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Abstract: Reductive stress (RS) is the counterpart oxidative stress (OS), and can occur in response
to conditions that shift the redox balance of important biological redox couples, such as the
NAD+/NADH, NADP+/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of
antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative
species, driving the cells to RS. A feedback regulation is established in which chronic RS induces
OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling
pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in
proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the
development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates.
Here, we described the diseases in which an inflammatory condition is associated to RS, and where
delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these
diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy,
pulmonary hypertension, rheumatoid arthritis, Alzheimer’s disease, and metabolic syndrome, among
others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or
flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute
to RS, even diminishing life expectancy.
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1. Introduction

Redox equilibrium is essential for cellular homeostasis. It moderates reactive oxidative species
(ROS) production, leading to their effects as second messengers. However, ROS overproduction
and/or depletion of the enzymatic and non-enzymatic antioxidant systems may lead to oxidative
stress (OS) and its consequences. On another hand, the excess of reducing equivalents that result
from an elevation in the GSH/GSSG and/or NAD/NADH+ ratio or overexpression of antioxidant
enzymatic systems can deplete all ROS driving the cells to RS (Figure 1). Reductive stress (RS) is
defined as an abnormal increase of reducing equivalents in the presence of intact systems for oxidation
and reduction [1]. Excess reducing equivalents diminish cell growth responses, induce alterations
in the formation of disulfide bonds in proteins, reduce mitochondrial function and decrease cellular
metabolism. It might contribute to the development of some diseases that are closely associated to
inflammatory conditions, such as aggregation protein cardiomyopathy, hypertrophic cardiomyopathy,
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muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, cancer, Alzheimer’s disease, and
metabolic syndrome, among others. In this review, we cover the knowledge on RS, in which there are
still many questions to be answered; RS participation in different diseases, which involve inflammatory
conditions; and the adverse effects of antioxidant agents, and their impact on living beings.
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Figure 1. The redox equilibrium is essential for cellular homeostasis; moderate reactive oxygen species
(ROS) production leads to their effects as second messengers. However, ROS overproduction and/or
depletion or the antioxidant enzymatic and non-enzymatic systems may lead to oxidative stress.
Excess reducing equivalents such as glutathione reduced (GSH)/glutathione oxidized (GSSG) ratio
and nicotinamide adenine dinucleotide reduced (NADPH) can depleted all ROS driving to reductive
stress by overexpression of antioxidant enzymatic system. Moreover, chronic reductive stress may
induce an oxidative stress and stimulated reductive stress by a feedback regulation. Nevertheless, this
process it is not yet clearly understood. Adapted from Lubos et al., 2011 [2] and Brewer et al., 2011 [3].

2. Reactive Oxidative Species and Antioxidant Systems

When a balance between ROS production and the enzymatic and non-enzymatic antioxidant
systems is present, the organism is found in redox equilibrium, which is essential for many biological
processes. However, when there is an increase in ROS or reduced activity of one or two antioxidant
systems, the result is OS [1,4]. The redox equilibrium is necessary for cellular homeostasis and a
moderate ROS production leads to the effects caused by second messengers of oxygen species, such
as nitric oxide (NO), nitrogen monoxide (•NO), and hydrogen peroxide (H2O2) [4]. NO and •NO
act as messenger molecules that contribute to vasodilation, proliferation, and promote or counteract
programmed and spontaneous cell apoptosis and necrosis [5]. H2O2 modulates the transduction
of signals by reversible oxidation of proteins at cysteine, which has redox activity. It also oxidizes
thiols in tyrosine kinase phosphatases [6]. Two-electron enzymatic reductions of molecular oxygen
by oxidases, such as xanthine oxidase, can also produce superoxide (O2

−) [7]. The dismutation of
O2
− by superoxide dismutase (SOD) induces the formation of H2O2. This reaction may also happen

spontaneously. In mammalian cells, H2O2 may activate at least 40 gene products [8,9]. Likewise, a
reduced level of H2O2 may promote apoptosis. In cell systems, when the antioxidant enzyme catalase
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(CAT) is overexpressed in the cytoplasmic or mitochondrial compartments, there is potentiated
apoptosis [10]. In contrast, inhibition of endogenous CAT promotes cell survival [11]. Additional
studies have tied the CAT-induced decrease in H2O2 with diminished activation of NF-κB survival
pathways. These pathways are necessary to counteract apoptotic signaling [12,13]. In contrast, when
few ROS are produced or the antioxidant systems are upregulated, RS and its consequences appear
(Figure 1).

3. Reductive Stress

RS is a condition where a relative shortage of ROS, compared with reducing equivalents in
the form of redox couples NAD/NADH+, NADPH/NADP+, and GSH/GSSG, is present [14,15].
RS has a deleterious effect in lower eukaryotes and in cells from many species, including mammalian
organisms [16]. NADH is an electron carrier whose excess may lead to pathogenic mitochondrial
oxidation and breakdown of in vivo and in vitro mitochondrial homeostasis, and to misfolding of
proteins in the endoplasmic reticulum (ER) [17]. In addition, chronic RS can induce OS, which
stimulates again RS by a feedback regulation. For example, during RS, when electron acceptors
are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, thus
increasing ROS production [18]. However, a high level of reducing equivalents also enhances ROS
scavenging systems, involving redox couples such as the NAD/NADH+, NADPH/NADP+, and
glutathione reduce (GSH)/glutathione oxidized (GSSG) ratio [18,19], resulting in a net H2O2 spillover
from mitochondria that favors RS [19].

On the other hand, the term mitochondrial homeostasis refers to how low doses of mitochondrial
ROS produced by the respiratory electron transport chain (RETC) can activate the biogenesis and the
antioxidant capacity, in order to counteract OS and to re-establish homeostasis [1]. Besides, energy
production requires intracellular redox homeostasis that is coordinated and regulated by a mechanism
linked to networks of key signal transduction and mitochondrial oxidative phosphorylation. Each of
the individual organelles has a different redox requirement, mainly of GSH/GSSG ratio [17].

Mitochondrial ROS and their depletion by RS play an essential and necessary role in the correct
folding of proteins and in the formation of disulfide bonds, which determine the normal structure and
function of many proteins [19]. When the mitochondrial oxidant production is inhibited, there is an
important decrease in the levels of cellular disulfide bonds in many cells [20]. RS leads to the loss of
disulfide bond formation and induces the unfolded protein response of the ER endoplasmic reticulum
(UPRER). The recuperation of the correct folding of proteins is necessary to regain proteostasis in this
compartment [21]. It has been reported that H2O2 accumulation during RS attenuated the UPRER

amplitude by altering translation, without any discernible effect on transcription in Saccharomyces
cerevisiae [22]. In yeast with RS, some proteins showed delayed folding, disordered transport and
failed oxidation, and were finally aggregated [15].

4. Participation of Different Molecules in Reductive Stress

Mechanisms for the generation of RS and participation of diverse agents, such as the reducing
equivalents, antioxidants enzymes, and pathologies, are summarized in Figure 2.
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Figure 2. Participation of several agents such as the reducing equivalents, antioxidant enzymes
and pathologies in reductive stress. Abbreviations: G6PD = glucose 6 phosphate dehydrogenase,
NAD = nicotinamide adenine dinucleotide, NAD+ = nicotinamide adenine dinucleotide oxidized,
NADH = nicotinamide adenine dinucleotide reduced, NADPH = nicotinamide adenine dinucleotide
phosphate reduced, GSH = glutathione, GSSG = glutathione disulfide, PPP = pentose phosphate
pathway, γ-glutamyl-cysteine synthase, GSHS = glutathione synthetase, GPx = Glutathione peroxidase,
Trx = thioredoxin, Grd = glutaredoxin, TNFα = tumor necrosis factor alpha, NrF2 = erythroid related
factor 2, IL6 = interleukin 6, ROS = reactive oxidative species, OS = oxidative stress, ER = endoplasmic
reticulum, Se = selenium, Hsp = heat shock protein, GR = glutathione reductase.

