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Abstract: Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of
serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular
interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are
evolutionary conserved. In this study, we examined the relationship between TRIB2 and cell
division cycle 25 (CDC25) family of dual-specificity protein phosphatases (mammalian homologues
of Drosophila String), which are key physiological cell cycle regulators. Using co-immunoprecipitation
we demonstrate that TRIB2 interacts with CDC25B and CDC25C selectively. Forced overexpression
of TRIB2 caused a marked decrease in total CDC25C protein levels. Following inhibition of the
proteasome, CDC25C was stabilized in the nuclear compartment. This implicates TRIB2 as a regulator
of nuclear CDC25C turnover. In complementary ubiquitination assays, we show that TRIB2-mediated
degradation of CDC25C is associated with lysine-48-linked CDC25C polyubiquitination driven by the
TRIB2 kinase-like domain. A cell cycle associated role for TRIB2 is further supported by the cell cycle
regulated expression of TRIB2 protein levels. Our findings reveal mitotic CDC25C as a new target
of TRIB2 that is degraded via the ubiquitin proteasome system. Inappropriate CDC25C regulation
could mechanistically underlie TRIB2 mediated regulation of cellular proliferation in neoplastic cells.

Keywords: TRIB2; pseudokinase; CDC25B; CDC25C; dual-specificity phosphatase; ubiquitin
proteasome; degradation; cell cycle

1. Introduction

The Tribbles (Trbl) gene was discovered in three independent Drosophila genetic screens.
Two screens [1,2] were designed to identify mutations that affect gastrulation, the formation of ventral
furrow by mesodermal precursor cells during Drosophila embryo development. In Trbl mutants,
the precursor cells exhibit premature mitosis, leading to defective gastrulation. These pioneering
studies identified Trbl as an inhibitor of mitosis and implicated Trbl as a direct regulator of fly
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String function. String is the Drosophila orthologue of cell division cycle 25 (CDC25) dual-specificity
phosphatases that are required to initiate mitosis and are involved in key cell cycle checkpoint
responses. A third screen discovered Trbl as one of the genes that affect oogenesis when
overexpressed [3]. This study investigated Trbl in Drosophila wing and embryonic development,
and confirmed that Trbl coordinates mitosis and morphogenesis by promoting proteasomal dependent
degradation of String. A recent study demonstrated that Trbl also regulates Twine degradation,
a homologue of String, in the Drosophila blastoderm during the midblastula transition [4]. Trbl was also
found to promote the degradation of Slbo, the Drosophila orthologue of the important CCAAT/enhancer
binding protein (C/EBP) family of transcription factors, which are critical for transcriptional
programmes associated with cell migration during oogenesis [5]. Recently, the proto-oncogene
AKT was identified as a third Trbl interacting protein in flies. In this case Trb1 appears to directly
inhibit phosphorylation-dependent AKT activation without affecting AKT stability [6]. This is in
marked contrast to effects on String and Slbo, where Trbl suppresses function through promotion of
proteasome-dependent degradation.

In mammalian systems, three related Tribbles family members (TRIB1-3) are classed as
serine/threonine pseudokinases that possess either none, or very low, phosphotransferase capacity [7–9].
TRIB proteins contain a pseudokinase domain linked to an ubiquitin E3 ligase targeting motif that
has been proposed to interact with the regulatory pseudokinase domain [10]. TRIB proteins are
thought to act as pseudokinase scaffold proteins, and are capable of mediating and modulating
diverse signalling events that are critical for cellular function and disease pathogenesis [11].
Importantly, the molecular interactions between Trbl and Drosophila proteins appear to be evolutionarily
conserved in the mammalian system. Like Trbl, TRIB2 mediates the degradation of target proteins
including members of C/EBP family. TRIB2-mediated degradation of C/EBPα was found to have
an oncogenic role in the development of acute myeloid leukemia (AML) [12,13], and in lung [14] and
liver [15,16] models of cancer, whereas TRIB2-mediated degradation of C/EBPβ has been found to
suppress adipogenesis in vitro [17]. In addition, TRIB2 blocks adipocyte differentiation by inhibiting
phosphorylation-dependent activation of AKT, and this effect was also demonstrated in the Drosophila
system [17]. Similar to Trbl, TRIB2 has now been shown to regulate cellular proliferation in different
cellular contexts [18,19]. However, the molecular mechanism underlying TRIB2 function in cellular
proliferation has remained unclear, notwithstanding links to the key cell cycle-regulated CDC25
phosphatases in flies.

