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Abstract: The plant hormone auxin plays pivotal roles in many aspects of plant growth and
development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear
proteins acting on auxin perception and signaling, but the evolutionary history of this gene family
remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all
major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total
of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges
from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the
canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of
Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae.
Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may
be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results
indicate that tandem and segmental duplications play dominant roles for the expansion of the
Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals
(NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in
P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the
origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their
functions during the course of evolution.
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1. Introduction

The plant hormone auxin (IAA) regulates various processes in plant growth and development,
including apical dominance, gravitropic response, embryogenesis, organogenesis, vascular
differentiation, axis and lateral root initiation, and shoot elongation [1,2]. Auxin coordinates these
processes via activating genes involved in auxin signal transduction. The early/primary auxin
response genes are generally grouped into three major categories: Aux/IAA (auxin/indoleacetic acid),
GH3 (Gretchen Hagen 3), and SAUR (small auxin up RNA) [3]. Furthermore, auxin plays a crucial
role in making the plant architecture; namely, auxin specifies the different divisions of plants by
controlling embryogenesis and postembryonic development [4]. During the course of evolution,
changes in auxin perception and signaling can be an essential mechanism to generate varied plants
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architectures [5,6]. Aux/IAAs are short-lived transcriptional repression factors involved in regulating
auxin-responsive transcription in the plant kingdom [7,8]. Typical Aux/IAAs contain four highly
conservative domains, designated as domains I, II, III, and IV, although one or some of these domains
are lacking in many predicted proteins [8,9]. Domain I, represented by a conservative leucine repeat
motif (LxLxLx), is responsible for the repression activity and the recruitment of co-repressor TOPLESS
(TPL) [10,11]. Domain II, with the conservative degron-sequence GWPPV, confers instability and rapid
degradation of Aux/IAAs by interacting with the F-box protein TIR1 [11,12]. Hence, the introduction
of specific point mutations or deletions in the domain II degron-sequence can increase the stability
of the proteins [13,14]. The C-terminal domains III and IV are dimerization regions involved
in homo-dimerization and hetero-dimerization with other Aux/IAAs or auxin response factors
(ARFs) [15]. In addition, Aux/IAAs are localized in the nucleus because they have two nuclear
localization signals (NLS) [16,17].

The molecular model of auxin signaling was elucidated in the past two decades, despite
this plant hormone having been investigated for nearly a century [18]. Aux/IAAs and ARFs are
two kinds of transcriptional regulators. Aux/IAAs generally function as transcriptional repressors
of auxin-response genes by controlling the activity of ARFs through protein-protein interactions [19],
while ARFs can promote downstream target genes’ expression by binding to AuxRE (auxin response
element, TGTCTC) in their promoters through B3-type DNA-binding domains [8,20]. Under a
low auxin concentration, ARFs’ transcriptional activity is inhibited by forming an ARF-Aux/IAA
hetero-dimer [8,19]. Furthermore, TOPLESS (TPL) is recruited to maintain chromatin in a repressive
configuration by recruiting histone deacetylase [21]. However, when the auxin density is relatively
high, Aux/IAAs are degenerated through the ubiquitin–proteasome protein (TIR1) pathway triggered
by SCF-type E3 ubiquitin ligase complexes. Then, ARFs are released from Aux/IAAs to regulate the
expressions of the downstream target genes [19,22,23].

Recently, several Aux/IAAs have been characterized in model plants, indicating that Aux/IAAs
participate in diverse cellular and developmental processes. In Arabidopsis thaliana, the IAA1/AXR5
mutant shows a variety of growth defects related to auxin insensitivity phenotypes [24]. Loss-of-function
mutation in IAA3/SHY2 has effects on auxin homeostasis and lateral root formation [25]. Inflorescences of
a dominant mutant of A. thaliana IAA7/ARX2 have negative phototropism and gravitropism defects [26].
The mutant of AXR3-1/IAA17-1 has enhanced apical dominance and a decreased number of lateral
roots, which are associated with an increased auxin response [27]. The gain-of-function mutation of
IAA16 inhibits plant growth and causes decreased response to auxin [28]. In monocot rice (Oryza sativa),
plants with overexpression of OsIAA4 are characterized by dwarfism, increased tiller angles, reduced
gravity response, and less responsiveness to auxin [29]. The loss-of-function mutant of OsIAA6 shows
abnormal tiller outgrowth [30]. OsIAA23 is referenced to the postembryonic maintenance of the quiescent
center [31]. Several reports highlight that some Aux/IAAs are responsive to abiotic stresses, including
cold acclimation, dehydration, and salt stress [32,33].

Aux/IAA gene families have been identified in several plant species, such as 29 members
in A. thaliana [34], 31 in O. sativa [35], 35 in Populus trichocarpa [36], 34 in Zea mays [37], 26 in
Vitis vinifera [38], 17 in Medicago truncatula [39], 26 in Eucalyptus grandis [40], 63 in G. max [33],
and 26 in Solanum tuberosum [41]. Some Aux/IAAs are expressed throughout the plant, but others
have tissue-specific and developmental stage-specific expression manners depending on the precise
developmental context [42]. Moreover, many homologous Aux/IAAs have similar expression patterns
and functions [17,43–46]. No visible defect is detected in double or triple mutants of the closely-related
Aux/IAA genes, suggesting that functional redundancy is widespread in the Aux/IAA gene family [47].
In the auxin signaling pathway, a single Aux/IAA protein can interact with multiple members of the
ARFs and vice versa [48]. These genes may achieve more complicated regulatory strategies through
changing their interacting partners [49].

