress fibers and focal adhesions [111,112,114,115]. One prominent feature of myofibroblast
differentiation is the expression of a-smooth muscle actin («-SMA) in stress fibers, and this is
considered to be the basis for their high contractility [111,112].

Myofibroblast differentiation can be understood as a two-step process in which fibroblastic
progenitor cells (e.g., fibrocytes [116], mesenchymal stem cells [117], epithelial cells [118],
and perivascular precursor cells [119]) differentiate in a first step into moderately contractile x-SMA-
negative proto-myofibroblasts. Triggered by further stiffening of the ECM, as well as by growth factors
(mostly TGFf31, but also PDGF) [120-122], proto-myofibroblasts then further differentiate into highly
contractile x-SMA-positive myofibroblasts [123,124] (Figure 1).

Fibroblastic progenitor cells differentiate into proto-myofibroblasts in response to mechanical
stress, expressing [3- and y-actin-containing stress fibers that terminate in focal adhesions [111,125].
As proto-myofibroblasts contract, they further contribute to a stiffening of the ECM, which makes
them even more contractile and, together with the increased availability of TGF31, eventually leads to
their differentiation into myofibroblasts [126,127].

Our knowledge concerning the role of ROS and NOX-mediated redox signaling in myofibroblast
activity is still limited and relies mainly on studies conducted in fields other than skin wound repair.
NOX2 might play a role in myofibroblast differentiation, as a recent study found that oxidants
produced by NOX2 mediate a-SMA and ECM upregulation in human dermal fibroblasts in response
to TGFP1 [128] Recently, the role of NOX4 in bleomycin-induced pulmonary fibrosis has been
investigated [129]. The accumulation of myofibroblasts is a hallmark of advanced and progressive
pulmonary fibrosis. This accumulation is mainly driven by TGFf1 signaling [130,131], in line with
what has been observed in cutaneous wound repair studies [115]. Activation of transcription factors
of the Smad family, in particular of Smad2 and Smad3, is one of the major TGF@1-dependent
signals [131-133]. This activation occurs through phosphorylation by the TGFp1 receptor [134].
NOX4-deficient mice show significantly reduced phosphorylation of Smad2 and x-SMA expression,
suggesting that NOX4 is necessary for TGF{31-induced myofibroblast differentiation [129]. TGFf1
induces NOX4 expression in cultured pulmonary smooth muscle cells [135], and NOX4 enzymes
influence myofibroblast differentiation of cardiac fibroblasts [136]. It has been reported that TGF31
induces H,O, production in human fibroblasts [137]. ROS produced by NOX4 were shown to be a
prerequisite for TGF{31-induced myofibroblast differentiation, ECM production and contractility in
lung-derived fibroblasts [138]. These recent findings suggest that NOX4-mediated redox signaling
could be involved in (myo) fibroplasia during skin wound repair.

However, in a recent study we found that NOX4 was not required for myofibroblast differentiation
during skin wound repair in a mouse model [43]. We found that NOX4 deficiency had no impact on
myofibroblast expression but led to significantly impaired wound contraction, revealing a dissociation
of myofibroblast expression and wound contractility. We also observed that hyperbaric oxygen therapy
(HBOT) significantly accelerates wound contraction in rats, but does not increase fibroblastic cell
recruitment or myofibroblast differentiation. Of note, we observed a significant increase in collagen
deposition during early time points in wounds exposed to HBOT compared to a standard wound
dressing only [139]. These findings raise questions regarding the role of the myofibroblast as the



