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Abstract: Sequence similarity searches have been widely used in the analyses of metagenomic
sequencing data. Finding homologous sequences in a reference database enables the estimation
of taxonomic and functional characteristics of each query sequence. Because current metagenomic
sequencing data consist of a large number of nucleotide sequences, the time required for sequence
similarity searches account for a large proportion of the total time. This time-consuming step makes
it difficult to perform large-scale analyses. To analyze large-scale metagenomic data, such as those
found in the human oral microbiome, we developed GHOST-MP (Genome-wide HOmology Search
Tool on Massively Parallel system), a parallel sequence similarity search tool for massively parallel
computing systems. This tool uses a fast search algorithm based on suffix arrays of query and
database sequences and a hierarchical parallel search to accelerate the large-scale sequence similarity
search of metagenomic sequencing data. The parallel computing efficiency and the search speed of
this tool were evaluated. GHOST-MP was shown to be scalable over 10,000 CPU (Central Processing
Unit) cores, and achieved over 80-fold acceleration compared with mpiBLAST using the same
computational resources. We applied this tool to human oral metagenomic data, and the results
indicate that the oral cavity, the oral vestibule, and plaque have different characteristics based on the
functional gene category.
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1. Introduction

Most microbes are difficult to isolate and cultivate [1]. The metagenomic approach with direct
sequencing of microbial genomes from environmental samples is a culture-independent way to identify
uncultured microbes. Metagenomic studies have been conducted in the human body [2,3], soil [4],
seawater [5], and air [6], and the identification of novel genes and species have provided us with new
information about microbes in various environments. Moreover, metagenomic studies have reported
relationships between genes in microbial communities and environmental conditions. For example,
Tringe et al. sequenced indoor air microbes and compared overrepresented genes with those from
environmental sources such as seawater, soil, and whale fall [6].

In such studies, environmental samples are characterized by the abundance of ortholog
groups [2,6,7]. Studying these abundances enables us to uncover the relationships between gene
functions and environmental conditions. We can reconstruct possible metabolic pathways within the
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microbial community in an environment, and compare each metagenomic sample based on its gene
functions or functional categories [7]. The reconstruction of metabolic pathways provides information
about potential metabolites, possible paths to a specific metabolite, and the structure of a metabolic
network in an environment.

To estimate the abundance of ortholog groups in environmental samples, sequence similarity
searches have been used to identify ortholog groups of each sequence in the metagenomic data.
In metagenomic studies, the query sequences often have no close homologs in database sequences.
This necessitates sensitive search methods, such as BLASTX [8], which searches an amino acid sequence
database for similarities within the translated nucleotide query sequence.

However, searching with BLASTX requires a long calculation time, making it difficult to perform
large-scale analyses (i.e., studies including hundreds of environmental samples). For example, each
BLASTX search takes about one minute with a single query of a nucleotide sequence of approximately
100 bases and a reference sequence database such as KEGG GENES [9] or NCBI BLAST nr [10].
Metagenomic data with whole genome sequencing using a massively parallel DNA sequencing
technique often consists of tens of millions of short reads. Thus, current metagenomic functional
annotations using BLASTX require over 1000 days to process metagenomic sequencing data with a
single CPU core.

The Human Microbiome Project (HMP) has already achieved large-scale functional analyses,
albeit with a markedly reduced reference database [3,7]. Some 681 sets of metagenomic shotgun
sequencing data from 18 human body sites were analyzed with the HMP Unified Metabolic Analysis
Network (HUMAnN) [7]. However, in the HUMAnN workflow, the subset of the KEGG GENES
database used for reference consisted of amino acid sequences from only 28 species. The size of this
subset of data is approximately 1% of the whole database. Although they are faster, similarity searches
with reduced databases can affect the accuracy and availability of functional annotations because it
is more likely that no similar sequence is found and the function of each query sequence may not be
estimated. For example, the human oral microbiome constitutes more than 600 bacterial species [11,12].
For a detailed analysis of taxonomic composition and functional genes in the bacterial community,
there are strong demands for using whole databases. However, an analysis using the whole database
needs to perform calculation-cost. Therefore, there is a need for high-speed sequence similarity search
algorithms and massively parallel computations.