To gain a better understanding of auxin signaling in the evolution of plants, the evolutionary
history of Aux/IAAs needs to be investigated. In this study, we identify 434 Aux/IAA proteins from
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17 plant species covering major lineages of plants and we perform bioinformatics analyses to reveal
the evolutionary mechanisms of the Aux/IAA gene family. Our study demonstrates that canonical
Aux/IAA genes can generally be divided into five groups, and that they have a variety of domain
compositions. Additionally, our results indicate that tandem and segmental duplication events play
dominant roles in the expansion of the Aux/IAA gene family. Moreover, it is found that both changes
in coding sequence and rearrangements in domain organization contribute to the functional diversity
of plant Aux/IAAs.

2. Results and Discussions

2.1. Identification of the Aux/IAA Gene Family in Plants

In order to identify Aux/IAA genes in plantae, we first used 29 A. thaliana and 31 O. sativa
Aux/IAAs as the query to perform local BLAST searches against the proteomes of 17 plant species.
Then, these candidates were submitted to the NCBI conserved domain database. The presence
of AUX_IAA domains was necessary to confirm their identities. As a result, we finally identified
434 Aux/IAA genes (Table S1). The number of Aux/IAA genes ranged from three to 63 across the
different plant species. Interestingly, we were unable to detect any Aux/IAA domains in C. reinhardtii.
The gene copy number of six species ranged from 20–30, and four species were between 30 and 40
(Table 1). There were three Aux/IAA genes in P. patens; while G. max contained the most Aux/IAA
genes (63). It was found that the copy number of Aux/IAA genes was uncorrelated with genome size.
For example, G. max and P. abies contained 56,044 and 58,587 genes, respectively; however, the Aux/IAA
gene number in G. max (63) was twice that of P. abies (31) (Table 1). There were 29 Aux/IAA genes
in A. thaliana, while P. paten only had three Aux/IAA genes, even if the gene loci number of P. paten
(32,929 loci) was more than that of A. thaliana (27,416 loci). The regression coefficient analysis was
conducted (r = 0.6527; p-value = 0.0022), indicating that the Aux/IAA gene copy number and gene loci
number had a weak correlation (Figure S1). The results of the paired t-test with these two variables
were found to be remarkably different (p < 0.001). In other words, the genome size was not directly
proportional to the number of Aux/IAA genes. Plant species might undergo some forces to prompt
diversity in this gene family [50]. In addition, lower plants such as P. patens and S. moellendorffii had
smaller Aux/IAA gene families compared to higher plants, typically gymnosperms and angiosperms.
This phenomenon indicated that the Aux/IAA gene family experienced a dramatic boost from lower
plants to higher plants. The extra genes might have functional redundancy and/or generate new
functions, leading to adaption to changing environments [50–53].

Table 1. Aux/IAA genes identified from 17 sequenced plant genomes.

Lineage Organism No. of Predicted Loci a No. of Aux/IAA Genes References

Algae Chlamydomonas reinhardtii 17,741 0 This study

Moss Physcomitrella patens 32,926 3 Kumar et al. [49]

Lycophytes Selaginella moellendorffii 22,285 9 Kumar et al. [49]

Gymnosperm Picea abies 58,587 31 This study

Amborellales Amborella trichopoda 26,846 16 This study

Dicots

Utricularia gibba 28,494 25 This study
Solanum tuberosum 35,119 26 Gao et al. [41]
Gossypium raimondii 37,505 44 This study
Arabidopsis thaliana 27,416 29 Liscum and Reed [34]
Populus trichocarpa 41,335 36 Kalluri et al. [36]
Ricinus communis 31,221 21 This study
Prunus persica 26,873 24 This study
Glycine max 56,044 63 Singh and Jain [33]

Monocots

Phalaenopsis equestris 31,384 16 This study
Brachypodium distachyon 34,310 27 This study
Oryza sativa 42,189 31 Jain et al. [35]
Zea mays 63,480 34 Wang et al. [46]

a The data came from the Phytozome Database (Available online: https://phytozome.jgi.doe.gov/pz/portal.html).
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2.2. Classification and Structural Analysis of Aux/IAA Proteins

In order to investigate the motif composition of Aux/IAA proteins, MEME (Multiple Em for
Motif Elicitation) analysis was applied to find conservative motifs in Aux/IAA proteins. Consequently,
five utative motifs corresponding to Aux/IAAs’ four conservative domains were found: motifs 5,
3, and 2 were related to domains I, II and III, respectively; domain IV contained two independent
motifs: motif 1 and motif 4 (Figure 1). Motif 5 had a conservative amino-terminal leucine repeat
motif (LxLxLx), which was important for conferring repression, and was also a typical feature of
domain I [11]. A conservative sequence “VGWPPV” was found in motif 3, which functioned as
a conservative degron sequence and determined the stability of Aux/IAA proteins. Substituting
the first proline by serine or the second proline by leucine in this motif could remarkably prolong
protein half-life times [11,13]. In domains III and IV, “VKVxM” and “RK” in motif 2 and “GDVPW” in
motif 1 were also considerably conservative. These motifs might play crucial roles in composing the
β-grasp fold and responsible for protein to protein dimerization [15,54]. A conserved SV40 type NLS
“KRxRxxK” sequence in motif 4 might also contribute to dimerization [55,56].
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Figure 1. Graphical representation of 11 types of Aux/IAAs and their comparative analysis among
the 17 plant species. The chart at the bottom shows the conserve amino acid composition of different
motifs on average. The content of conservative amino acids is expressed by the height of characters.
The phylogenetic tree at the top is from the Tree of Life Web Project (Available online: http://www.
tolweb.org/Green_plants).