Int. . Mol. Sci. 2017, 18, 2149 7 of 28

main cell orchestrating wound contraction and the exact mechanisms that lead to the generation
of contractile forces in the wound bed. In fact, there is increasing evidence suggesting that «SMA
expression is not a prerequisite for myofibroblast contraction during wound repair and that smooth
muscle y-actin and skeletal muscle x-actin can compensate for a lack of xSMA [140,141]. It is possible
that NOX4 plays a role in the expression of muscle actins other than xSMA, such as smooth muscle
y-actin or skeletal muscle x-actin, and that this is responsible for myofibroblast function during wound
repair. If this is the case, NOX4-deficient myofibroblasts could be less contractile despite expressing
normal amounts of xSMA.
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Figure 1. Schematic view of the interactions underlying wound closure and major implications of NOX
enzymes. Solid arrows represent differentiation processes, dashed arrows promoting interactions and
red dashed T arrows inhibitory interactions. After injury, the activation of platelets and macrophages
leads to the production of large amounts of ROS. NOX2 and NOX1 play a major role in these processes.
NOX4 has also been suggested to play a role in macrophage recruitment. Growth factors released
by platelets and macrophages trigger the proliferation and migration of keratinocytes, leading to
re-epithelialization. NOX1 and NOX4 possibly play a direct role in keratinocyte migration. Different
precursor cells and fibroblasts are attracted to the wound site by growth factors including TGF31 and
PDGEF, a process that is likely to be mediated by NOX4. Migrating fibroblasts stiffen the extracellular
matrix (ECM) by producing collagen and inducing traction forces due to their migratory activity.
Also, NOX4 seems to play a crucial role here. The stiffened ECM induces the differentiation of fibroblasts
into moderately contractile proto-myofibroblasts. Proto-myofibroblasts produce large amounts of ECM
components, including mostly collagen, further stiffening the ECM, a process that has been shown to
be dependent on NOX4. In addition, they release TGFf1 from dormant ECM deposits via integrin
expression. Induced by the further increased mechanical tension of the ECM, highly contractile
myofibroblasts develop, characterized by de novo expression of XSMA, which enables them to generate
greater contractile forces. The role of NOX4 in cutaneous myofibroblast differentiation is controversial
as it has been shown that NOX4 is a prerequisite for myofibroblast differentiation during pulmonary
fibrosis but does not seem to be required during cutaneous wound repair.
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The mechanical properties of the ECM are of great importance for translating the cellular
contraction of myofibroblasts into contraction of the wound tissue. While the provisional matrix
of early granulation tissue is highly compliant, mature granulation tissue becomes increasingly stiff
over time [142]. It is currently thought that traction forces induced by fibroblast migration within the
fibrin-rich provisional matrix and their ECM-remodeling activity gradually increases the stiffness of
granulation tissue [110,111,143,144]. Migrating fibroblasts remodel the ECM, synthesizing a variety of
ECM components, such as collagen (predominantly types I and III) and fibronectins, various MMPs,
and tissue inhibitors of metalloproteinases [127,145]. NOX4 has been shown to be required for ECM
production in lung-derived fibroblasts in vitro [138,146]. Targeting NOX4 results in the attenuation
of an established fibrotic response, with a reduction in gene transcripts for the extracellular matrix
components collagen 1«1, collagen 31, and fibronectin [146]. Accordingly, we recently found that
collagen deposition was significantly reduced in NOX4-deficient mice [43]. A less dense collagen
matrix could explain a lack of translation of the cellular forces into a contraction of the tissue as a whole.

The hydroxylation of proline is oxygen-dependent and pro-collagen molecules require
hydroxyproline to form stable triple helices [1]. In vitro studies found that prolyl hydroxylase needs
20 mmHg O, to function at 50% enzymatic speed [147], and fibroblast cultures revealed that a minimum
of 3040 mmHg O, is needed for collagen synthesis [148]. A study of collagen deposition in patients’
wounds revealed that the amount of collagen deposited was directly proportional to tissue oxygen
tension [149].

In addition to the expression of ECM components, their crosslinking is likely to play an important
role in the transduction of contractile forces [142,150,151]. This is a little understood process where
NOX enzymes are particularly likely to play a crucial role. NOX-mediated dityrosine crosslinking
of the ECM is a possible player in wound contraction. In fact, we recently found that dityrosine
formation significantly increased during the wound repair process, suggesting it has a physiological
role [43]. NOX4-deficiency leads to significant impairment of dityrosine expression, providing a
possible explanation as to how myofibroblast contraction in NOX4-deficient mice might be less
effective in contracting the wound. It is conceivable that myofibroblast contraction is only effectively
translated into tissue contraction if the cells are embedded in a well cross-linked ECM [42,44,45].