4.1. Nicotinamide Adenine Dinucleotide oxidized/Nicotinamide Adenine Dinucleotide Reduced Ratio

The coenzyme nicotinamide adenine dinucleotide (NAD) is a ubiquitous biological redox cofactor
that is formed by two nucleotides that are linked by their phosphate groups. One nucleotide contains
an adenine base, and the other nicotinamide. It is present in two forms, an oxidized NAD+, and reduced
form NADH. NAD+ is a singly charged anion (charge of−1), while NADH is a doubly charged anion [23].

The ratio between the oxidized and reduced forms participates in redox reactions, carrying
electrons from one reaction to another. NADH can be used as a reducing agent to donate electrons [4].
Although the main function of this ratio is the electron transfer reactions, it is also used in other
cellular processes, such as being a substrate of enzymes that add or remove chemical groups from
proteins, and in posttranslational modifications. The ratio participates in many functions, such as
energy metabolism, mitochondrial functions, calcium homeostasis, antioxidation/generation of OS,
gene expression, immunological functions, aging, and cell death. NADH acts as an antioxidant and its
excess can induce RS [23].

NAD+ can be synthesized from simple building blocks, from tryptophan or aspartic acid, or it
can be taken up from the vitamin niacin. NAD+ can also be transformed into nicotinamide adenine
dinucleotide phosphate (NADP), whose chemistry is similar to that of NAD, but has different roles in
metabolism [23].

Furthermore, overproduction of NADH or lack of NAD+ can induce the accumulation of
NADH [24]. Overproduction of NADH induces an electron pressure upon mitochondrial complex
I, which responds within its capacity, to oxidize more NADH to NAD+. This leads to an increase in
electron leakage that decreases oxygen to yield O2

−. These free radicals, in turn, enhance OS. Due to a
high level of reducing equivalents, such as NADH, an oxidative condition appears [25], and it achieves
the transition to RS by the polyol pathway. This pathway converts NADPH to NADH, leading to
a redox imbalance between NADH and NAD+ [26]. This condition could be linked to metabolic
syndrome (MS) and diabetes.

Nicotinamide adenine dinucleotide phosphate (NADP+) differs from NAD+ in the presence of an
additional phosphate group on the ribose ring. NADPH is the reduced form of NADP+. The NADP+ is
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a cofactor used in the synthesis of lipids and nucleic acids and other anabolic reactions, which require
NADPH as a reducing agent. An important ROS producing system is the NADPH oxidase family
(NOX) in cardiac myocytes and many other cell types, including neurons [27]. This system can be
activated by RS. When the dominant negative NOX4 expression is elevated in mice, it abolishes the
NOX function, producing an importantly reducing state (high GSH/GSSG, low NADP+/NADPH),
and it directly activates nuclear erythroid-related factor 2 (Nrf2) [28].

4.2. Reduced Glutathione/Disulfide Glutathione Ratio

GSH is a tripeptide formed by glutamate, cysteine, and glycine, having a low molecular weight
that has been widely used as an indicator of the cellular redox state, and has been implicated in
several pathologies. It is synthetized by γ-glutamyl-cysteine synthetase (GCL), GSH synthetase, and
regenerated by glutathione reductase (GR) [11]. GSH is the endogenous intracellular antioxidant found
in a higher concentration within cells that acts against ROS and electrophiles, and is one of the main
mechanisms for the antioxidant defense. Approximately 15% is bound to proteins, and the rest of it is
found in a free form [29]. GSH inactivates O2

− and OH− radicals, and transforms vitamins E and C
into their active forms [30].

Reduced plasma and cellular levels of GSH signify the presence of OS [31]. When ROS are
present, GSH is oxidized to GSSG [32]. GSSG can also accumulate inside the cell and react with the
sulfhydryl groups of proteins to produce GSH-disulfide proteins, which have longer half-lives, and
as a consequence, reduce the amount of poorly folded protein [13]. The enzymes involved in the
biosynthesis and generation of GSH, including GCL, GSH synthase, GR, and glucose-6-phosphate
dehydrogenase (G6PD), are derived from antioxidant genes regulated by NrF2 [33]. GCL catalyzes the
rate-limiting step in GSH synthesis by regulating the formation of γ-glutamyl-cysteine from glutamine
and cysteine. Increases in its expression, lead to higher GSH concentrations that could be used to
stop ROS in OS conditions. When the cell is unable to maintain the GSH intracellular concentration,
irreversible cell damage happens, thus playing a central role in the antioxidant defenses [34]. GSH is a
molecule that consumes reducing equivalents and has been implicated in several pathologies.

GSH excess could decrease the basal ROS and contribute to RS [34,35]. In the cytosol, the
GSH/GSSG ratio ranges from 30:1 to 100:1, with a redox potential of −290 mV. In the ER, the
GSH/GSSG ratio ranges between 1:1 to 3:1, having a redox potential (a tendency to acquire electrons)
that ranges from −170 to −185 mV [32], and in the mitochondria, the range of the GSH/GSSG ratio
falls within 20:1 to 40:1, with a redox potential of 1250 to −280 mV [35].

The availability of GSH for mitochondrial peroxidases is elevated by its mitochondrial import
via the 2-oxoglutarate and dicarboxylate carriers, thereby affecting H2O2 levels. Furthermore, GSH
biosynthesis increases the mitochondrial pool, modifying the RETC that elevates O2

− production.
Increased MnSOD enhances H2O2 generation [17].

4.3. Glutathione Peroxidase 1 Isoform

The glutathione peroxidase (GPx) isoform family consists of homologous enzymes that contain
a selenium-cysteine. One of the most plentiful members of the GPxs family is GPx1. It is the main
antioxidant enzyme preventing the accumulation of damaging intracellular H2O2. It uses GSH as
a source of reducing equivalents [36]. The human GPx1 gene is localized in human chromosome
3p21 [37]. It is more effective than CAT in removing intracellular peroxides under many physiological
conditions, and can reduce lipid hydrogen peroxides, and decrease lipid peroxidation (LPO) [38].
GPx1 may also act as a peroxynitrite reductase to modulate in vivo ONOO− flux, since the studies
suggest that lack of GPx1 enhances survival to ONOO− [39]. However, GPx1 overexpression can occur
because of substrate surplus [2].

Furthermore, ROS are required for keeping the formation of disulfide formation in the cells,
and GPx1 overexpression can reduce formation of protein disulfide, a mechanism that depends on
the oxidant generation of mitochondria, and mitochondrial uncoupling [40]. Excess GPx1 leads
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to a decrease of protein disulfides that is related to reduced signaling from growth factors and a
decreased mitochondrial function, characterized by a lower mitochondrial potential and a reduced
ATP generation [40].

4.4. Thiols

Low molecular weight thiols play an important role in redox-mediated processes in the cell.
Thiol groups react with electrophiles and oxidants, and have high affinities for metals, rendering
them adaptable to many biological roles. There is a delicate balance between the productive and the
pathogenic reactions occurring among thiol groups [41]. Thiol oxidation and reduction in biological
systems leads to the formation of various reversible and irreversible products that can be recovered
through the action of cellular reductants, like GSH and thioredoxin (Trx). Among the products of Cys
oxidation, sulfenic acids, S-nitrosothiols, and disulfides are of particular interest, given their roles
in redox cycling and/or regulation of enzymes and transcription factors involved in cell signaling
processes [41]. Indeed, Trx exerts immunomodulatory properties and pro-inflammatory effects by
regulating NF-κB [42]. The Trx/peroxy-redoxin/methionine sulfoxide reductase pathway and the
GSH/GPx/glutathione-S-transferase (GST)/glutaredoxin (Grd) are the primary redox regulatory
systems for the control of the cellular redox environment. These systems contain the small heat-stable
oxido reductases Trx, and Grd, which contain thiol groups in their active sites, formed by two cysteine
residues [43]. They act as hydrogen donors for ribonucleotide reductase, and are necessary for many
metabolic enzymes that have a disulfide bond in their catalytic site. Their roles include regulation
of protein folding, decrease of dehydroascorbate, and the reparation of proteins altered by oxidative
processes and sulfur metabolism [44].