Two approaches have been developed to accelerate sequence similarity searches. The first uses a
search algorithm with a sophisticated database index, such as a hash table [13] or a suffix array [14,15].
This method avoids linear searching for alignment candidates used in BLASTX [8], and instead uses
the index of the database. This shortens one of the most time-consuming parts of the similarity search,
and makes the whole search tens of times faster than the BLASTX algorithm. The second approach
employs a parallel search on massively parallel computing systems. This technique is particularly
useful for metagenomic data produced by massively parallel DNA sequencing because massively
parallel sequencing data consist of many nucleotide sequence fragments, and this approach can search
for each fragment in parallel. Ideally, the parallel search approach should reduce the execution time in
inverse proportion to the number of computational units. Darling et al. developed mpiBLAST [16],
which is a parallel implementation of NCBI BLAST using the Message Passing Interface (MPI). The
mpiBLAST software searches in parallel using multiple processes on a distributed memory system
with thousands of CPU cores to reduce the search time.

Although both approaches accelerate the similarity search process, the acceleration of only one
approach is insufficient for large-scale analyses. We typically require 10,000-fold acceleration compared
with a single BLASTX run with one CPU core for the functional annotation of shotgun sequencing data
within several hours. Search algorithms with database indexes are not fast enough. An ideal parallel
search could achieve 10,000-fold acceleration using 10,000 times the computational resources, but those
means are not easily available. Thus, a method that combines the advantages of both approaches
is needed.
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In this study, we developed a new massively parallel sequence similarity search tool for large-scale
metagenomic sequencing data, such as the human oral microbiome. The system consists of a parallel
sequence similarity search on a massively parallel distributed memory system, named GHOST-MP. This
enables the analysis of large-scale metagenomic data consisting of hundreds of sets of environmental
sequencing data. GHOST-MP employs both a fast search algorithm and parallel computation to
accelerate similarity searches for metagenomic sequencing. To demonstrate the applicability of
GHOST-MP to large-scale metagenomic functional analyses, we first present the search speed and
scalability of GHOST-MP on two massively parallel computing systems. We then show the results
of large-scale sequence similarity searches of actual metagenomic data. GHOST-MP achieved faster
sequence similarity searches than mpiBLAST, enabling large-scale functional analyses to be performed
within a short period of time. Then, we performed metagenomic analysis of human oral microbiome
based on a fullset of functional gene reference using GHOST-MP. The results indicated that oral cavity,
oral vestibule, and plaque have different characteristics.

The GHOST-MP program is implemented in C++, and is available under the BSD (Berkeley
Software Distribution) License from http://www.bi.cs.titech.ac.jp/ghostmp/.

2. Results and Discussion

2.1. Evaluation of Scalability and Search Speed

Before performing the analysis of the human oral microbiome, we evaluated the search speed of
GHOST-MP, which was measured on two systems: TSUBAME 2.5 at Tokyo Institute of Technology,
and the K computer at RIKEN Advanced Institute for Computational Science, using human oral
metagenomic shotgun sequencing data queries and the KEGG GENES amino acid sequence database.
The scalabilities were evaluated in weak and strong scaling experiments. In the weak scaling setting,
the number of query sequences per CPU core was fixed as the number of cores increased. This scenario
evaluates how a large problem can be efficiently dealt with. In the strong scaling setting, the total
number of query sequences was fixed to evaluate how fast the method could process the same amount
of data. On TSUBAME 2.5, the search speed of mpiBLAST (version 1.6.0) was also measured and
compared with that of GHOST-MP using human tongue dorsum metagenomic data (SRS078182).
Parts of the query sequences (1,280,000 and 80,000 query sequences for GHOST-MP and mpiBLAST,
respectively) were used for evaluation on TSUBAME 2.5 due to limitations in computational resources.
mpiBLAST was not evaluated on the K computer because it encountered a bus error on this system.
This error could have been caused by unaligned memory access, as the processor in the K computer
does not allow such access.