Tyrosine dimerization is thought to require the presence of ROS (i.e., HyO,) and a peroxidase [152,153].
In fact, there is strong evidence that peroxidases mediate ECM crosslinking [154,155]. One possible
source of peroxidase during physiological wound repair is macrophages and neutrophils, as they
are known to secrete myeloperoxidase (MPO), which is mainly known for its role in host defense.
However, in our study we observed no correlation between dityrosine formation and MPO expression.
Also, there was no difference in expression between wildtype and NOX4~/~ mice, suggesting that
MPO is not the main peroxidase catalyzing dityrosine formation during wound repair.

A promising candidate for a major role in mediating ECM crosslinking is vascular peroxidase
1 (VPO1, a.k.a. peroxidasin, PXDN) as it contains, besides its peroxidase domain, modules that
are characteristic of the ECM [156]. VPOL1 has also been shown to be secreted by myofibroblasts in
the ECM, where it organizes into a fibril-like network co-localizing with fibronectin [157]. In fact,
Lazaretal. found that VPOI mediates the crosslinking of collagen IV in hot spots near the cell
surface [158]. It has also been suggested that VPOL1 catalyzes tyrosyl radical formation and promotes
dityrosine cross-linking [159]. VPO1 requires H,O, to function, which is supplied to the enzyme by a
currently unknown cellular source. In a model of hypoxia-induced pulmonary hypertension, Liu et al.
propose that NOX4 is a provider of hydrogen peroxidase for VPO1 during inflammatory reaction [160],
but the relationship between NOX4 and VPOL is yet to be defined. We believe NOX4 is likely to be a
promising candidate as a provider of H,O, for VPO1l-mediated collagen crosslinking through tyrosine
dimerization, which could be an important mechanism of granulation tissue stiffening during skin
wound repair. Other possible catalyzers of tyrosine cross-linking during wound repair are DUOX
enzymes as they present a NOX domain as well as an extracellular peroxidase domain and have been
reported to be involved in ECM crosslinking in nematodes [154]. Further research should be done in
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order to understand whether DUOX enzymes also play a role in ECM crosslinking during wound
repair in higher animals.

Besides tyrosine formation, peroxidases catalyze other protein cross-links, which might also
participate along with dityrosine in the stiffening of the ECM. For instance, peroxidase-catalyzed
cross-links are formed from the deamination of protein lysyl e-amino groups to form lysyl aldehydes,
which then react with amino acid residues of adjacent molecules [161,162]. Collagen cross-linking
mediated by lysyl oxidase expressed by fibroblasts has been suggested as a possible mechanism of
tissue stiffening in early granulation tissue [163].

It has been suggested that NO is produced by fibroblasts and serves as an autocrine regulator of
collagen production and cell contraction [164]. In fact, the blockade of NO synthesis impairs wound
repair [165] and is associated with reduced collagen deposition and decreased mechanical resistance
of wounds in rats [164].

5. The Role of ROS and Redox Signaling during the Maturation Phase

After wound closure, controlled cell removal and ECM remodeling are crucial to terminate
repair. Myofibroblasts, as well as vascular and inflammatory cells, physiologically disappear by
apoptosis and proteolytic enzymes (mainly MMPs) secreted by macrophages, epidermal cells,
endothelial cells, and fibroblasts degrade ECM components [166-169]. Cell persistence can lead to
hypertrophic scarring, associated with increased levels of TGF(31, x-SMA expression, ECM deposition,
and vascularization [170,171]. Clinically, a thickening of the scar tissue is observed, while progressive
contraction and dysesthesia lead to functional disabilities. The role of ROS and redox signaling in
scar maturation has not yet been specifically investigated to our knowledge until now, but there
are extensive data from other fields suggesting a major role in key processes such as apoptosis and
ECM remodeling.