The forms of Trx having an oxidized disulfide are reduced by NADPH and Trx reductase, while the
forms of Grd are reduced by GSH, employing NADPH-donated electrons [44]. In the ER, the oxidative
range of protein folding is 1:1 to 3:1, with respect to the ratio GSH/GSSG. Therefore, disulfide formation
is dependent on the compartmentalization of oxidative chemistry. This prevents the exposition of the
cell to non-specific oxidation events, in which the GSH/Grd and Trx systems are needed for redox
homeostasis. The loss of Trx or Trx reductase leads to an imbalance in the GSH/GSSG ratio, and thus,
the redox state that increases sensitivity to RS [15].

Trx maintains redox homeostasis in response to both oxidative and RS conditions, particularly,
it is required for protection against RS through the exposition to dithiothreitol (DTT) in the yeast
Saccharomyces cerevisiae. DTT is a small dithiol compound designed and employed as a potent reducing
agent that can be tolerated by cells. Its reducing potential is responsible for its ability to autoxidize,
and generates O2

− in oxygenated solutions [45]. In the yeast model, RS seems to be a consequence of
elevated GSH levels, and results in a constitutively high proportion of unfolded proteins in the ER [15].
Increased concentrations of the GSH/GSSG ratio can also be produced by deletion of Trx reductase in
yeast. This ratio reversibly regulates the Trx function through glutathionylation [17], which is defined
as post-translational modification of a protein through a disulfide bond by reaction with GSH [46].

In addition, high levels of GSSG in the ER provide an oxidizing redox potential that drives protein
disulfide formation, increases thiols that are toxic to eukaryotic cells, pushes the thiol redox potential
of the ER to the reducing direction, and disrupts protein disulfide formation and protein folding [47].
In a similar manner, GPx, GR, and peroxy-redoxin/Trx/TrxR2 systems, can leak electrons to O2

−, and
generate a significant amount of ROS spillover when the supply of their natural electron acceptors is
limited or electron transport to acceptors is inhibited, leading to RS. This provides new insights into
how RS is generated by ROS production [18].

Moreover, persulfide species, such as cysteine persulfide (CysSSH), play important roles in the
regulation of redox cell signaling, as part of the antioxidant response [48]. Indeed, these species can
interact with GSH to form glutathione persulfide (GSSH) and/or transfer the sulfur group to Cys
residues of different proteins, to produce its polysulfidation that can regulate the protein activity [49].
However, the physiological role of persulfide species remains poorly studied.
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4.5. Iron

Iron is an essential cofactor for important biological activities and biochemical reactions, and iron
metabolism constitutes redox-based machinery that is essential to metabolic requirements. Iron plays
a critical role in the generation of O2

− through the Haber-Weiss-Fenton reactions. Under conditions
of increased OS, this machinery becomes a potential threat, exacerbating the pro-oxidant condition.
A decrease in intracellular iron content diminishes ROS generation, and may lead to RS by feedback
regulation [50]. Low intracellular free iron downregulates ferritin, the protein that stores iron and
releases it in a controlled fashion, and upregulates transferrin receptor 1 (TFR1) that is a carrier protein
for transferrin needed for the import of iron into the cell [50]. Increased NADPH levels may also favor
the Fe(II) state, aiding in the incorporation of iron into ferritin.

4.6. Selenium

Selenium (Se), an essential nutritional trace element, is considered a non-antioxidant system, and
it is exclusively obtained from the diet, and is considered a metalloid of interest from the perspective
of toxicologists and nutritionists [51]. Several biological functions in the human body depend on
the balance of Se levels, and decreased or elevated levels can cause damaging effects. Se is very
important for different Se-proteins; 25 Se-proteins are present in humans and 24 homologues have been
found in rodents [52]. They participate in different physiological processes, such as chemoprevention,
neurobiology, aging, immunity, anti-inflammatory activity, muscle metabolism, reproduction, and
redox reactions [52]. Se is present in foods and dietary supplements in different chemical forms, such
as Se-methionine, Se-cysteine, selenite, sodium selenite, and selenious acid [53]. The synthesis of
Se proteins such as GPx isoforms is affected by levels of Se supplementation; however, exceeding
and inadequate Se intake can produce damaging health effects and contribute to RS by upregulated
Se-protein W (SelW) mRNA expression [54]. This enzyme belongs to a subfamily of Se-dependent
proteins that includes SelV, SelT, and SelH forms, mixed disulfites with substrate proteins that bind to
DNA in a redox-sensitive manner. SelT participates in mobilization of Ca2+ and metabolism of glucose,
while SelM and Sel15 function as oxide-reductases in the ER lumen [52]. These Se-enzymes increase
antioxidant capacity, and alter the inflammatory signaling pathways that modulate ROS by inhibiting
the NF-κB cascade. However, NF-κB can increase the expression of antioxidant enzymes, leading to a
diminished synthesis and release of interleukins and tumor necrosis factor alpha (TNF-α) [55].

Moreover, NF-κB and AP-1 can regulate the promoters of some antioxidant enzymes, besides
regulating the expression of the enzymes involved in GSH synthesis. However, the most important
factor in the antioxidant response is NrF2 [56].

4.7. Nuclear Erythroid-Related Factor 2

Redox-sensitive NrF2 is a leucine zipper protein that contributes to RS and acts as an important
transcriptional regulator of several hundred cytoprotective and antioxidant genes [57]. When OS is
present, NrF2 is separated from Keap-1, moves into the nucleus, and activates antioxidant enzyme
gene expression. In conditions of RS, an alternative mechanism for Nrf2 target gene activation has
been described; in this situation, high levels of reducing agents can lead to RS and elevated levels
of the autophagy adaptor p62/SQSTM1, which is also linked to Keap-1, reducing NrF2 cytoplasmic
sequestration, and allowing for NrF2 nuclear translocation and target gene activation This mechanism
relies on the competition between Nrf2 and p62/SQSTM1, an autophagy cargo acceptor, for the binding
of Keap-1 (its negative regulator), then, it is ubiquinated and degraded by the proteasome [3,58].
Additionally, when OS is present, activation of NrF2, after being dissociated and released from Keap1,
results in its transfer to the nucleus, where it combines to cis-acting AREs or electrophile response
elements, and leads to the transcription of several antioxidant and cytoprotective genes, such as GST,
heme oxygenase-1, Trx, NQO1, and GLC [59].
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5. Reductive Stress in Inflammation Related Diseases

Mechanisms of RS generation involved on the development of inflammation-associated diseases
are summarized in Table 1.

Table 1. Inflammation-associated diseases linked to reductive stress.