In total, there were 434 Aux/IAA proteins; 253 of them had all five motifs, which accounted
for 58.3% of the total number, whereas some proteins only contained motifs 1 and/or 2 (Figure 1).
For example, AtIAA29 and AtIAA33 in A. thaliana had both motif 1 and 2. However, in G. max,
Glyma.10G000700.1 only had motif 1, and Glyma.13G140500.1 only had motif 2. According to
the distribution patterns of conservative motifs, Aux/IAA proteins were generally classified into
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11 subgroups. The proteins having all five motifs were regarded as canonical Aux/IAAs and grouped
into type I. These canonical proteins had four complete domains, which were confirmed by multiple
sequences alignment. In type II, 16 proteins lacked motif 4, which led to incomplete domain IV
(Figure 1). Nine proteins were grouped into type III, because they lacked both motif 1 and motif
4 in domain IV. Twenty proteins containing domain I, domain III, and incomplete domain IV were
grouped in type IV. Moreover, 30 proteins were grouped into type V for lacking motif 5. In type VI,
23 proteins lacked both motif 4 and motif 5. Nine proteins lacking both domains I and II were grouped
into type VII. The second most proteins (35), which only had motifs 1 and 2, were clustered into type
VIII. Type IX and type X had half-baked domain IV with single motif 2 and motif 1, respectively.
The other Aux/IAAs not belonging to any of the above types were grouped into others. The deficiency
in domains might cause various motif compositions. In the past few decades, the functions of a
single domain in Aux/IAA proteins were revealed by truncated mutations of Aux/IAAs. Domain
I was an active repression domain that was responsible for transfer and dominant over activation
domains [11]. Domain II composed a TIR1 auxin receptor binding site. The protein lacking this
domain showed an obvious longer half-life time than the canonical Aux/IAA protein. AtIAA20 and
AtIAA30 in A. Thaliana both lacked domain II, which were more stable than the canonical types of
Aux/IAA proteins. Double mutants expressed a conspicuous phenotype such as the collapse of the
root apical meristem [57]. Domain III and domain IV were PB1 domains that facilitated protein-protein
interactions with other PB1 domain proteins by electrostatic contacts. Truncations in this region might
cause defects in dimerization, which would interrupt auxin-related signaling.

2.3. Phylogenetic Analysis of Aux/IAAs

The evolution analysis of the Aux/IAA family was crucial to understanding auxin signaling in
plants. However, it was hard to unveil the origin of this gene family, considering the large gene family
size and functional redundancy among gene family members. To solve this question, an unrooted tree
was built to reveal the phylogenetic relationship of the Aux/IAA gene family among eudicots, monocots,
gymnosperms, and lower eukaryotic plants. The phylogenetic tree containing 434 Aux/IAA sequences
from 17 species was weakly supported by the bootstrap test because of the many divergent sequences.
In order to improve the quality of phylogenetic analysis, we chose 253 canonical Aux/IAA sequences,
accounting for 58.3% of the total proteins, to perform phylogenetic analysis (Figure 2). In addition,
we reconstructed the phylogenetic trees of the Aux/IAA family by using the maximum likelihood
and three different models. The results were very similar to the topology of the neighbor-joining (NJ)
tree with the p-distance model and the Gamma distributed with Invariant sites (G + I) distribution.
Hence, the NJ tree was chosen for further investigation. In this phylogenetic tree, the Aux/IAA
family could generally be divided into five clades: Clade A (including A. thaliana IAA18, IAA26,
IAA28), Clade B (including A. thaliana IAA5, IAA6, IAA15, IAA19), Clade C (including A. thaliana
IAA7, IAA14, IAA16, IAA17), Clade D (including A. thaliana IAA1, IAA2, IAA3, IAA4), and Clade E
(including A. thaliana IAA8, IAA9, IAA27). Bryophyte Aux/IAA sequences were loosely associated
with Clade A, which means that Clade A could probably be traced back to the origin of the plant
kingdom. Both P. patens and S. moellendorffii had two canonical Aux/IAA sequences, while higher
plants contained more gene copies. This gene family might have undergone a dramatic boost during
plant evolution. P. equestris (monocot) and aquatic plant U. gibba (eudicots) sequences were on the
edge of other monocots and eudicots in this phylogenetic tree. It was speculated that these two species
had a longer evolutionary distance than the other species. The origin of the Aux/IAA gene could be
dated back at least to the origin of land plants and the major Aux/IAA and ARF lineages originated
before the monocot-eudicot divergence [58]. Our work fully supported this hypothesis: it failed to find
the Aux/IAA domain in green alga and some charophytes, which were regarded as the closest aquatic
relatives of land plants. This result strongly supported the idea that the Aux/IAA protein family did
not exist before the emergence of land plants. The auxin response factor (ARF) was another essential
kind of transcription factor in auxin signaling that could combine with Aux/IAA domains III and
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IV and was also determined to be land plant innovation proteins [4]. It was assumed that the auxin
perception and response pathway induced by Aux/IAAs and ARFs first appeared in land plants.
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In the phylogenetic tree, significant sequence similarities were observed among the Aux/IAA
gene family, which indicated that these genes probably arose from gene duplication events (Figure 2).
Additionally, these homologous genes might share the same or overlapping functions. In total, 65 sister
pairs were found with strong bootstrap support (>90%), 56 of which were from the same species.
G. max contained the largest number of sister pairs (17 pairs). There were six and four sister pairs
in Z. mays and A. thaliana, respectively. In addition, we found one sister Aux/IAA gene pair each in
P. patens, S. moellendorffii, P. abies, and S. tuberosum, while there were no sister pairs in A. trichopoda,
O. sativa, B. distachyon, P. persica, or R. communis in the entire tree. The remaining Aux/IAA gene pairs
were from cross species, and six sister pairs existed between O. sativa and B. distachyon Aux/IAA genes.
We also observed three kinds of sister pairs from cross species (O. sativa IAA-Z. mays IAA, G. max
IAA-P. persica IAA, R. communis IAA-P. trichocarpa IAA) at one time. The non-canonical Aux/IAA genes
were excluded from the phylogenetic tree as they have a large sequence diversity that would cause
less reliability with low bootstrap values. We assumed that these non-canonical Aux/IAA genes tended
to be clustered into additional clades.