The CDC25 family of proteins are tightly controlled cell cycle master regulators that function as
protein phosphatases. They are best characterized as activators of cyclin-dependent kinase (CDK)
complexes through dephosphorylation of key inhibitory residues at the N-terminus of the catalytic
domain, which in turn promote cell cycle phase progression [20]. The functions of the CDC25 family
are highly conserved across species. In Drosophila, String is the orthologue of the CDC25 family [21].
In humans, CDC25 family exists as three related isoforms: CDC25A, CDC25B and CDC25C, all
of which are subject to phosphorylation-dependent effects on catalytic activity and stability [22].
CDC25A is thought to promote the G1 to S phase transition by activating the CDK2-Cyclin E and
CDK2-Cyclin A complexes [23,24] whereas CDC25B/C has been shown to promote G2 to M phase
transition [25,26]. Nevertheless, under some conditions CDC25A can also regulate G2/M phase
progression [27], consistent with murine studies that found no apparent cell cycle phenotype in Cdc25b
single [28], Cdc25C single [29] or Cdc25b/c double [30] knockout mouse models. The CDC25 family
of phosphatases might also have a role in regulation of cell cycle entry/exit (G0 to G1 transition),
as a recently discovered CDC25 inhibitor (NSC 119915), was found to arrest cells in the G0/G1 and
G2/M phases of the cell cycle [31]. Finally, regulation of Cdc25 expression has been implicated in
cellular quiescence (G0) maintenance and exit in naïve and activated T-cells respectively [32]. However,
it is currently unknown whether CDC25 family members can regulate CDK3-Cyclin C complexes,
which are required for exit from quiescence [33].
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In this study, we evaluated human TRIB2-interacting proteins and investigated if the
Trbl-mediated degradation of String is likely to be functionally conserved in vertebrate TRIB2
pseudokinase, which have been linked to a variety of cancer-associated signaling pathways [34].
Here, we show that mammalian CDC25B and CDC25C are novel interacting partners of TRIB2.
Consistently, the overexpression of TRIB2 promotes polyubiquitination and proteasome-dependent
degradation of CDC25C. Our data suggests TRIB2-mediated degradation of CDC25C takes place in
the nucleus. In accordance with a potential functional role of TRIB2 in cell cycle regulation, we also
find that TRIB2 protein expression is tightly regulated during the cell cycle.

2. Results

2.1. TRIB2 Interacts with CDC25B/C But Not CDC25A

To examine the interaction of TRIB2 in human cells with all the three isoforms in the CDC25
family, we overexpressed epitope-tagged versions of each protein (FLAG-tagged CDC25A/B/C
and MYC-tagged TRIB2) in HeLa cells and performed co-immunoprecitation experiments.
Upon immunoprecipitation with anti-FLAG antibody and Western blotting with anti-MYC antibody,
we found that TRIB2 co-immunoprecipitated with both human CDC25B and CDC25C but not human
CDC25A (Figure 1A) proteins. Hence, TRIB2 interaction with CDC25 family shows some selectivity
and, in marked contrast to TRIB3, does not appear to interact with CDC25A [35]. We also demonstrated
that TRIB2 binds to both human and mouse CDC25C orthologues (Figure 1B). The weak signal suggests
that this is a transient and highly unstable interaction.
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Figure 1. Tribbles homolog 2 (TRIB2) interacts with isoform B and C of cell division cycle 25
(CDC25) family proteins physically. (A) Interaction of MYC-tagged TRIB2 with different isoforms
of FLAG-tagged CDC25 proteins was examined by co-immunoprecipitation (co-IP) in HeLa cells.
IP, immunoprecipitation. Co-immunoprecipitated MYC-tagged TRIB2 signals were quantified by
densitometry analyses and normalized to the respective immunoprecipitated FLAG-tagged CDC25
signals. The normalized values are indicated below the sub-panel; (B) interaction of MYC-tagged
TRIB2 with human and mouse orthologues of FLAG-tagged CDC25C was examined by co-IP.