Figure 1 plots the search speeds and scalability of GHOST-MP and mpiBLAST on TSUBAME 2.5.
Both GHOST-MP and mpiBLAST achieved almost linear scalability, and the search speed of GHOST-MP
was 87–115 times faster than that of mpiBLAST. Scalability means that the serial sections of GHOST-MP
and mpiBLAST, such as I/O (Input/Output) and scheduling, account for only a small fraction of the
computation time compared with the parallelizable sequence similarity search sections at various scales,
in which computational resources were efficiently used. The acceleration of GHOST-MP compared
with mpiBLAST should arise from the difference between the GHOSTX and BLASTX algorithms.
Furthermore, similar accelerations were observed in experiments with a compute node [15].

We further evaluated the scalability of GHOST-MP on the K computer to investigate its
performance on a massively parallel computing system. To evaluate the aforementioned scalability, we
used 107 samples of buccal mucosa metagenomic data because the K computer has a larger number
of CPUs that can carry out a computational process for a larger dataset necessary for evaluation.
Generally, it is more difficult to achieve good scalability on larger systems because the master process
must communicate with more workers. However, GHOST-MP scaled well up to over 10,000 CPU
cores in reference to both criteria (Figure 2). GHOST-MP took 1.73 h to process the whole dataset with
24,576 cores. However, the search speed decreased compared with the ideal speed with 24,576 cores
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(weak scaling) and 49,152 cores (strong scaling). This decrease in search speed under weak scaling
indicates that additional data cannot be efficiently processed, whereas the search speed under strong
scaling suggests that no further acceleration can be achieved by increasing computational resources.
The performance drop may have been caused by the contention of point-to-point communications
between the master and workers. To make the parallel search more scalable for large-scale analyses,
it is necessary to reduce the contention. Introducing multiple masters or submasters at the MPI level
or implementing collective communication instead of point-to-point communication may address
this problem.
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Figure 2. Scalability of GHOST-MP on the K computer. Strong scaling and weak scaling were measured
using 768–49,152 CPU cores. The similarity search of the sequencing data with the KEGG GENES
amino acid sequence database on the K computer took 183 h (898,231 core hours, which is the product
of the number of CPU cores used and the elapsed time). Searches of all sequencing data (except
SRS055118) were completed within 2 h (Table S1). The combination of a sophisticated search algorithm
with database indexing and a massively parallel search allowed us to achieve this large-scale similarity
search within a short period of time.

2.2. Large-Scale Sequence Similarity Search for Metagenomic Sequencing Data

To demonstrate the applicability of GHOST-MP to large-scale functional analysis of metagenomic
data, we applied the functional analysis workflow to healthy human oral metagenomic data consisting
of 381 samples taken from eight oral sites, with approximately 18 billion sequence reads (Table S2).
Through the functional gene analysis pipeline, 109,127,620 reads (0.6% of the total) and 75,363,198 reads
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(0.4% of the total) were filtered out by a similarity search against the NCBI nr and KEGG GENES
databases, respectively. A total of 10,357,599,878 reads (56.0% of the total) were aligned to similar
sequences in the KEGG GENES database. The search results are summarized in Table S2. We used
the relative abundance of orthologous gene groups in each sample and the results of the workflow
to compare metagenomic samples between oral sites. Relationships among metagenomic samples
were summarized using principal component analysis (PCA). Orthologous gene groups with relative
abundances of less than 0.0001 in all samples were excluded in advance. In other words, the number of
orthologous groups decreased from 6881 to 3181. However, the remaining orthologous groups account
for most of the total relative abundances, and the sums of the relative abundances are >0.98 in all
samples. These relative abundances were transformed into principal components by PCA.