2.4. Aux/IAAs and ARFs May Share the Same Origin

The auxin/indole-3-acetic acid (Aux/IAA) family and the auxin response factor (ARF) family
are two transcription factor families that regulate the auxin signaling pathway in the nucleus. In the
absence of auxin, the Aux/IAAs carboxyl-terminal PB1 domain specifically binds to the corresponding
homologous domain in the ARFs, leading to the repression of ARF activity [15,20,54]. In order to
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reveal the evolutionary relationship between Aux/IAAs and ARFs, we first performed multiple
sequence alignments by using full-length amino-acid sequences of several typical Aux/IAAs and
ARFs among eudicot (A. thaliana), monocot (O. sativa), gymnosperm (P. abies), and lower eukaryotic
plant (P. patens and S. moellendorffii) sequences by ClustalX. It was shown that the structure of the
PB1 domain was composed of three α-helices (α1–α3) and five β-sheet strands (β1–β5) (Figure 3).
The remarkable sequences conservation and the unique feature compared with typical PB1 domains
indicated that ARF and Aux/IAA gene families may derive from an ancient PB1 family [15]. The PB1
domain three-dimensional crystal structures in ARF5 and ARF7 confirmed that the tertiary structures
of these domains were ubiquitin-like β-grasp folds [59,60]. However, the three-dimensional structure
revealed that these PB1 domains were not typical PB1 domains due to an additional α helix (α3) at the
C-terminus region [59–61].
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Figure 3. Evolution relationships between representative Aux/IAAs and ARFs. (A) Multiple sequence
alignment of representative Aux/IAAs and ARFs. Conservative domains III and IV are underlined.
The height of the bars indicates the number of identical residues at each position. The β-grasp
fold in domains III and IV is marked with “β1”, “β2”, “α1”, “β3”, “β4”, “α2”, “β5” and “α3”.
The part enclosed by the red line is the conservative motif site “GDDP” in ARFs and “GDVP” in
Aux/IAAs. The asterisk (*), colon (:), and dot (.) represent different conservative level from high and
low; (B) Putative model for generating Aux/IAAs from truncated ARFs. Some truncated putative
Aux/IAA genes were derived from truncated ARF genes, which only compose the Aux/IAA domain
(domains III and IV), but lack their typical domains I and II.

Interestingly, although the sequences conservation in domains III/IV of both ARF and Aux/IAA
proteins was noticeable, the difference of this region between two gene families was also observed.
The most noticeable difference between ARFs and IAA proteins in this domain was that almost all
Aux/IAA proteins had the “GDVP” motif linking β3 and α2, while this motif was “GDDP” in almost
all ARF proteins (Figure 3). One more acidic residue was present at this motif in ARF proteins than
Aux/IAA proteins, which would possibly influence protein to protein electrostatic interactions [15].
We also observed this sequences diversity in moss (P. patens), indicating that the Aux/IAA and ARF
gene families’ differentiation event appeared before the divergence of green algae and land plants.