2.2. TRIB2 Promotes Ubiquitination and Proteasomal Degradation of CDC25C

To determine if TRIB2 regulates CDC25C through a mechanism related to that described in
flies [1–3], we examined the effect of TRIB2 overexpression on CDC25C protein expression levels.TRIB2
overexpression has potent leukaemogenic effects, and is associated with proliferation in vitro [18].
Interestingly, overexpression of TRIB2 in HeLa cells led to a decrease in endogenous CDC25C protein
expression (Figure 2A), suggesting TRIB2 could regulate CDC25C turnover. In contrast to CDC25A,
which primarily resides in the nucleus, CDC25B/C are held inactive in the cytoplasm, and translocate
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to the nucleus on activation by phosphorylation, in order to promote cell cycle progression [20]. To test
the stability of endogenous CDC25C in both nuclear and cytoplasmic compartments in the presence
of ectopic TRIB2, we employed the proteasome inhibitor MG132, which prevents degradation of
proteasomal substrates. Subcellular fractionation showed that endogenous CDC25C was located
primarily in the cytoplasm in untransfected vehicle-cells (Figure 2B). Overexpression of TRIB2 did
not affect nuclear translocation of CDC25C proteins in vehicle-treated cells, as expression in the
nucleus remained similar when compared to empty vector-transfected cells (Figure 2B). Our data also
shows that the treatment of untransfected and empty vector transfected cells with MG132 leads to an
accumulation of CDC25C in the nucleus in the absence of a decrease in cytoplasmic CDC25C levels.
This strongly argues against the inhibition of CDC25C nuclear to cytoplasmic translocation by MG132
but instead suggests that in the steady state the predominant localization of CDC25C in the cytoplasm
may be due to a rapid turnover of nuclear CDC25C. Importantly, in MG132-treated cells, overexpression
of TRIB2 led to a marked increase in the level of nuclear CDC25C compared to control untransfected or
empty-vector transfected cells (Figure 2B). These data resemble BRCA1 mediated polyubiquitination
and proteasomal degradation of CDC25C in response to DNA damage [36]. BRCA1-mediated CDC25C
degradation is dependent on nuclear proteasome activity and inhibition of the proteasome in BRCA1
overexpressing cells leads to CDC25C accumulation in the nucleus [36]. Consistently, we found
increased CDC25C in the nuclear compartment upon MG132 treatment, suggesting that TRIB2
specifically regulates the turnover of CDC25C in the nucleus. Intriguingly, our data also suggests that
TRIB2 stability is also regulated through a similar mechanism (Figure 2B).
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Figure 2. TRIB2 promotes proteasome-dependent degradation of CDC25C in the nucleus. (A) Whole
cell lysates from FLAG-TRIB2-transfected HeLa cells and controls (untransfected and empty
vector-transfected) were analyzed by Western blotting; (B) cells were treated with dimethylsulfoxide
(DMSO-vehicle) or 10 µM of MG132 for 4 h before subcellular fractionation for Western blotting
analysis. α-Tubulin and HDAC1 are cytoplasmic and nuclear markers respectively. CDC25C signals
were quantified by densitometry analyses and normalized to the respective loading control signals.
The normalized values were indicated below the sub-panel.
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TRIB2 has been shown to drive the degradation of proteins via ubiquitination and subsequent
recognition of targets through the ubiquitin proteasome system [37]. We therefore sought to determine
if TRIB2 has an effect on the ubiquitination of CDC25C in cells. We found that TRIB2 overexpression
leads to increased ubiquitination of endogenous CDC25C proteins (Figure 3A). Immunoblotting with
an antibody specific for lysine K48-linked polyubiquitin chains demonstrated that TRIB2 promotes
the K48-linked polyubiquitination of endogenous CDC25C (Figure 3B). Protein ubiquitination via
K48-linked ubiquitin chains is a well-characterised cellular signal for protein elimination through
26S proteasomal degradation [38]. Hence, our results provide the first evidence that mammalian
TRIB2 has the ability to promote polyubiquitination of CDC25C, which in turn increases proteasomal
dependent degradation of CDC25C phosphatase. TRIB2-mediated degradation of CEBPα requires
both an intact kinase-like domain and a C-terminal COP1-binding motif [39]. To determine if specific
TRIB2 domains are essential for promotion of endogenous CDC25C ubiquitination, we performed
a structure-function analysis of TRIB2 in HeLa cells. As demonstrated with full-length (FL) TRIB2
protein, overexpression of the TRIB2 kinase-like domain (KD) alone was sufficient to drive CDC25C
ubiquitination, whereas deletion of either the N or C-terminal regions (dN or dC) had little effect
(Figure 3C). Our results confirm that TRIB2 pseudokinase domain is sufficient for TRIB2-mediated
ubiquitination and degradation of CDC25C.
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Figure 3. TRIB2 promotes K48-linked polyubiquitination of CDC25C. (A) Effect of overexpression of
MYC-tagged TRIB2 on ubiquitination of endogenous CDC25C in HeLa cells. Effect of overexpression of
(B) MYC-tagged TRIB2 wild type and (C) different mutants on K48-linked ubiquitination of endogenous
CDC25C in HeLa cells. FL, full length; dN, N-terminal deleted; KD, only kinase domain expressed;
dC, C-terminal deleted. For (A,C), all samples were treated with 10 µM of MG132 for 7 h prior cell
lysis. Ub-HA, HA-tagged ubiquitin.
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2.3. TRIB2 Protein Levels Are Regulated in a Cell Cycle Dependent Manner