Figures 3 and 4 show the first three principal components of oral samples. The three principal
components describe the relationships among samples well and account for 58% of the total variance.
In particular, samples from the same oral sites tend to make clusters with regard to the first and
third principal components, and we can group the eight oral sites into three groups (Figure 4). These
groups were composed of (a) the oral cavity; (b) the oral vestibule; and (c) plaque. This result
is consistent with a phylogenetic analysis of human oral microbiomes [17]. The average relative
abundances of the orthologous groups in these oral site groups were also investigated. There was a
large number of orthologous groups that are more or less abundant in specific oral site groups (Figure 5).
Some orthologous groups related to specific biological pathways were found to be abundant in specific
oral site groups. For example, orthologous groups related to the lipopolysaccharide biosynthesis
(PATH: ko00540) are abundant in the oral cavity. This suggests an abundance of Gram-negative
bacteria, which have lipopolysaccharide in their outer membrane, in the oral cavity. Almost all
orthologous groups related to bacterial chemotaxis (PATH: ko02030) and flagellar assembly (PATH:
ko02040) according to the KEGG PATHWAY are abundant in the oral cavity and plaque. Genes related
to these pathways are involved in microbial motility, and it has been reported that genes related to
microbial motility are over-represented in plaque microbiomes of periodontal disease compared with
those of healthy periodontal tissue [18–20]. Through this large-scale functional analysis, we have
confirmed the applicability of GHOST-MP to current metagenomic shotgun sequencing data.
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Figure 3. First and second principal components of the relative abundances of orthologous groups.
Ellipses represent the covariance (2σ) of the three oral site groups. (a) indicates oral cavity (palatine
tonsils, saliva, throat, and tongue dorsum), (b) indicates oral vestibule (buccal mucosa and keratinized
gingiva), and (c) indicates plaque (subgingival plaque and supragingival plaque).
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Figure 5. Comparison of the average relative abundance among three oral site groups. Orthologous
groups are represented as dots in each ternary plot based on their average relative abundance.
The centroid of the triangle represents an equal average relative abundance of the three oral site groups.
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3. Materials and Methods

3.1. Sequence Data

Human oral metagenomic sequencing data were downloaded from the HMP Data Analysis
and Coordination Center (HMP DACC; http://www.hmpdacc.org). Reads from the human genome,
duplicate reads, and low-quality bases were removed from these data by HMP DACC in advance.
Identifiers and details of human oral samples data are listed in Table S2.

The KEGG GENES database [8] (released July 2012) was used for reference sequences.
This database contains 8,578,853 amino acid sequences.

3.2. Functional Gene Analysis Pipeline

The functional analysis pipeline mainly consists of four steps. The first step trims away the
low-quality tails from the reads. The entire read is filtered out if the remaining sequence is shorter
than 60. The second step filters out the reads derived from Eukaryotes. The reads are considered as
derivation from Eukaryotes if the top hit of the sequence similarity search against NCBI nr database
(accessed July 2012) is the sequence of Eukaryotes. The third step maps the read sequences to the
annotated sequences in the KEGG GENES amino acid sequence database (released in July 2012). The
second step and the third component perform sequence similarity searches using GHOST-MP with
the PAM 30 substitution matrix, with the gap opening penalty of −9 and the gap extension penalty
of −1. These steps account for most of the computation time in this workflow. The search results are
considered as hits if the alignment score and sequence identity are above 40% and 70%, respectively.
The fourth one calculates the relative abundances of orthologous groups (KEGG Orthology entries) in
the data. The number of hits of each gene in an orthologous group is summed up with normalization
using its gene length and the number of hits of universal single-copy genes [21].

3.3. Computing Environments

The TSUBAME 2.5 supercomputer consists of 1408 thin compute nodes. Each compute node has
two Intel Xeon X5670 processors (2.93 GHz, six cores) and 54 GB of main memory. The nodes are
interconnected with a full bisection-bandwidth fat-tree network. Each compute node has three NVIDIA
Tesla K20X GPU accelerators, but the accelerators were not used in this study. The K computer consists
of 82,944 compute nodes. Each compute node has a SPARC64 VIIIfx processor (2.0 GHz, eight cores)
and 16 GB of main memory, and is connected to a six-dimensional mesh/torus network. We used
up to 1536 CPU cores (128 nodes) and 49,152 CPU cores (6144 nodes) to measure the scalability of
GHOST-MP on TSUBAME 2.5 and the K computer, respectively.