A phylogenetic tree was built based on the full-length amino acid sequences of Aux/IAA and
ARF proteins. ARFs were highlighted with green; canonical Aux/IAAs were highlighted with blue;
and a novel group of N-terminal truncated Aux/IAAs was highlighted with orange (Figure 4).
The N-terminal truncated Aux/IAAs were closer to those of ARF proteins than to Aux/IAAs.
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Interestingly, those proteins contained the “GDDP” motif rather than the “GDVP” motif in accordance
with most Aux/IAA proteins. Several proteins belonging to this group were identified in some
plants, such as StIAA5 (PGSC0003DMP400032527) in S. tuberosum [41], Glyma.07G134900.1 and
Glyma.13G140500.1 in G. max [33], and MtIAA (Medtr4g060470) in M. truncatula [39]. Therefore, it was
speculated that these Aux/IAAs derived from truncated ARF genes that only have the Aux/IAA
domain, but lack their typical domains (I and II) (Figure 3). These Aux/IAA genes might not function
as repressors. The other types of truncated Aux/IAA genes might derive from sequence mutation
events during the process of Aux/IAA gene family expansion. Interestingly, some proteins from lower
plants that clustered into the “orange” clade contained relatively long disordered sequences in the
N-terminals (634 amino acids in Pp3c9_21330V3.1 from P. patens and 180 amino acids in 438333 from
S. moellendorffii). They were possibly byproducts of the origins of Aux/IAAs and ARFs, because these
sequences could not be found in higher plants.
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Figure 4. Phylogeny of Aux/IAAs and ARFs in Physcomitrella patens, Selaginella moellendorffii, and Picea
abies. The deduced full-length amino acid sequences of Aux/IAA genes and ARF genes were aligned
by ClustalX (2.1), and the neighbor-joining (NJ) tree was constructed by Mega7. The bootstrap values
with 1000 replicates are placed on the nodes. The Aux/IAA and ARF clusters are grouped into two
clades, but there exists a group of Aux/IAA genes highlighted with orange that clustered closer to the
ARF clade.
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2.5. Analysis of Aux/IAA Duplication Patterns during the Course of Evolution

The genome’s and the genetic system’s evolution is mainly driven by gene duplications [62].
Segmental duplication, tandem duplication, and transposition events are three basic gene expansion
patterns [63,64]. Among them, segmental duplication and tandem duplication are two main causes
of gene family expansion in the plant kingdom [65,66]. Tandem duplications were often caused
by unequal crossing-over and characterized as multiple paralogous genes existing in proximal
genomic regions [67,68]. In order to investigate the roles of gene duplications in the Aux/IAAs’
expansion, segmental duplication and tandem duplication events were investigated. First, the tandem
duplicated gene pairs were searched through their physical location on the chromosome and loci.
It was determined that paralogous genes existing in the same chromosome within a 50-kb physical
distance were tandem duplicated pairs [65]. Segmentally-duplicated pairs were searched in the Plant
Genome Duplication Database [66]. The genomes of P. patens and S. moellendorffii contained three
and nine Aux/IAA genes, respectively, and each of them had one segmentally-correlated gene pair.
P. abies was generally regarded as having undergone numerous duplications [69,70], but only one
tandem duplicated gene pair was founded among 31 Aux/IAA genes in this model gymnosperm
(Figure 5). It was found that 64.79% and 38.66% of Aux/IAA genes in eudicots and monocots were
segmentally correlated, respectively, while 28.09% and 12.61% of Aux/IAA genes were tandemly
correlated, respectively. In more detail, for example in A. thaliana, 22 (75.86%) out of a total of
29 Aux/IAA genes were segmentally correlated, six (20.69%) Aux/IAA genes were tandemly correlated,
and three genes (AT1G04240.1, AT3G23030.1, and AT4G14550.1) took part in both segmental and
tandem duplications. Among 31 Aux/IAA genes in monocot O. sativa, 19 (61.29%) and seven (22.58%)
Aux/IAA genes were from segmental and tandem duplication, respectively. Two Aux/IAA genes
(LOC_Os03g43400.1 and LOC_Os12g40890.1) were involved in both segmental and tandem duplications.
Interestingly, we found segmental duplicated pairs in lower plants (P. patens and S. moellendorffii),
which were encoded by canonical Aux/IAAs in these species (Figure 5). These results proved that the
earliest ancestors of land plants contained at least one Aux/IAA gene. In summary, we predicted that
both segmental and tandem duplications contributed significantly to Aux/IAA gene family expansion,
though segmental duplications played a greater role in such progress. Moreover, monocots and
eudicots may undergo different expansion types of the Aux/IAA gene family because they underwent
different segmental and tandem duplication patterns.

It was found that the expansion patterns observed in the Aux/IAA gene family coincided
with whole-genome duplication events (WGD) during evolution. Two WGD events that occurred
in progymnosperms might contribute to today’s Aux/IAA gene family size and diversity [33].
During angiosperm evolution, the fact that these Aux/IAA duplications specifically related to
definite single whole-genome duplication events was quite difficult for subsequent extensive genome
rearrangements. G. max contained the largest Aux/IAA gene family compared to other plant lineages.
It was assumed that WGDs might have contributed to the expansion of Aux/IAA genes in G. max, as its
genome had undergone one WGT (whole-genome triplication) and two WGD events (legume WGD
and Glycine WGD) [33]. During the course of evolution, plants should also constantly change their
genetic constitution to fit the changeable environment. Duplicated genes were believed to be the basis
on which plants generated new gene functions and evolutionary novelty [62]. Numerous studies
on single, double, even triple mutations suggested an extensive functional redundancy among the
Aux/IAA gene family members [44,47,71]. However, Aux/IAA proteins also had distinct functions
compared with their homologues [44,71,72]. Their different spatiotemporal expression patterns and
specific preference for a particular ARF partner could give us further insights to investigate the
functional specificity and similarity of Aux/IAA proteins.
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2.6. Estimation of the Molecular Evolutionary Rates of Aux/IAAs