Disease Source of RS References

Cardiomyopathy
↑ GSH/GSSG ratio

Rajasekaran et al., 2007 [60]; Bauersachs et al., 2010 [61];
Brewer et al., 2013 [59]; Baek et al., 2000 [62];
Rajasekaran et al., 2011 [63]

↓ Free iron content Zhang et al., 2010 [64]

Pulmonary hypertension ↑ NADPH/NADP+ ratio Oldham et al., 2015 [65]

Stent stenosis ↑ GSH/GSSG ratio
↑ NADPH/NADP+ ratio de Haan., 2014 [66]

Muscular dystrophy ↑ GSH/GSSG ratio Rajasekaran et al., 2007 [60]; Dialynas et al., 2015 [58]

Neurological disorders
↑ Selenium levels Tsunoda et al., 2000 [67]; Ayaz et al., 2008 [68]

↑ GPx activity Ince et al., 1994 [69]

Parkinson’s disease ↑ NADH/NAD+ ratio Greenamyre et al., 2010 [70]

Alzheimer’s disease ↑ G6PD and GSH Lloret et al., 2016 [71]; Russell et al., 1999 [72]

Metabolic syndrome and
insulin resistance

↑ GPx1 expression
↑ NADPH/NADP+ ratio McClung et al., 2004 [73]

Rheumatoid arthritis ↑ NADPH/NADP+ ratio Yang et al., 2016 [74]

Renal diseases
↑ GSH/GSSG ratio Li et al., 1993 [75]

↑ Thiols Welch et al., 1992 [76]

Cancer ↑ NADH/NAD+ ratio Oldham et al., 2015 [66]

(↓): reduction; (↑): increase. Abbreviations: RS: reductive stress; GSH: glutathione; GSSG: glutathione
disulfide; G6PD: glucose-6-phosphate dehydrogenase; NADH: Nicotinamide adenine dinucleotide reduced; NAD+:
Nicotinamide adenine dinucleotide oxidized; NADPH: Nicotinamide adenine dinucleotide phosphate reduced;
NADP+: Nicotinamide adenine dinucleotide phosphate oxidized; GPx: gluthathione peroxidase 1.

5.1. Reductive Stress and Cardiac Health

The pathophysiology of heart diseases is complex and multifactorial, and several molecular
pathways are involved. These molecular pathways may be interconnected, and some of them have
been related to the increase GSH/GSSG ratio, i.e., the presence of RS. One of the pathways is the
activation of inflammatory signaling pathways. Pro-inflammatory cytokines exert strong direct effects
on cardiomyocytes, inducing apoptosis, depression of contractility, and down-regulation of sarcomeric
proteins [77]. Another molecular pathway is the deficient expression of chaperones, protein quality
control pathways and heat shock proteins (Hsp). Small Hsp are ubiquitously present in cells, protecting
them from stress through their chaperone, anti-apoptotic, and anti-inflammatory activities in a variety
of tissues, including the heart, brain, and immune system [78].

Rajasekaran first reported the presence of RS in mice expressing the human mutant αB-crystallin
protein. Dominant mutations in genes that encode for chaperones, such as CryAB and Bag3, determine
many inherited human disorders, including protein aggregation cardiomyopathy, skeletal muscle
myopathy, and cataracts [60,79]. Mutations in the small molecular weight Hsp αB-crystallin (CryAB) or
in desmin (an intermediate filament cytoskeletal protein that maintains muscle integrity and tolerance
to stress) cause protein aggregation, skeletal myopathies, and cardiomyopathies, in which there is
misfolding of proteins and the presence of large cytoplasmic aggregates.

A cardiomyopathy included in multisystem protein aggregation diseases is caused by an
autosomal dominant mutation in the humanαB-crystallin gene, inducing a R120G amino acid exchange.
Despite the fact that the pathogenesis of the cardiomyopathy found in this mutant, hR120G CryAB, is
poorly understood, the development of cardiac hypertrophy and heart failure from human hR120G
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CryAB, causes deregulation of GSH homeostasis that leads to RS in transgenic mice. However,
transgenic mice overexpressing cardiac-specific hR120G CryAB recapitulate the cardiomyopathy
characteristics present in humans, and these mice are under RS. The hearts with myopathy show an
increased recycling of GSSG to GSH, which is due to the augmented expression and enzymatic activities
of G6PD, GR, and GPx. In a mouse model of cardiomyopathy, there was enhanced activity of G6PD
with increased production of NADPH and higher levels of GSH, resulting in protein aggregation [60,80].
Therefore, G6PD activity could be a target for the treatment of R120G CryAB cardiomyopathy and
heart failure in humans [59].

In addition, the human mutant αB-crystallin protein further induced expression of Hsp, in
particular, Hsp25, which participates in RS through increased levels of expression of cardiac NADPH,
GSH, G6PD, CAT, and GPx1 isoform [61,62].

Overexpression of Hsp27 can induce RS and cardiomyopathy, in part by the up regulation of
GPx1 expression [64]. In L929 cells, the overexpression of Hsp27 decreased the intracellular iron
and carbonyl protein content [81,82]. In CCL39 cells, Hsp27 overexpression caused a decreased iron
level [82]. Hsp27 may downregulate TFR1 mediated iron uptake via stabilization of the cortical actin
cytoskeleton in CCL39 cells [82]. Hsp27 overexpression may lead to iron deficiency in myopathy
hearts, but not in lungs and livers, with up regulation of GPx1 that decreases H2O2 concentration
and leads to RS [64]. In another study with cardiac overexpression of Hsp27, there was RS with
elevated GSH, GSH/GSSG ratio, GPx1, and decreased ROS levels, resulting in cardiac hypertrophy
and dysfunction in a similar way to that of Hsp25 [64]. NrF2 activation is controversial, although
there is evidence that NrF2 may improve cardiac pathology [83], however, it has also been associated
with a variety of cardiac pathologies [84]. Its participation occurs in two stages: initially due to ROS
generation, and later, due to Keap1 dysfunction through its sequestration into the mutant protein
aggregates [85]. This results in sustained activation and nuclear translocation of NrF2, and leads to
ceaseless transcriptional upregulation of antioxidant enzymes contributing to RS [63]. Under this
condition, the reductive capacity of the cell, and/or the concentration of reducing equivalents with
increased of GSH levels and NADPH, exceeds ROS production (feedback mechanism) [59].

However, NrF2 deficiency reduces aggregation of mutant proteins. This suggests that oxidative
modification of intracellular proteins is an event needed for adequate ubiquitination and protein
degradation, which decreases cardiomyopathy in RS [86]. NrF2 deficiency is associated with
significant GSH depletion in vivo and in vitro, which in turn will prevent RS in the transgenic mice
myocardium [87].

Furthermore, several studies have described the presence of chronic Se deficiency in patients
suffering from a rapidly progressive cardiomyopathy or extensive fibrosis [88]. A high Se-status
could have adverse cardio-metabolic effects of on cardiovascular diseases (CVD) [89]. Higher plasma
Se levels were associated with increased total lipoproteins and low density lipoprotein (LDL), and
the risk of dyslipidemia [90,91]. A potential explanation between high Se and high lipid levels is a
shared enzyme, 3-hydroxy-3-methyglutaryl coenzyme A reductase that can act through the mevalonate
pathway that affects both Se and lipids [91]. A cross-sectional study of 1859 participants aged 65 or
older, from four rural regions in China, showed an association between high plasma Se levels and the
risk of high-triglycerides (TG). Subjects carrying the APOEε4 have higher rates of high-total cholesterol
(TC) and high-LDLC [91].

In the heart under perfusion conditions, the decrease in NOX function produces a reducing
state. Inhibition of NOX causes an even more important damage by ischemia/reperfusion (I/R) [28].
The abolished NOX function prevents the accumulation of HIF1α, and consequently, impairs the
switch of fatty acid to glucose utilization during I/R, and thus increases damage, causing more severe
damage [92].
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5.2. Reductive Stress and Pulmonary Hypertension

Pulmonary hypertension is a progressive and multifactorial disease characterized by
vasoconstriction, vascular remodeling, and micro thrombotic events. In this pathology, inflammation
plays an important role due to the accumulation of perivascular inflammatory cells (macrophages,
dendritic cells, T and B lymphocytes, and mast cells) and because circulating pro inflammatory
cytokines are increased [93].