3.4. Sequence Similarity Search with Indexes Based on Suffix Arrays

GHOST-MP uses the GHOSTX [15] search algorithm for sequence similarity search. The GHOSTX
program achieves more than 100-fold acceleration over the BLASTX algorithm, albeit with a slight
decrease in search sensitivity. Briefly, the algorithm uses suffix arrays [22] as an index to accelerate
the search for alignment candidates. The suffix array data structure is a sorted array of indexes of all
the suffixes of a string in lexicographical order. The suffix array can be used with a binary search to
find all suffixes matching the query string, and is a data structure widely used in biological sequence
searches [23]. Binary searches on the suffix array produce efficient enumeration of all intervals in
the suffix array that start with each letter representing an amino acid type. We can recursively apply
the same procedure for subsequent letters to narrow down the intervals. Moreover, the GHOSTX
algorithm uses an additional data structure (an array of ranges of the same fixed length prefixes of the
suffixes in the suffix array) to avoid several initial steps in the binary search. These data structures
make it possible to obtain intervals as alignment candidates by filtering out dissimilar intervals in
terms of a substitution matrix score.

http://www.hmpdacc.org
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The main search algorithm consists of the following steps: (1) search for alignment candidates
with the suffix array; (2) perform ungapped extension of the candidates; (3) filter out overlapping
candidates; and (4) perform gapped extension of the candidates. Query nucleotide sequences are
treated as amino acid sequences throughout the search procedure, with translations over six possible
reading frames for a sensitive search with an amino acid substitution matrix.

3.5. Hierarchical Parallelization of the Sequence Similarity Search with Data Parallelism

GHOST-MP adopts a two-level hierarchical parallelization. The sequence similarity search is
parallelized by MPI at the inter-node level and by OpenMP at the intra-node level. The original
GHOSTX algorithm only provides a parallel similarity search with OpenMP. Thus, we could not
execute GHOSTX on distributed-memory systems (inter-node), which account for a large portion of
current supercomputers in use, because OpenMP only provides parallelization on shared-memory
systems (intra-node). Thus, GHOSTX could not take advantage of the large computational power
of supercomputers. The hierarchical parallelization has two advantages compared with MPI-only
parallelization, described as follows.

(1) Hierarchical parallelization largely reduces the memory use of worker processes because it enables
the sharing of common data in intra-processes, such as database sequences. The size of database
sequences and their index often exceed the memory size in massively parallel environments.
Index size is the product of the length of the concatenated database sequence and the size of the
index pointing to the corresponding position in the concatenated database sequence. For example,
when KEGG GENES (3.5 GB, released July 2012) is used as an amino acid sequence database,
the total size of the database sequence and its suffix array with auxiliary data is approximately
20 GB. If we use MPI for both inter- and intra-node parallelization, each individual process,
even those within the same computing node, has to store the same database. In current massively
parallel computing systems, nodes rarely have sufficient memory to store multiple copies of the
database and its index. To reduce memory use, it is possible to split the database by assigning
different partitions to each intra-node process. However, searching by this approach is inefficient
for two reasons. First, splitting the database requires an additional merging step to combine the
most similar hits for the same query sequence. Second, searching for alignment candidates with
a split database requires more CPU time than searching with an unsplit database because the
search time for alignment candidates with a suffix array is proportional to the logarithm of the
database size.

(2) Hierarchical parallelization can also lead to scalable parallel searching. Since the communication
between the master and the workers involves MPI point-to-point communication, parallel
searches with a smaller MPI process reduce the number of communications sent from the
workers to the master compared with searches in nonhierarchical parallelization (MPI-only
parallelization).

Details of this two-level hierarchical parallelization of GHOST-MP are as follows. At the inter-node
level, GHOST-MP adopts a master–worker model. Communication between the master process and
the worker process is implemented with MPI. Firstly, query sequences are split into the same number
of chunks as the number of worker processes. The master process assigns a sequence chunk to each
worker process as a task. At the intra-node level, similarity searches are parallelized with OpenMP.
Query sequences in a chunk are subdivided into more specific tasks. These subdivided tasks are put
into a queue, and each OpenMP thread sequentially dequeues a task from the queue using a lock.
Finally, each worker process writes search results to a clustered file system and reports results to the
master process (Figure 6).
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