Estimation of the molecular evolution rates of Aux/IAAs is an essential basis to understand
the evolution process of the Aux/IAA gene family in the plant kingdom. The Ka/Ks values were
calculated to estimate the molecular evolutionary rates of the paralogous gene pairs among Aux/IAAs.
It was found that most Aux/IAA pairs evolved at a Ka/Ks value lower than one, as expected for the
MA_10430843g0010/MA_10430843g0020 gene pair in P. abies and the Potri.006G161200/Potri.006G161400
gene pair in P. trichocarpa, implying that most of these Aux/IAA paralogous gene pairs had evolved
under purifying selection. The Ka/Ks values of MA_10430843g0010/MA_10430843g0020 gene pairs and
Potri.006G161200/Potri.006G161400 gene pairs were 1.6720 and 1.1686, respectively (Table 2), indicating
that these gene pairs experienced positive selection pressure in evolution. The Aux/IAA paralogous
gene pairs in dicots were slightly more conservative than those in monocots, as the average Ka/Ks
value in dicots’ Aux/IAA pairs was lower than those in monocots, both in segmental duplication
(0.2224 and 0.4027 in dicots and monocots, respectively) and tandem duplication (0.1903 and 0.1705
in dicots and monocots, respectively) (Figure 6). Aux/IAA genes might have undergone different
selective pressures and patterns between the two seed plant classes. The Ka/Ks values in segmentally
and tandemly correlated paralogous gene pairs were compared, and the average Ka/Ks value in
segmentally correlated paralogous gene pairs was 0.2362 and in tandemly correlated gene pairs
0.1484 (Figure 6). The Student t-test was performed, and the p-value was 0.0004165, indicating
that the average Ka/Ks value in segmentally correlated paralogous gene pairs was significantly
greater than tandemly correlated gene pairs. It was assumed that segmental duplication and tandem
duplication contributed to Aux/IAA gene family enlargement at different molecular evolutionary rates.
Genes or proteins evolve through the interplay between mutation and selection [50]. According to
the neutral theory of molecular evolution, synonymous substitution did not affect the encoding of
amino acids. Therefore, it was generally considered neutral and did not affect individual fitness.
Nonsynonymous substitution could cause changes in the amino acid composition that might alter the

http://chibba.pgml.uga.edu/duplication/index/files
http://chibba.pgml.uga.edu/duplication/index/files
http://www.tolweb.org/Green_plants
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protein structure and generate new functions. The selective pressure was estimated by calculating
the ratio of the nonsynonymous substitution rate to the synonymous substitution rate (Ka/Ks value).
During evolution, some genes reached their optimal state, which tended to abandon mutations that
alter the function by purifying selection. However, since plants cannot escape from their environment,
positive selection promoted functional changes to better adapt to their changing environment [50].
Therefore, the study of these selective patterns could gain more insight into understanding the genes’
and proteins’ evolutionary patterns. Only one pair of segmentally correlated Aux/IAA genes was found
in each of P. patens and S. moellendorffii with a Ka/Ks value lower than 0.5, indicating that Aux/IAA
genes duplicated under purifying selection. Two gene pairs (MA_10430843g0010/MA_10430843g0020
and Potri.006G161200/Potri.006G161400) were found to undergo positive selection after being separated
by duplication, which might improve the fitness of the organism in a new environment.

Table 2. Molecular evolutionary rate of selective duplicated Aux/IAA gene pairs in P. patens,
S. moellendorffii, P. abies, and A. trichopoda.

Species Paralogous Pairs Ka Ks Ka/Ks Duplication Types

Physcomitrella patens Phpat.008G051100/Phpat.024G023400 0.2242 1.0715 0.2092 Segmental duplication
Selaginella moellendorffii 15405070/15422644 0.0372 0.0869 0.4281 Segmental duplication
Picea abies MA_10430843g0010/MA_10430843g0020 4.3721 2.6149 1.6720 Tandem duplication
Amborella trichopoda AmTr_00002.512/AmTr_00002.514 0.3430 3.2896 0.1043 Tandem duplication
Amborella trichopoda AmTr_00061.52/AmTr_00061.54 0.2000 3.5848 0.0558 Tandem duplication
Amborella trichopoda AmTr_00061.52/AmTr_00061.55 0.3665 3.4483 0.1063 Tandem duplication
Amborella trichopoda AmTr_00061.52/AmTr_00061.57 0.0721 0.1040 0.6933 Tandem duplication
Amborella trichopoda AmTr_00061.54/AmTr_00061.55 0.3713 1.5216 0.2440 Tandem duplication
Amborella trichopoda AmTr_00061.54/AmTr_00061.57 0.0429 0.0697 0.6163 Tandem duplication
Amborella trichopoda AmTr_00061.55/AmTr_00061.57 0.3890 2.6067 0.1492 Tandem duplication
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localized to the nucleus [13,16,49]. Two types of putative NLSs were detected in the majority of the 
Aux/IAA proteins: the bipartite NLS and the SV40-like NLS. A bipartite NLS contained a 
conservative KR (lysine and arginine) basic doublet located between domains I and II (Part 1) and 
basic amino acids in domain II (Part 2). A basic residue-rich SV40-like NLS was located in domain IV 
(Figure S2). These putative NLSs might guide Aux/IAA proteins to the cell nucleus [17]. 