The presence of RS related to hypoxia has been described in pulmonary vascular cells, and
may participate in the pathogenesis of pulmonary hypertension. Hypoxia causes a 2-fold increase in
intracellular 2-oxoglutarate (2OG) together with an increase in reduced 2-hydroxyglutarate (2HG).
There are two enantiomers of 2HG; the D and L enantiomers, which have been associated with rare
inborn errors of metabolism, resulting in increased urinary excretion of 2HG, linked to neurological
deficits in children [94]. Both enantiomers inhibit 2OG-dependent deoxygenates which favor the
response to mitochondrial RS caused by the respiratory chain, tricarboxylic acid cycle dysfunction.
These perturbations increase mitochondrial NADH and provide the substrate for L2HG production
and accumulation, which participate in the increase in RS [65].

5.3. Reductive Stress and Stent Stenosis

Risk factors for vascular remodeling, such as hypertension, endothelial dysfunction, diabetes and
atherosclerotic plaque formation, inflammation and vascular injury during stent implantation, are
associated with reductions in the enzyme GPx1 [95]. However, increases in this enzyme lead to RS
by enhancing GSH/GSSG and NADPH/NADP+ ratios. RS, in turn, elevates s-glutathionylation of
important proteins, a process which leads to vascular smooth muscle cell proliferation, migration, and
survival, contributing to stent stenosis [66]. The expression and activity GPx1 are dependent on many
factors, including diet levels of Se [52].

5.4. Reductive Stress and Neuro-Muscular Disorders

Neuromuscular diseases frequently involve chronic muscle inflammation that is accompanied by
muscle weakness. Furthermore, inflammation damage may affect the arteries and blood vessels that
run through the muscle. Some neuromuscular disorders are present at birth, while others manifest in
childhood, and even during the adult stage [66]. These diseases can be due to genetic mutations, to
abnormal immune responses, or to the effect of toxins or tumors [84].

Higher increases in the GSH/GSSG ratio elevate mitochondrial oxidation, and induce cytotoxicity
in cultured cells and in models of muscular dystrophy [60]. The Drosophila melanogaster model was
used to study the mutations in lamins identified in muscular dystrophy patients, showing that
aggregation of cytoplasmic lamins are associated with elevated levels of GSH and NADPH, and with
elevated p62/SQSTM1, and nuclear enrichment of NrF2, leading to RS [84]. These increases in the
ROS production could cause a change in the intracellular GSH redox state to generate more reduced
intracellular equivalents (high GSH/GSSG ratio). This demonstrates that while an initial stimulus
might be oxidative in nature, the response of the cell can subsequently result in an overall more
reducing cellular environment and lead to RS [96].

In skeletal muscle and in the muscle-derived C2C12 cell, the insecticide, piscicide, and pesticide,
rotenone, led to a profound deposition of intracellular triacylglycerol accumulation via inhibition of
the RETC complex I, and increased ratio of NAD+/NADH that was associated with accumulation of
lipids and RS that impaired muscle contraction [97].

There are neurotoxic effects of Se. Se induced a decrease in locomotion, generalized muscular
flaccidity and a catalepsy-like state. There was also a decrease in respiratory and heart rates that
were followed by respiratory death and cardiac arrest [98]. Also, the neurotoxic effects inducible
by Se include an increase of dopamine levels in the central nervous system [67], a reduction of
the global antioxidant status, sulfhydryl groups, and LPO [99]. In rat sciatic nerve fibers, it induced
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neuromuscular blockade, tetanic spasm, alteration of nerve fiber action potentials, and nerve membrane
depolarization [68]. There was a significant elevation of Se and iron in motor neuron disease that
was associated with an increase in the activity of GPx that could to lead to RS [69]. In addition, the
over expression of Se-antioxidant enzymes like the GPx is regulated by transcription factors such as
NF-κB, activator protein-1 (AP-1) and NrF2 [100]. The expression of many genes that participate in
inflammation, embryonic development, oncogenesis, and apoptosis is regulated by NF-κB and AP-1.
Moreover, these transcription factors appear to be activated simultaneously by the same stimuli and
control the same cell signaling pathways [101].

5.5. Parkinson’s Disease

Neurodegenerative diseases are characterized by the death of neurons in different regions of
the nervous system, followed by a deterioration of the affected parts. Although the mechanism that
unleashes and leads the chronic process in these pathologies remains unknown, inflammation is a
common factor that is accompanied by an increased production of protein aggregates and alterations in
the neurotransmitter concentrations [102]. Parkinson’s disease has been attributed to the interference
with the electron-transfer from iron-sulfur centers to ubiquinone in the complex I of RETC caused by
the increment of NAD+/NADH [70].

5.6. Reductive Stress in Insulin Resistance Associated with Metabolic Syndrome

Chronic over nutrition with high sucrose creates chronic hyperglycemia that can induce
MS. The induced MS includes obesity, hypertension, dyslipidemia, insulin resistance (IR),
hyperinsulinemia [103], and insulin secretion impairment [104]. Under hyperglycemic conditions, more
glucose flows through the glycolytic pathways that produce pyruvate and acetyl-CoA, leading to more
NADH production. More glucose can also stimulate the glyceraldehyde-3-phosphate dehydrogenase
that leads to more NADH through glycolysis and the Krebs cycle. In addition, under hyperglycemic
conditions, the polyol pathway utilizes more than 30% of the body glucose, which significantly
contributes to RS [105]. Moreover, iNOS also uses NADPH as a cofactor, contributing to hypertension
in MS. Therefore, RS followed by OS could act as an important process of glucotoxicity when chronic
hyperglycemic conditions are present. It would induce RS, which is linked to the inhibition of
insulin release by pancreatic β-cells [24]. Previous studies have shown that a decreased activity of
the RETC complex I is associated with obesity, type II diabetes and lipid accumulation in skeletal
muscle [106]. Furthermore, in a GPx1 overexpressing male mice model that is characterized by IR,
hyperglycemia, hyperinsulinemia, increased fat deposits and plasma leptin, and diminished insulin
sensitivity. GPx-1 activity overexpression may interfere with the insulin function by over-quenching
intracellular ROS required for insulin sensitizing [73]. H2O2 can undoubtedly modulate the insulin
induced phosphorylation of the β-subunit of the insulin receptor [107], and protein kinase B (PkB, also
known as Akt) [108]. Insulin stimulation generates a burst of H2O2 in hepatoma and adipose cells that
is associated with a reversible oxidative inhibition of overall cellular protein tyrosine phosphatase
activity. Therefore, the regulation of reversible tyrosine phosphorylation in the insulin signaling
cascade is essential for keeping the normal activity of protein tyrosine phosphatase and insulin
sensitivity [109]. Insulin signaling through the Akt phosphorylation of Ser473 requires of the presence
of normal or minimal levels of intracellular ROS or H2O2 to be sensitized [58,73]. The extinction of
the intracellular H2O2 blast after insulin stimulation is accelerated by the overexpression of GPx-1,
resulting in more activity of protein tyrosine phosphatase, and reduced phosphorylation of the insulin
receptor [73,106]. In GPx-1 overexpressing mice, increases of GPx-1 activity, ranging from 31 to 300%,
were related to obesity and IR, and phosphorylation of Akt was reduced in response to insulin [110].

There is also an association between CAT and GPx-1. CAT overexpression prevented IR in
muscle cells chronically exposed to fatty acids by improving mitochondrial function, and consequently,
glucose and fatty acid metabolism through a decrease of H2O2 [110,111]. These findings with excess
CAT and GPx-1 suggest that apoptosis might increase as a result of disrupted oxidant signaling, thus
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increasing RS [2]. The modification of Bax/Bcl-2 ratio environment can be listed as one of the molecular
targets affected by the increased expression of GPx-1 [112]. In transgenic mice, the overexpression of
the SOD and GPx-1 alter functions, including an increased expression of immediate early genes and
proteins, and also results in dysfunction in thermoregulation and the appearance of a thermo sensitive
phenotype [113,114].