We have previously shown that TRIB2 inhibition either through TRIB2 knockdown or via
inhibition of an E2F1-TRIB2 regulatory loop results in perturbation of the cell cycle and cell death [18],
and TRIB2 level was shown to be under the control of the β-TRCP ubiquitin E3 ligase in liver cancer
cells [16]. Given the new potential role of TRIB2 in the regulation of vertebrate CDC25B/C, we assessed
the expression of TRIB2 during cell cycle phases and cell cycle progression. We measured relative
TRIB2 protein expression at specific cell cycle phases using a myeloid leukaemia cell line, SB1690CB.
G0/G1-S phase border block was achieved by mimosine treatment and G2/M phase border block by
nocodazole treatment (Figure 4A). This revealed elevated TRIB2 protein levels in the G2/M phase
which co-incided with elevated phosphorylated histone H3 (pSer 10) levels which is a marker of
mitosis (Figure 4B).
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Figure 4. TRIB2 is regulated at the protein level at cell cycle specific phases. Asynchronous (1)
SB1690CB cells were G0/G1 (2) arrested by Mimosine followed by release to allow them to progress
into S cell cycle phase (3) synchronously and G2/M (4) arrested by Nocodozole followed by release to
allow M phase (5) progression. (A) Histogram representation of cell cycle analysis by flow cytometry;
(B) Western blotting analysis with TRIB2 and p-histone H3 signal serves as a mitosis marker. Histone H3
indicated protein loading. TRIB2 signals were quantified by densitometry analyses and normalized to
the respective Histone H3 signals. The normalized values were indicated below the sub-panel.

To further evaluate the cyclic TRIB2 expression, we synchronized RPMI-8402, a T-cell acute
lymphoblastic leukemia (T-ALL) cell line by a single thymidine block, and monitored the level of
TRIB2 mRNA andTRIB2 protein levels as the synchronized cells progressed through the cell cycle
following thymidine removal. DNA staining and flow cytometry analysis of samples confirmed the
successful synchronization of cells at the G1/S boundary; after removal of thymidine, cells entered
and progressed through S phase (S12 and S15) synchronously (Figure 5A). At 20 h after thymidine
removal, specific populations of cells were present in G2/M phase (Figure 5A). This was confirmed by
detection of increased levels of phosphorylated histone H3 (pSer 10) in cell populations collected at 22 h
(S22) (Figure 5B). Remarkably, we observed highly cyclic expression of TRIB2 protein in the absence
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of significant changes in TRIB2 mRNA levels (Figure 5B,C). Increased levels of TRIB2 protein were
detected in S12, S17 and S22 where cells were synchronized cells in G1/S phase, S phase and M-phase,
respectively (Figure 5B). Consistent with our findings, we see reduced total levels of CDC25C at S17
through to S24 where the majority of cells are in S and M-Phase. Hence, TRIB2 protein expression
appears to vary cyclically during the cell cycle, which might be relevant to its ability to modulate the
stability of CDC25 isoforms.
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them to progress into different cell cycle phase synchronously. (A) Cell cycle analysis by flow cytometry.
Histograms of cell cycle profile for all samples were staggered offset; (B) Western blotting analysis
with p-histone H3 signal serves as a mitosis marker. TRIB2 and CDC25C signals were quantified by
densitometry analyses and normalized to the respective β-actin signals. The normalized values were
indicated below each sub-panel; (C) expression of TRIB2 mRNA measured by quantitative reverse
transcription-polymerase chain reaction (RT-PCR).

3. Discussion

In this study, we established a novel relationship between mammalian TRIB2 and CDC25 protein
family members, and found that TRIB2 interacts physically with CDC25B/C. We showed that TRIB2
promotes CDC25C proteasomal degradation, confirming that this functional relationship has been
conserved between Drosopila Trbl [1–3] and human TRIB2, which is extremely highly conserved
in vertebrates homologues [7]. We found that an increase in CDC25C turnover can be driven by
TRIB2-triggered K48-linked polyubiquitination. In addition, our data suggest that TRIB2 degrades
a nuclear population of CDC25C, and therefore, TRIB2 may target the key mitotic regulatory fraction of
CDC25C. Our analysis reveals cyclic expression of TRIB2 during the cell cycle in-line with an oscillatory
cell cycle relationship between TRIB2 and CDC25C.