The first part (Part 1) of the bipartite NLS was relatively conservative in plants, depending on 
the research. However, in Pteridophyta (S. moellendorffii), the detection of this conservative KR basic 
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Figure 6. Molecular evolutionary rate of Aux/IAAs in the plant kingdom. (A) Rates of molecular
evolution in segmental duplication of dicot and monocot Aux/IAA genes; (B) Rates of molecular
evolution in tandem duplication of dicot and monocot Aux/IAA genes. Two gene pairs are excluded
from the plot and exist in the above table; (C) Rates of molecular evolution in segmental duplication
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2.7. Two Types of Putative NLSs Are Conservative in Aux/IAA Proteins

Aux/IAA proteins are cell nucleus-located transcriptional repressors. IAA-GFP (green fluorescent
protein) and IAA-YFP (yellow fluorescent protein) fusion proteins could be exclusively localized to the
nucleus [13,16,49]. Two types of putative NLSs were detected in the majority of the Aux/IAA proteins:
the bipartite NLS and the SV40-like NLS. A bipartite NLS contained a conservative KR (lysine and
arginine) basic doublet located between domains I and II (Part 1) and basic amino acids in domain
II (Part 2). A basic residue-rich SV40-like NLS was located in domain IV (Figure S2). These putative
NLSs might guide Aux/IAA proteins to the cell nucleus [17].
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The first part (Part 1) of the bipartite NLS was relatively conservative in plants, depending on
the research. However, in Pteridophyta (S. moellendorffii), the detection of this conservative KR basic
doublet failed. In the second bipartite NLS (Part 2), the stretches of K/R residues RxxRK represented
this region with substitution within lysine (K) and/or arginine (R). Distinctively, this region in lower
plants P. patens and S. moellendorffii was QxxRK (the first R in RxxRK was substituted by Q) and
KxxNK (the first R in RxxRK was substituted by K, and the second R in RxxRK was substituted by N),
respectively. These amino acid substitutions might alter the protein secondary structures, as well
as change their subcellularly-located patterns and functions compared with those in higher plants.
To reach a more solid conclusion, we also searched Aux/IAA protein sequences from another two
already fully-sequenced species of Bryophyta (Marchantia polymorpha and Sphagnum fallax), and their
NLS data are added to Figure 7. Finding the second bipartite NLS (Part 2) in M. polymorpha’s Aux/IAA
proteins also failed, while S. fallax’s second bipartite NLS (Part 2) was presented by RxxRK with
substitution within lysine (K) or/and arginine (R) in the last lysine (K) site. An SV40-like NLS was
composed of KxRxxRK in plants, with substitution within lysine (K) or/and arginine (R), especially
in the first lysine (K) site (Figure 7). Many Aux/IAA proteins had the full set of NLSs including
the bipartite NLS and SV40-like NLS, while some Aux/IAA proteins lacked part of the NLS or had
a degenerated NLS (lysine (K) or arginine (R) substituted by another amino acid). For example,
in S. tuberosum, StIAA14 lacked bipartite NLS Part 2, and StIAA6 had degenerated bipartite NLS
(Part 2) for the first arginine (R) mutated to cysteine (C). Fifty-two percent of Aux/IAA proteins had
bipartite NLS Part 1; 43.4% of proteins lacked this region; and the rest of the Aux/IAA proteins had
degenerated bipartite NLS Part 1. Meanwhile, 49.2% of Aux/IAA proteins contained the bipartite NLS
Part 2; 15.6% of Aux/IAA proteins lack this region; and the remaining Aux/IAA proteins contained
degenerated bipartite NLS Part 2 (Table 3).
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The content of conservative amino acids is expressed by the height of characters. The amino acids
under the symbol * are conservative NLS sites.

The SV40-like NLS was shown to be more conservative than the bipartite NLS, as 71.7% of
Aux/IAAs contained intact SV40-like NLS, and 20.9% of proteins had degenerated SV40-like NLS.
Recent research indicated that the Aux/IAA proteins contained degenerated NLS in both bipartite NLS
and SV40-like NLS, which were specifically targeted to the nucleus [73]. The absence and mutation
of the bipartite NLS (Part2) region caused Aux/IAA proteins to be detected not only in the nucleus,
but also in cytoplasm [13,73]. It was assumed that both the bipartite NLS and SV40-like NLS were
responsible for driving the protein specifically to the nucleus, but more evidence is still needed to
prove the function of these NLSs.
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Table 3. The amino acid compositions of Aux/IAA NLSs in plants.

Species

Bipartite NLS
SV40-Type NLS

Part 1 Part 2

KR De a Lack b RxxRK De a Lack b KRxRxxK De a Lack b

Ricinus communis 13 0 8 12 8 1 17 4 0
Populus trichocarpa 22 0 14 22 10 4 29 6 1

Glycine max 41 1 21 39 16 8 51 8 4
Prunus persica 13 3 8 14 7 3 20 4 0

Gossypium raimondii 24 1 18 23 17 4 35 7 2
Arabidopsis thaliana 16 1 12 12 12 5 21 8 0

Utricularia gibba 15 0 10 13 12 0 19 3 3
Solanum tuberosum 16 0 9 15 6 4 19 4 2

Brachypodium distachyon 12 0 15 14 11 2 20 6 1
Oryza sativa 15 1 15 16 11 4 22 8 1

Zea mays 19 0 15 15 17 2 24 7 3
Phalaenopsis equestris 5 3 8 6 6 4 11 1 4
Amborella trichopoda 4 1 11 5 3 8 8 5 3

Picea abies 9 6 16 8 9 14 10 15 6
Selaginella moellendorffii 0 0 8 0 4 4 4 4 0

Physcomitrella patens 2 0 1 0 2 1 2 1 0
a De: degenerated NLS caused by a non-synonymous mutation; b Lack: the typical NLS in the corresponding
Aux/IAA protein sequence failed to be detected. “x” means the amino acid is not conservative in the given site.