The association between a decrease of H2O2 by GPx-1 overexpression leads to RS. Many actions of
insulin participate as effector mechanisms of pro-inflammatory processes involved in the development
of cardiovascular disorders. IR is defined as a loss of sensitivity to the hormone by the cells, and
reduced or absent metabolic responses that promote glucose homeostasis [115]. IR and its consequent
hyperinsulinemia are one of the first signs of MS [116]. Recent evidence indicates that inflammatory
pathways are causally involved in IR. In particular, inflammation can directly impair the insulin
signaling pathway mediated by serine phosphorylation of the insulin receptor substrates (IRS), and/or
indirectly, via induction of transcription of pro-inflammatory mediators [116,117]. Insulin actions
are exerted through activation of two transduction signaling pathways. Metabolic actions, as well
as vasodilator endothelial actions, such as oxide nitric (ON) production, are mediated through
fosfatidyl-inositol-3 kinase pathway (PI3K). Mitogenic actions, growth, and cellular differentiation, are
mediated by MAPK and particularly, the C-Jun N-terminal kinases (JNK) subfamily, which controls
the pro-inflammatory cytokine-expression of TNF-α and IL-6 [118]. IR increases TNF-α and IL-6
concentrations, and these cytokines reduce insulin action by (a) activating JNK-1 kinase, which
phosphorylates IRS-1; (b) inducing the activation of NF-κB [119]. TNF-α action is blocked in isolated
cells, as well as in whole animals, and insulin sensitivity is restored [115]. A sensitive marker that
predicts the risk of developing CVD is C-reactive protein (hs-CRP), which is an acute inflammatory
molecule formed in the liver by IL-6 and TNF-α [26].

Moreover, loss of ER homeostasis or unusually high UPRER induced by RS is closely associated
with multiple complex disorders, including MS, type II diabetes, and CVD [22].

5.7. Reductive Stress and Rheumatoid Arthritis

CD4 T-cells in patients with rheumatoid arthritis promote synovitis, autoantibody formation,
facilitate osteoclast differentiation, and impose endothelial dysfunction and pro-inflammatory effector
functions. These T-cells, like malignant cells, depend on oxidative glucose metabolism coupled with
mitochondrial oxidative phosphorylation to efficiently generate ATP [120]. However, to replicate from
a single cell into thousands of copies, they need a carbon source and the reducing power of NADH,
in addition to ATP [74]. Naïve rheumatoid arthritis (RA) T-cells have a defect in the glycolytic flux
due to up regulation of G6PD. The excess G6PD shunts glucoses into the pentose phosphate pathway
(PPP), resulting in an increase and accumulation of NADPH that leads to consumption of all ROS,
resulting in RS. The insufficient oxidative signaling prevents the activation of the cell cycle kinase ATM
and allows RA T-cells to bypass the G2/M cell cycle checkpoint, thus creating an inflammation-prone
T-cell pool [74]. Several metabolic interventions, such as the use of several drugs, are able to rebalance
glucose utilization away from the PPP and towards glycolytic breakdown, easing RS and preventing
hyper proliferation and incorrect differentiation of RA T-cells.

5.8. Reductive Stress and Renal Diseases

The products of the prototypical glucose regulated (grp) genes: grp94 and grp78 play important
roles as chaperones during protein folding and processing in the ER [76], and are also linked to
inflammatory conditions, such renal disease. These genes are members of the gene battery that is
responsive to RS, while the hsp genes respond to OS [121,122]. Thiol reductions are also cytotoxic
and increase expression of grp genes. Agents that interfere with ER protein folding include thiols
that activate grp78 transcription [75]. In LLC-PK1 renal epithelial cells, DTT treatment induces
grp78 gene expression and gadd153 gene transcription. In addition, in human embryonic kidney
cells N-acetyl-L-cysteine treatment led to 3- to 4-fold increase of GSH. This increased the level of
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mitochondrial oxidation, and drove to RS that could later on lead to oxidative stress [14]. RS associated
to hypoxia causes the L2HG enantiomer accumulation in renal cell carcinoma of children. Cell lines
with RETC defects and D2HG have been identified as the product of cancer-associated mutant enzyme
cytosolic isocitrate dehydrogenase-1 [65].

5.9. Reductive Stress in Infectious Diseases

Pathogens that produce diseases have also been related to RS. In Mycobacterium tuberculosis (Mtb),
DTT exposure leads to thiol RS that derives in the formation of an adherent biofilm in Mtb cultures.
Metabolically active and drug-tolerant bacteria are found in these biofilms [123]. Bacteria develop
an envelope where periplasmic proteins are unfolded in response to thiol RS. The presence of this
envelope leads to the upregulation of a specific transcriptional response [124].

5.10. Reductive Stress in Alzheimre’s Diseases

In an Alzheimer’s disease (AD) model, the APP/PS1 transgenic mice, RS occurs at a young age
and before the onset of the disease [71]. RS in this model is characterized by increased G6PD and GSH
that contribute to damage of the mitochondrial membrane sulfhydryl groups, which are rendered
susceptible by the depletion of H2O2 [72]. Young healthy individuals at risk of AD also suffer from RS,
in which there is overexpression of antioxidant enzymes before the onset of the disease. Therefore,
it is a paradox why this hyperresponse of the antioxidant defenses drives subjects to RS collapses at
some point during the development of the disease, leading to OS, which finally contributes to the
development of dementia [125].

6. Situations Inducing Non-Pathological Reductive Stress: Hypoxia and Exercise

The metabolic adaptation to hypoxia is critical for the survival, remodeling, and proliferation of
cells. Hypoxia causes respiratory chain and tricarboxylic acid cycle dysfunction, and these alterations
increase mitochondrial NADH and provide the substrate for reduced hydroxyglutarate production
and accumulation, which participates in the increase in RS [65].

A study showed that exercise-induced RS in young men that performed a knee extensor session
performing isokinetic eccentric exercise [126]. However, reports on this topic are scarce in the literature.
Depending on the type, intensity and duration of the exercise, physical complexion and genetic
background, the subjects exposed to exercise can be driven, or not, to RS. Exhaustive exercise can
increase GPx, SOD, and TRx1 in peripheral blood [127]. This may be crucial for the maintenance of
redox control, and may trigger physiological adaptation during strenuous and exhaustive physical
exercise, which may impair Trx1 homeostasis and lead to RS [128].