The role of NOX enzymes in apoptosis has been intensively investigated, especially in the fields
of cancer and cardiovascular research, where strong implications of NOX enzymes in the regulation of
apoptosis have been reported [172]. However, the data are contradictory and the exact mechanisms
by which NOX-mediated ROS production either promotes or prevents apoptosis remain unclear.
The current understanding is that NOX enzymes have both pro-survival and pro-apoptotic properties
depending on the concentration and duration of expression [173,174]. A detailed discussion of this
subject would, however, go beyond the scope of the current review. Of interest for the field of
wound repair, NOX-mediated ROS production has been repeatedly associated with different fibroblast
growth factor signaling pathways and is likely to play a direct role in fibroblast apoptosis during
scar maturation [175]. FGF2 has been shown to significantly increase myofibroblast apoptosis and
decreases mature collagen bundle formation [176,177]. Basic FGF seems to reduce granulation tissue
volume and has been suggested as a possible target for promoting scarless wound repair through the
induction of myofibroblast apoptosis [178,179].

Besides apoptosis, the remodeling of the ECM is an important feature of the maturation phase,
leading to a progressive strengthening of the scar tissue. Collagen type III, which is predominant
during the proliferation phase, is gradually replaced by collagen type I, and the fibers are increasingly
crosslinked and oriented [180]. As discussed above, NOX enzymes play an important role in the
synthesis as well as the crosslinking of collagen fibers. Effective remodeling of the ECM relies heavily
on MMPs, which catalyze the hydrolysis of major ECM molecules, including collagen, elastin, laminin,
and fibronectin [180]. NOX-mediated ROS have been reported to stimulate the expression of MMP-1
and MMP-9, both highly active during scar maturation [181].Of interest, it has been recently shown
that NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts, suggesting
that NOX2 plays a causal role in the overproduction of collagen in keloids [128].
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6. ROS and Redox Signaling in Chronic Wounds

Understanding the pathogenesis of chronic wounds has proven to be very difficult.
The complexity of the wound repair process, the heterogeneity of chronic wounds, the difficulties
in performing clinical trials, and the lack of animal models have hampered progress in elucidating
the pathophysiology of chronic wounds. Ischemia (including reperfusion injury), diabetes, chronic
inflammation, and age-related cell senescence are the most important factors favoring the development
of chronic wounds.

Chronic wounds are in the great majority of cases associated with a chronic state of
inflammation [182]. It has been shown that the proliferation phase can only effectively be initiated if
the number of macrophages diminishes. If macrophages persist, the inflammatory phase is prolonged
and the proliferation phase delayed [183]. Chronic inflammation also induces cell senescence, which is
increasingly recognized as being one of the key pathophysiological phenomena in the development of
chronic wounds [184], especially with regard to fibroplasia [185].

As discussed above, ROS play an important role in wound repair via redox signaling. However,
ROS in excessive amounts have a deleterious effect, inducing lipid peroxidation, protein modification
and DNA damage leading to apoptosis and senescence [18]. High levels of ROS occur if either their
production is increased or their detoxification impaired. The majority of ROS during wound repair are
most likely being produced by neutrophils and macrophages during the inflammatory phase [184].
As chronic wounds enter a state of chronic inflammation, the amount of ROS remains high over
a prolonged period of time, with subsequent cell damage further accelerating inflammation [184].
In fact, oxidative stress in chronic wounds seems to be dramatically increased when compared to acute
wounds [186]. High concentrations of ROS have a toxic effect, as shown in severe endothelial damage
in wounds in mice that lack peroxiredoxin-6, a ROS-detoxifying enzyme [187].