3. Materials and Methods

3.1. Bioinformatics Identification of Aux/IAAs

In order to identify candidate Aux/IAA genes in 17 species (Chlamydomonas reinhardtii,
Physcomitrella patens, Selaginella moellendorffii, Picea abies, Amborella trichopoda, Phalaenopsis equestris,
Zea mays, Oryza sativa, Brachypodium distachyon, Solanum tuberosum, Utricularia gibba, Arabidopsis thaliana,
Gossypium raimondii, Prunus persica, Glycine max, Populus trichocarpa, Ricinus communis), multiple
searches were conducted. First, the complete proteomes of most species were downloaded from
the Phytozome website (Version 11; Available online: www.phytozome.org) [74] and the others
were obtained from genome sequencing databases of given species, i.e., Picea abies was obtained
from PlantGenIE (plantgenie.org) [75], Phalaenopsis equestris from Orchidbase (ftp://ftp.genomics.org.
cn/) [76], and Utricularia gibba from CoGe (http://genomevolution.org/CoGe/) [77]. Then, A. thaliana
and O. sativa Aux/IAA protein sequences were used as queries to perform local BLAST searches with
a −3 expect (E) threshold. Second, the conserved domains of all obtained sequences were examined
by the NCBI conserved domain database (Available online: http://www.ncbi.nlm.nih.gov/cdd).
The presence of the AUX_IAA domain was used to confirm the identity of Aux/IAA genes (Table S1).
ARF genes that also contained the AUX_IAA domain were removed by referring to the presence of the
ARF family-specific AUX_RESP domain.

3.2. Motif Prediction and Multiple Sequence Alignment

The MEME web server (Available online: http://memesuite.org/) was used to identify motifs
under the following parameters: (1) each motif site distributes zero or one occurrence per sequence;
(2) optimum motif widths are between six and 50; (3) the maximum number of motifs is five. To identify
the finer domains and motifs, the Aux/IAA protein sequences were aligned by using ClustalX (2.1) with
the following parameters: protein weight matrix, Gonnet 250; gap penalty at opening, 10; gap penalty
at extension, 0.1.

3.3. Phylogenetic Analyses

Aln files generated by ClustalX (2.1) were converted into MEGA format by using MEGA 7.
The neighbor-joining (NJ) tree was built under the p-distance model and G + I distribution. Bootstrap

www.phytozome.org
plantgenie.org
ftp://ftp.genomics.org.cn/
ftp://ftp.genomics.org.cn/
http://genomevolution.org/CoGe/
http://www.ncbi.nlm.nih.gov/cdd
http://memesuite.org/
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analyses with 1000 replicates were performed for support estimation. Maximum likelihood (ML) trees
built under the Jones-Taylor-Thornton (JTT), WAG, and Poisson models were also conducted to prove
these results.

3.4. Gene Duplication and Molecular Evolution Analysis

We used the annotation information of the Aux/IAA genes on the Plant Genome Duplication
Database to determine their chromosomal locations (Available online: https://phytozome.jgi.doe.
gov/pz/portal.html). Tandem duplication gene pairs were identified by comparing their physical
locations on chromosomes and their homology (more than 50%). We defined that paralogous genes
that exist in the same chromosome within a 50-kb physical distance were tandem duplicated pairs [64].
The segmental duplication regions of the different chromosomes were downloaded from the Plant
Genome Duplication Database. In order to obtain the molecular evolutionary rates between these
Aux/IAA paralogous gene pairs, we performed pairwise alignment among these gene pairs by using
an embedded program ClustalW (codons) in MEGA7 [78]. Then, we used KaKs_Calculator 2.0 to
calculate the ratio of the nonsynonymous substitution rate (Ka), the synonymous substitution rate (Ks),
and theω (Ka/Ks) value between paralogous gene pairs with the MYN (Modified YN) model [79].

4. Conclusions

The Aux/IAA proteins constitute a large multi-gene family in various plant species that regulate
auxin perception and signaling. A comprehensive analysis of the Aux/IAA proteins in 17 plant species
is carried out in the current study. In total 434 Aux/IAA proteins are identified and separated into
eleven types according to their motif compositions. The canonical Aux/IAA proteins which have all
five motifs can be divided into five clades based on phylogenetic analysis. Our work supports the
hypothesis that the Aux/IAA gene family did not exist before the emergence of land plants. And we
also find a novel group of truncated Aux/IAA proteins might derive from the C-terminal truncation
of ARF proteins. Tandem and segmental duplications contribute to the expansion of the Aux/IAA
gene family mainly under purifying selection. In addition, the putative nuclear localization signals
(NLSs) in the Aux/IAA proteins are conservative except sequence variation in several lower plants.
Typically, two kinds of new primordial bipartite NLSs in P. patens and S. moellendorffii are discovered.
Future work will focus on whether the Aux/IAA proteins from the lower plants target into the nucleus
and the emergence time of auxin perception and signaling triggered by the Aux/IAA proteins in the
course of plant evolution.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/10/2107/s1.
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