7. Adverse Effects of Antioxidant Agents

On the other hand, the protective effect of some compounds having an antioxidant effect is well
known. The intra or extracellular antioxidant defenses can scavenge several radicals, eliminate proteins
damaged by free radicals, suppress oxidized fatty acids from membranes, and undo damage to DNA
caused by free radicals. However, the use of antioxidants is not completely effective for treating
neurodegenerative diseases, chronic inflammation, cardiovascular diseases, and cancer, and can even
increase the production of free radicals. High doses of antioxidants can also lead to cellular dysfunction,
by altering the redox balance after interacting with physiological concentrations of ROS [113]. Thereby,
antioxidants may increase the damage to the body by interfering with the metabolism of some nutrients,
increase the risk of cancer, or reduce the effectiveness of cancer treatments (e.g., radiation therapy,
chemotherapy), thus decreasing the health-promoting effects of exercise, and even decreasing life
expectancy [129]. The next section addresses the side effects of some chemical compounds that are
used as antioxidants. The side effects of several agents are summarized in Table 2.
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7.1. Tocopherol

Tocopherol (vitamin E) is the main chain-breaking antioxidant soluble in lipids, plasma, and
red cells. It has beneficial antioxidant effects [130]. The rate of tocopherol decay is α > β > γ > δ, in
analogy to the biological potencies of these forms of vitamin E [131]. However, only a few articles
have shown the effect of high concentrations or chronic consumption of vitamin E supplements. Bone
mass and architecture in male rats is altered by the chronic consumption of high levels of dietary
vitamin E [132,133]. There is a positive association between increased hs-CRP levels and a high-dose of
ingested vitamin E (400 IU/day or more). Mortality by all causes in women is elevated by supplements,
and this may be due the pro-oxidant effects of vitamin E [134]. α-Tocopherol in high concentrations
acts as a pro-oxidant in in vitro systems, depending on the presence of transition metals [132]. In
addition, the use of vitamin E supplement was related with an increased risk of lung cancer, especially
in the risk of lung adenocarcinoma [133]. These experimental studies showed that high amounts of
α-tocopherol can induce apoptosis. A prospective cohort study assessed the daily use of supplemental
vitamin E in women and men aged 50–76 years over 10 years. The supplementation led to a small
increase in lung cancer risk. This risk of supplemental vitamin E was mostly shown in smokers, and
was at the greatest level for non-small cell type of lung cancer [135]. There was a 7% increase in the
risk for each 100 mg/day, and therefore, the increased risk for lung cancer was 28% when ingesting
400 mg/day of vitamin E for 10 years [136,137]. In the Shanghai Women’s Health Study, there was an
inverse association in women receiving 14 mg/day (adequate intake of tocopherol) or more with the
risk of lung cancer, when compared to those receiving a lower dose [136].

Table 2. Side effects of antioxidant agents in inflammation-associated diseases.

Antioxidant
Agent Mechanisms Associated Pathology References

Tocopherol or
Vitamin E

Pro-oxidant activity
by Fenton reaction

Bone alterations
lung cancer

Smith et al., 2005 [132]; Iwaniec et al., 2013 [133];
Wu et al., 2015 [136]; Slatore et al., 2008 [137]

NAC Reduction of
NAD+/NADH ratio

Cardiovascular disorders
Lung cancer

Zhang et al., 2012 [17];
Mendelsohn et al., 2014 [138]; Sayin et al., 2014 [139]

β-carotene Pro-oxidant and
pro-inflammatory

Cancer
Colorectal polyps

Goodman et al., 1996 [140]; Bjelakovic et al., 2015 [141]
MacLennan et al., 1995 [142]

Ascorbic acid
(Vitamin C)

Pro-oxidant activity
by Fenton reaction

Renal calcium oxalate deposition
DNA damage of lymphocytes

Hatch et al., 1980 [143];
Podmore et al., 1998 [144]

BHA and BHT Pro-oxidative
properties

Cancer
Pulmonary toxicity

Reproductive damage

Branen, 1975 [145]; Ito et al., 1983 [146];
Thompson et al., 1989 [147]

Li et al., 2016 [148]

Flavonoids Pro-oxidant activity
by Fenton reaction

DNA damage, Apoptosis
Hypertension Hodnick et al., 1986 [149]

Resveratrol Pro-oxidant by
CYP2C9 Endothelial cell death Posadino et al., 2015 [150]

Coumaric Acid
Pro-oxidant

Mitochondrial
Damage

Endothelial cell death Posadino et al., 2013 [151]

Estrogens Pro-oxidative
properties

Cell damage
Breast cancer

Ayres et al., 1998 [152]
Bednarek, 2002 [153]

Abbreviations: NAC: N-acetylcysteine; NADH: Nicotinamide adenine dinucleotide reduced; NAD+: Nicotinamide
adenine dinucleotide oxidized; BHA: Hydroxyanisole; BHT: butylated hydroxytoluene.

7.2. β-Carotene

β-Carotene is a chemical compound of the family of terpenes; β-carotene is the most abundant
carotenoid in nature, and it is the most important pro-vitamin in the human diet [154]. The mucosa of
the small intestine transforms it into vitamin A, and it is then stored in the liver as a retinol ester [155].
As a lipo-soluble antioxidant, it reduces the chances of heart attacks and increases the efficiency of the
immune system [155]. Low β-carotene consumption rates enhance systemic OS in MS patients [156].
However, β-carotene at high doses can be pro-oxidant, and increase the synthesis and release of TNF-α
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and interleukin-8, that are pro-inflammatory mediators [157]. β-Carotene and α-retinol (30 mg/day)
can induce an increase in the incidence of lung cancer in smokers [140]. β-Carotene increases the risk
of cancer when administered as an isolated supplement [141]. Combination of reduced fat and wheat
bran decreased the recurrence of large adenomatous polyps, and β-carotene increased the risk of polyp
recurrence in women [142].

7.3. Ascorbic Acid

Ascorbic acid, also known as vitamin C, is a water-soluble vitamin that is eliminated by the
kidney via filtration and active tubular reabsorption, and is metabolized to oxalate. [158]. The ascorbic
activity of vitamin C lies in its role as an essential cofactor in hydroxylation reactions involved in the
biosynthesis of stable cross-linked collagen. Ascorbic acid scavenges O2

−, H2O2, OH•, HOCl, and
aqueous peroxyl radicals [159]. Ascorbic acid undergoes two-electron oxidation to dehydroascorbic
acid, with intermediate formation of the relatively unreactive ascorbyl radical during its antioxidant
action [160]. Excess consumption of large amounts of vitamin C does not pose a problem to the general
population, because it is disposed of by the kidneys. However, patients on hemodialysis can develop
secondary oxalosis [161]. Large amounts of oxalate accumulation result in secondary oxalosis caused by
an elevated ingestion, high production, or diminished excretion [162]. Calcium oxalate deposition in the
kidneys and high levels of serum and urinary oxalate can be caused by the ingestion of elevated doses
of vitamin C [143]. Ascorbic acid plays an important part in the protection of plasma lipids against
peroxidative damage caused by several kinds of oxidants [160]. However, in high concentrations, it can
act as a pro-oxidant agent, and can produce damage by stimulating LPO [158]. This can be the reason
why ascorbic acid is employed as a pro-oxidant in peroxidative reactions involving transition metals,
particularly iron and copper by the Fenton reaction [163]. It greatly enhances autoxidation, which is
accompanied by the production of O2

− and H2O2 [158]. The level of LPO indicates a balance between
pro-oxidant and antioxidant activity of ascorbic acid, and may ultimately depend on the status of
α-tocopherol [135]. In addition, ascorbic acid reductively decomposes tert-butyl hydroperoxide, which
can then initiate LPO [164]. In another study in photosensitized red cell membranes, ascorbic acid
enhanced LPO [165]. Supplementing the diets in healthy individuals with high doses of vitamin C (500
mg/day) produced an elevation in oxidative damage to lymphocyte DNA, suggesting pro-oxidative
effects at elevated doses [144].

7.4. N-Acetylcysteine

N-Acetylcysteine (NAC) is a drug with mucolytic properties that also has antioxidant effects, and
is used in the formation of GSH [166]. Chronic treatment with 1 mM NAC on L6 myoblasts induced
cellular RS that impaired mitochondrial function of myoblasts and cardiomyocytes by the reduction
of the NAD+/NADH ratio and Trx2 [1,17,54]. NAC (0.4 mM) induced a reduction–oxidation of the
redox state of mitochondria [17]. In human embryonic kidney 293 T cells, NAC treatment resulted in
overexpression of the catalytic subunit, GCL, or modified the GCL subunit, favoring a GSH increase,
and causing mitochondrial oxidation and cytotoxicity. Thus, it caused an excess GSH that led to RS [17].
Additionally, NAC and vitamin E, or the combination of both, markedly increased tumor progression
and reduced survival in mice and human subjects having B-RAF and K-RAS-induced lung cancer [138].
In another study, an association between NAC, ROS reduction, and p53 expression was found. p53 is a
major tumor suppressor that acts as a suppressor of inflammation. The inactivation of p53 increases
tumor growth by disrupting the ROS–p53 axis. This has consequences in early tumors or precancerous
lesions in patients that smoke, and in patients having chronic obstructive pulmonary disease [139].