The senescence of fibroblasts is increasingly discussed as a hallmark in the development of chronic
ulcers. Oxidative stress has been suggested to be one possible explanation of how fibroblasts could
enter a senescent state in chronic wounds [188], as high levels of oxidative stress lead to premature
senescence in fibroblasts in culture [189,190]. Indeed, fibroblasts isolated from the margins of chronic
wounds show signs of premature senescence [185,191]. Of note, NOX1 has been suggested to be
involved in p53- and Rb-dependent fibroblast senescence [192].

Following tissue injury, the microenvironment of the wound suffers a dramatic drop in
oxygen supply due to vascular disruption. This drop in oxygen tension is aggravated by high
oxygen consumption by inflammatory and reparative cells in the wound [193]. Despite the hypoxic
environment in the early course of wound repair, endothelial cells and fibroblasts exhibit enhanced
rates of migration, protein synthesis, and proliferation [194]. In fact, acute hypoxia stimulates key
components of wound repair [6]. Endothelial cells produce increased amounts of endothelial adhesion
molecules that stimulate extravasation and tissue invasion by neutrophils and macrophages [195].
In addition, keratinocyte proliferation and migration are stimulated by acute hypoxia [196,197].
Wound scratch assays have revealed that human dermal keratinocytes show increased migration
and MMP-2 production under acute conditions of hypoxia [97]. Cultured dermal fibroblasts react to
acute hypoxia with upregulation of TGF@1, collagen I, and VEGF secretion and increased proliferation
and migration [198-201].

During physiologic wound repair, oxygen levels are gradually re-established by vasodilation,
increased vascular permeability, and angiogenesis. If these processes fail or if the wound is located in a
setting of chronic ischemia, the wound repair process is delayed or stagnates. In fact, chronic ischemic
wounds are typically stuck in an inflammatory state, failing to enter the proliferation phase, showing
poor proliferation and matrix deposition [202]. In contrast to the stimulating effect of physiological
acute hypoxia, persistent hypoxia has a strong inhibitory effect on some key features of the proliferative
phase of wound repair [202]. In a rat model of ischemic cutaneous wounds developed in our laboratory,
chronic ischemia significantly delayed wound closure. The delay in wound closure was associated
with a significant decrease in granulation tissue formation, myofibroblast expression, and wound
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contraction. Myofibroblasts appeared late and their peak expression was significantly reduced [203].
These findings suggest that decreased wound contraction plays an important role in delayed ischemic
wound repair, due in part to impaired myofibroblast development and activity.

In vitro experiments performed in our laboratory revealed that when dermal fibroblasts are
cultured under conditions of persistent hypoxia, expression of myofibroblast function is significantly
reduced [201]. Culturing dermal fibroblasts on deformable silicone substrates and quantifying
wrinkling revealed that persistent hypoxia significantly impairs cell contraction. The decrease in
myofibroblast expression and contraction was associated with an increase in TGF31 secretion but a
downregulation of the TGF[31 receptor suggesting that hypoxia has a TGFf31-desensitizing effect on
fibroblasts [201]. This is in line with the findings of other groups that have associated altered TGFf31
signaling with impaired wound repair in ischemic conditions [6,204—-206]. Another study showed that
dermal fibroblasts cultured under conditions of persistent hypoxia had decreased levels of collagen
synthesis [199].

It is still unclear how persistent ischemia interferes with TGFf31 signaling. One possibility is
that NOX-mediated redox signaling plays a role in these phenomena. NOX4 has been reported to
be upregulated in hypoxia in an HIF-dependent manner [78]. There is some evidence suggesting
that persistent ischemia provokes a downregulation of HIF1 [207]. NOX4 seems to be required
for TGFB1-mediated angiogenesis [79] and fibroplasia [129]. It is tempting to speculate that HIF1
downregulation induced by persistent ischemia results in reduced expression of NOX4, which in
return decreases TGF31-mediated fibroplasia and angiogenesis.

Diminished perfusion leading to local hypoxia plays a role in all types of chronic wounds.
The repercussions of a lack of oxygen are much more complex than a simple reduction in metabolism.
The duration of hypoxia and the switch between hyperoxia and hypoxia, as is frequently seen in
chronic wounds, lead to a series of complex changes in cell behavior. The effects of hypoxia are
sometimes counterintuitive, such as hypoxia leading to increased ROS production.

Oxidative stress appears to be increase under conditions of ischemia, as hypoxia has been shown
to induce ROS production in vitro [3,208]. Cyclic episodes of ischemia and reperfusion occur when
patients with venous insufficiency, arteriosclerosis, and diabetes mellitus change position relative
to gravity. Ischemia-reperfusion injury is likely to play an important role in the development of
chronic wounds [209]. With each reperfusion, additional neutrophils flood into the wound site and
migrate through the activated endothelium, further contributing to an vicious inflammatory cycle [210].
In addition, temporary reperfusion delivers new oxygen to the wound site, which could lead to high
levels of ROS, possibly contributing to tissue damage [211]. Animal models have shown that repetitive
ischemia reperfusion cycles have a deleterious effect on wound repair [212]. Of note, repeated
ischemia-reperfusion events delay wound healing more than prolonged periods of ischemia [213].
Recently, it has been shown in a model of myocardial ischemia—reperfusion injury that NOX1 and
NOX2 play an important role in reperfusion injury as knockout mice showed a significantly smaller
infarct size [214]. Another important source of ROS during ischemia-reperfusion injury is xanthine
oxidoreductase, which has been extensively studied over the last decades. It has been reported
repeatedly that the inhibition of xanthine oxidoreductase has a beneficial effect on ischemia-reperfusion
injury but there are still some controversies, especially as there seems to be a tissue-specific effect [215].

It is an established fact that angiogenesis is impaired in diabetic patients [216]. Hyperglycemia
has been repeatedly associated with endothelial cell dysfunction, provoking an imbalance between
vasocontricting and vasodilating substances [217-219]. Through the creation of advanced glycation
end products (AGE), hyperglycemia triggers an overproduction of ROS [219], hampering vasodilation
by limiting the availability of NO [220]. In fact, impaired diabetic wound repair is associated with
decreased NO synthesis [221]. During hypoxia, low concentrations of NO facilitate the destruction
of HIF1a and thus impair HIF signaling [83] (see Figure 2). Animal studies suggest that L-arginine
supplementation, a substrate for NO synthesis, has a beneficial effect. In fact, the impairment of
NO synthesis in diabetic rats could be partly reversed and wound repair capacities enhanced by
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L-arginine [222]. The exogenous application of NO in hydrogels could partly reverse the reduced
collagen production and mechanical strength of the wound associated with reduced NO production in
diabetic rats [223,224].
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Figure 2. Illustration of pathomechanisms involving NOX enzymes and reactive oxygen species (ROS)

in chronic wounds. Solid black arrows represent promoting interactions, red solid T arrows direct
inhibitory interactions and red dashed T arrows indirect inhibitory interactions. Aging, diabetes,
and persistent ischemia are associated with excessive ROS production. NOX1 and NOX2 have been
reported to be responsible for excessive ROS production during ischemia—reperfusion injury. Through
the production of advanced glycation end products (AGE), hyperglycemia triggers an overproduction
of ROS. Excessive oxidative stress leads to cell senescence, apoptosis, and chronic inflammation,
hampering key processes of wound repair. In addition, persistent ischemia is likely to lead to impaired
NOX4 activity, directly interfering with TGFb1 signaling and leading to decreased myofibroblast
contractility. Reduced NOX4 activity also seems to reduce HIFla signaling, making effective
angiogenesis impossible and further aggravating the ischemic condition. Diabetes has been shown to
lead to a reduced availability of NO, facilitating the destruction of HIF1 and hindering angiogenesis.