7.5. Synthetic Antioxidants

Several studies have suggested the potential adverse effects of synthetic antioxidants, such
as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in rodents [145] and
monkeys [146]; carcinogenic effects and toxicity were found at high doses. Spoilage in food items,
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instead of a prolongation of shelf-life, has also been found to increase with high concentrations of
synthetic antioxidants, such as BHT and BHA, due to their pro-oxidant activities [146]. BHT has
become a model to study lung toxicity; it is being used as a tool in animals, in which it mimics
respiratory distress and interstitial pulmonary fibrosis [167]. However, BHT and BHA can induce
hypertrophy in the liver of various animal species, including rats, mice, dogs, pigs, and monkeys [168].
In rats, oral administration of a high dose of BHT leads to centrilobular necrosis, accompanied by initial
GSH depletion [168]. Injury by BHT in the kidney has also been described [169]. Also, a P450-derived
metabolite of BHT (BHT-BuOH) is a more potent tumor promoter in mouse lung, than is BHT [170].
Likewise, feeding subjects with high doses of BHA may lead to the formation of papillomas and
squamous cell carcinomas in the fore stomach of rats, hamsters, and mice [171]. Another study showed
that feeding BHA at 2% in the diet for nearly the whole lifetime resulted in malignancies in rats [172].
In animals, synergism between BHA and BHT has caused aggravation of pulmonary toxicity [147].
BHA directly inhibits the activities of CYP17A1 and HSD3B1, and the levels of expression of Hsd17b3
and Srd5a1, resulting in diminished androgen production in Leydig cells [148].

7.6. Phenolic Antioxidants

Food constituents of plants, such as polyphenols, have cyto-protective activity and preventive
effects against OS in vitro; however, they can also display pro-oxidant activities when consumed at
elevated doses or when metal ions are present [173]; the concentration determines their pro-oxidant
and/or antioxidant activity. Pro-oxidative activities of several polyphenols, such as quercetin, catechins,
and gallic acid, have been reported in recent studies that used cell models [174]. Cell survival
and viability, thiol content, total antioxidant capacity, and SOD, CAT, and GST activities were
reduced at quercetin concentrations of 50 µM [175]. Elevated levels of flavonoids (50–250 µM)
resulted in cytotoxicity, damage to DNA, apoptosis, and presence of ROS by autoxidation [149].
Phenolic antioxidants at high concentrations display pro-oxidant activities when transition metal ions
such as iron and copper are present, forming chelators and reducing the antioxidant capacity [176].
Phenolic antioxidants are converted into phenoxyl radicals. In biological systems, phenoxyl
radicals can be the basis of a cascade of pro-oxidative events which are characterized first by
autoxidation of a diphenol or polyphenol, concomitant with a univalent reduction of molecular
oxygen, followed by dismutation of the O2

− formed, and subsequent formation of hydroxyl
radicals in a Fenton-type reaction [177]. These diphenolic compounds are more cytotoxic than
monophenolic substances because they produce much larger quantities of reactive oxygen metabolites
in the extracellular space [175]. Quercetin is a flavonoid that may lead to H2O2 formation during
autoxidation [178]. Excess production of H2O2 in microsomes has been observed with a number
of phenolic antioxidants, such as quercetin and gallates [179]. Regarding the pro-oxidant effect of
phenolic agents, it was recently reported that an infusion of 3% of Hibiscus sabdariffa L (HSL),
a plant that possesses a large amount of polyphenols, reduces the pathologies that comprise MS,
including hypertension hyperinsulinemia, IR, obesity, and OS in a rat model, caused by administration
of 30% sucrose in the drinking water. The reduction of OS was due to an increase of SOD, CAT,
and GPx, and decrease of hypertension, LPO, and carbonylation [180]. However, infusion at 6%
in drinking water in this model overexpresses the antioxidant enzymes, and might result in an
increase in blood pressure and probably RS. However, more studies are needed to confirm this
observation. Resveratrol, a naturally occurring antioxidant present in red wine, exerts cardiovascular
protection by reducing OS and non-esterified fatty acid [181]. In nM concentrations, resveratrol
can enhance endothelial NO production through a caveolae-dependent mechanism involving
p42/44MAPK activation [150]. However, 10–25 µM resveratrol can also induce pro-oxidant effects
in a dose-dependent pattern, provoking mitochondrial damage and endothelial cell death through
CYP2C9 [150], by down-modulating Akt phosphorylation [182]. In a similar way to other natural
antioxidants, such as coumaric, chlorogenic, ferulic, caffeic, and caftauric acids, food-derived phenolic
compounds at a high-dose (25 µM) can increase intracellular ROS production and have pro-oxidant
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effects through the flavin-containing CYP450 families [183]. Coumaric acid, a common dietary
polyphenolic antioxidant, can also induce intracellular pro-oxidant effects in human endothelial
cells and death mediated by CYP2C9 [151].

7.7. Estrogens

The antioxidant action of estrogens, and especially of 17β-estradiol, is displayed by two
mechanisms; the first is through its hydroxyphenolic structure, that may donate hydrogen atoms
resulting in the capture of ROS and cell membrane LPO [153]. The second mechanism is associated
with its stimulatory effect on cellular antioxidant enzyme genes [184]. However, estrogens at high
concentration may induce damage to the cell by OS development through metabolic reactions of
the phenolic ring, which becomes its predominant biochemical activity and could exert deleterious
effects. The oxidations of estrogens to catechol estrogens, and further to quinones, induce ROS
by redox cycling of estrogens [185]. The quinones formed from catechol estrogens are considered
pro-oxidants due to the production of ROS through redox cycling via semiquinones [186]. Estrogens
metabolized to phenoxyl radicals, quinones or semi-quinones, may cause damage in cells either
through alkylation or oxidation of cellular macromolecules, including DNA [152]. Estrogens are
hydroxylated by NADPH-dependent cytochrome P450 enzymes to catechol estrogens, and consume
O2, inducing DNA strand break. Through their capacity to donate electrons, they promote neoplastic
transformation and the development of breast cancer [170].

8. Summary and Conclusions

In summary, RS is characterized by an excess of reducing equivalents. It leads to a decrease of ROS
production through antioxidant enzyme overexpression that may cause an alteration in the redox state
of intracellular higher NAD+/NADPH, and GSH/GSSG ratio. A balance in Se and iron levels is needed
for several biological functions in the human body, and its excess and/or insufficient intake can result in
adverse health effects and contribute to RS. RS alters the mitochondrial function, causes misfolding of
proteins, and may participate in several inflammation-associated diseases. Hyperglycemic conditions
induce RS through inhibition of the insulin receptor by selenium-GPx-1 overexpression. Antioxidant
vitamins, polyphenols and estrogens ingested in high concentrations can induce a pro-oxidant state
with adverse effects for the organisms.

In conclusion, recent information shows the importance of the redox regulation for cellular
homeostasis. Excess ROS (oxidative stress) or of reducing equivalents (reductive stress) alter the
regulation of cellular signaling pathways, leading to several diseases. There are many sources of RS,
and its generation alters different cellular processes, such as mitochondrial function, transcription,
translation, and post-translational modifications. An elevated ingestion of supposedly “healthy”
compounds, such as antioxidant vitamins, synthetic antioxidants, polyphenols, or hormones
(estrogens), can induce a pro-oxidant state, which generates RS with adverse effects for the organism.
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