Oxidative stress induced by hyperglycemia has been suggested as a mechanism that may
exacerbate tissue injury after stroke and myocardial infarction [225,226]. Both ischemia (-reperfusion
injury) and hyperglycemia increase production of ROS and it is conceivable that the two factors
accelerate each other. Ischemia leads to oxidative stress through the generation of ROS by NOX [227],
while glucose was reported to be a prerequisite for reperfusion-induced superoxide production by
NOX [225]. Hyperglycemia can increase the assembly of NOX enzymes and therefore enhance ROS
production [228], and leads to the generation of ROS through the accumulation of AGE [229,230]
(see Figure 2). Insulin resistance, and the associated increased insulin levels, might also contribute to
excessive ROS production in diabetic wounds, as insulin has been reported to induce NOX-produced
ROS in human skin fibroblasts ex vivo [231].

Under hyperglycemic conditions, the combination of oxidative stress, acidosis, and hypercoagulability
creates a NOXious cellular environment that favors progressive ischemic necrosis. As the mechanisms
through which both ischemia and hyperglycemia induce cellular toxicity are similar, it is possible that
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they amplify each other. We suggest that oxidative stress provoked by ischemia and exacerbated by
hyperglycemia constitutes a key mechanism in the pathophysiology of ischemic cell necrosis.

Age plays a predominant role in the pathophysiology of chronic wounds; the majority of
chronic wounds occur in people aged 60 or over [191,209]. Cell senescence, defined as a state of
diminished metabolism and reduced mitogenic activity, alter patterns of gene expression and decrease
responsiveness to growth factors, and thereby reduce repair capacity in aged individuals [6,232].
Aged human fibroblasts are more susceptible to oxidative stress-induced senescence and cell
death [233]. They show unresponsiveness to TGFf1 and reduced migration and proliferation [205,234].
Aged fibroblasts show an increased production of MMPs and a decreased level of MMP-inhibitors,
which could further impair granulation tissue formation in aged individuals [235]. While young
keratinocytes respond to acute hypoxia with proliferation and migration, aged keratinocytes show
impeded responses to hypoxia [196]. In cell cultures, it has been shown that smooth muscle cells of
aged rabbits express lower levels of VEGF in response to hypoxia [236]. Type I and type II collagen
synthesis are reduced in aged fibroblasts associated with degraded collagen accumulation, leading to
decreased biomechanical properties [237]. ROS and oxidative stress have long been linked to aging and
diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes, and atrial fibrillation,
and NOX enzymes are believed to play a major role in age-related increase in in oxidative stress [238].
NOX-induced cellular aging is likely to play a role in the development of chronic wounds but to discuss
it in detail would go beyond the scope of the current review; details can be found elsewhere [239].

7. Discussion and Clinical Relevance

As a logical consequence of the observations that ischemia results in impeded wound repair and
that virtually all chronic wounds show some degree of impaired wound oxygenation, the therapy of
chronic wounds with either topically or systemically administered oxygen has a long history [240].
Many experimental studies have since provided evidence that increasing oxygen tensions have
beneficial effects in wound repair processes. The antimicrobial properties of oxygen are likely to
contribute to a beneficial effect of oxygen therapy through direct bacterial killing [241], especially in
the case of infection with anaerobic bacteria [242]. However, it seems that the major beneficial effect
comes from the restoration of cellular function, affecting multiple cell types and molecular targets.

In culture, hyperoxia has been reported to promote macrophage chemotaxis [243],
phagocytic function in leucocytes [244], fibroblast proliferation and migration [245], and collagen
production [246,247]. Earlier studies in our laboratory revealed the reversibility of the adverse effects
of hypoxia on myofibroblasts when re-establishing normal oxygen levels.

As oxygen delivery to reparative cells at the wound site relies primarily on diffusion [6],
HBOT has been shown to be effective in increasing oxygen tensions in the wound bed [248-251].
HBOT has been reported to promote wound repair under specific conditions, but the literature is
inconclusive [240,252-256]. Exact mechanisms of action of HBOT are still poorly understood, resulting
in inconsistent treatment protocols and vague indications [257]. It is likely to have an effect on host
defense. Oxygen is the rate-limiting factor in NOX2-mediated ROS production during the respiratory
burst. HBOT has been shown to effectively stimulate the respiratory burst and is an accepted adjunct
treatment in necrotizing fasciitis and osteomyelitis [258,259].

In chronic wounds, HBOT seems to be especially effective when combined with other treatments,
supporting the notion that HBOT might be a potent mechanism for making chronic wounds receptive
to targeted treatment [260]. A study on rabbit ear ischemic wounds found that PDGF-BB, a growth
factor now widely used in wound therapy, has a much stronger effect when combined with HBOT [254].
The underlying mechanism is likely to be due to the fact that PDGF requires oxygen-derived H,O; to
function [28].

HBOT appears to improve angiogenesis during wound repair [261]. In vitro and in vivo, HBOT
has been shown to promote secretion of VEGF [262,263]. Results concerning the effects of HBOT on
the expression and activity of HIF1 are contradictory. One recent study on rats reported that HBOT
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improves ischemic wound repair by downregulating HIF-1, which is associated with a reduction of
inflammation. [264]. Another study showed increased healing after HBOT, which was associated
with increased expression HIF1 and VEGF [263]. The notion that hyperoxia induces HIF1 expression
is counterintuitive, but the underlying mechanisms could be found in the increased expression of
antioxidants associated with hyperoxia [265]. Oxidative stress induces the expression of the antioxidant
thioredoxin, which in return promotes the expression and activity of HIFs [266,267] (see Figure 3).
HIF1 is induced in the same way by lactate metabolism [268].
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Figure 3. Proposed mechanism of action of hyperbaric oxygen therapy in the treatment of chronic
wounds. Solid arrows represent direct promoting interactions and dashed arrows indirect promoting
interactions. Besides the increased availability of molecular oxygen leading to enhances energy supply
from mitochondria, increased deliberate ROS production by NOX enzymes is likely to enhance wound
repair. HBOT has been shown to boost the respiratory burst mediated by NOX2. Other NOX enzymes
are likely to play a role in key cytokine signaling pathways improving fibroplasia via PDGF and
TGFb1, re-epithelialization via KGF and EGF, and angiogenesis via their implication in HIFla and
PDGF signaling. Furthermore, it has been suggested that HBOT leads to increased progenitor cell
mobilization from the bone marrow increasing the availability of nitric oxygen.

HBOT stimulates keratinocytes, accelerates cornification, and keratinocyte migration [105].
There are several studies suggesting that HBOT improves granulation tissue formation [254,255].
Cultured dermal fibroblasts have been shown to secrete increased levels of TGFf31 when exposed
to HBOT [269]; collagen mRNA production and synthesis in a rat wound repair model were
also promoted by HBOT [270]. However, the effects of HBOT on fibroplasia and myofibroblast
differentiation during wound repair have not been addressed in detail.

Besides increasing wound oxygenation, other possibilities of generating ROS in the wound bed
have been considered for the management of chronic ulcers. Photodynamic therapy (PDT) had first
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been reported as promising treatment for autoimmune ulcers in 2007 and since then there have been
consistent results regarding increased ROS generation by PDT [271,272]. It is currently mainly used in
dermato-oncologic settings using the cytotoxic effect of ROS in high concentrations and its applicability
in the management of chronic wounds is yet to be established.

8. Conclusions

The current literature suggests that oxygen plays a role in all processes of wound repair, and,
besides a critical role in oxidative metabolism and bacterial killing, its effects extent to a wide range of
redox signaling pathways. The widespread implications of the effects of oxygen during wound repair
make HBOT a promising approach for promoting the healing of chronic wounds via tissue oxygenation.
Data specifically concerning the role of NOX enzymes in cutaneous wound repair are limited and
the enzymes’ function in the tissue-specific response to hypoxia, especially under hyperglycemic
conditions, is unknown. Further studies should interrogate the hypothesis that NOX enzymes play a
key role in wound repair processes like fibroplasia and in determining the composition of the ECM.
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