Owing to the critical roles of CDC25 family of proteins in cell cycle regulation, the expression
and activity of CDC25 proteins is very tightly regulated. CDC25C activity is controlled primarily
by two mechanisms at the post-translational level. The first mechanism involves activating or
inhibitory phosphorylation of CDC25C, which either leads to CDC25C activation (e.g., through
PLK1), or results in binding of CDC25C with 14-3-3 protein and CDC25C sequestration in the
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cytoplasm [22]. A second mechanism involves inactivation of CDC25C via proteasomal-dependent
degradation. Two independently functioning E3 ubiquitin ligases have been so far identified that
function independently to regulate CDC25C at distinct cell cycle phase transitions. CDC25C is
known to be targeted by APC/C [40,41] for degradation upon mitotic exit, whereas BRCA1 [36]
ubiquitinates CDC25C to prevent mitotic entry. We show here for the first time that TRIB2 promotes
polyubiquitination and degradation of CDC25C in human cells. It is likely that TRIB2 functions
as an adaptor for an as yet unidentified E3 ubiquitin ligase that ubiquitinates CDC25C. TRIB2 has
previously been shown to function as an adaptor mediating the degradation of C/EBPα via COP1 E3
ligase in AML [39] or TRIM21 E3 ligase in lung cancer [14], and these are likely candidates that link
the TRIB2 pseudokinase domain to ubiquitination.

CDC25C is tightly regulated in the steady state cell cycle as well as in response to stress such
as DNA damage that induces G2/M checkpoint arrest [22]. Stress-induced checkpoint activation
is important to allow cells to repair damaged DNA before resuming cell cycle. Mitogen-activated
protein kinase (MAPK) signaling also appears to regulate CDC25C in both steady state cell cycle and
checkpoint pathways. During cell cycle at steady state, phosphorylation of CDC25C at Threonine
48 by extracellular signal-regulated kinase (ERK) leads to CDC25C activation and promotion of
mitotic entry [42]. However, in response to stress and DNA damage, activated ERK was showed to
phosphorylate CDC25C at Serine 216 which in turn promotes CDC25C ubiquitination and proteasomal
degradation [43]. In this study, the authors did not show whether the pool of ubiquitinated CDC25C
was nuclear or cytoplasmic. C-Jun N-terminal kinase (JNK) was also shown to inactivate CDC25C
by phosphorylating CDC25C directly at Serine 168 in order to regulate mitotic entry and G2/M DNA
damage checkpoint [44]. Lastly, p38 induces CDC25C cytoplasmic sequestration in response to DNA
damage thereby inactivating CDC25C indirectly via MK2 kinase [45]. Interestingly, TRIB family
members are established to associate with MAPK signalingmodules due to their scaffolding function
and capability to interact with MEK1 [46]. Recently, we showed that TRIB2 plays contrasting roles in
different subtypes of T-ALL by modulation of MAPK [19]. Further studies are warranted to examine
TRIB2/MAPK/CDC25 axis in normal and malignant haematopoiesis, and to evaluate any functional
requirements for the related, unstable, TRIB1 [47] and TRIB3 [48] pseudokinases for CDC25-dependent
cell cycle and checkpoint signaling pathways.

In conclusion, our study shows for the first time that the function of Trbl-mediated degradation
of String is evolutionarily conserved in human TRIB2. Our data confirm TRIB2 selectivity towards
different CDC25 isoforms, with TRIB2 interacting with CDC25B and C. Overexpression of TRIB2
promotes K48 linked polyubiquitination and degradation of CDC25C via the nuclear proteasome.
The pseudokinase domain of TRIB2 appears to be essential for CDC25C ubiquitination. Our findings
provide a novel vertebrate cell cycle link between TRIB2 and CDC25C, and suggest regulated TRIB2
functions during the cell cycle that are likely to be important in cancer.

4. Materials and Methods

4.1. Cell Lines

RPMI-8402 cell line was obtained from Leibniz Institute DSMZ (German Collection of
Microorganisms and Cell Cultures, Braunschweig, Germany), and HeLa cell line obtained
in-house. Both cell lines were cultured in RPMI 1640 medium (Gibco, Paisley, UK) supplemented
with 2 mM L-glutamine (Gibco), 10% fetal bovine serum (Sigma Aldrich, Dorset, UK) and
100 units·mL−1/100 µg·mL−1 Penicillin/Streptomycin (Gibco). SB1690CB cell line was established
and cultured as described previously [49]. All cultures were maintained in a tissue incubator at 37 ◦C
under 5% of carbon dioxide and were free from mycoplasma contamination.
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4.2. Plasmids and Transfection

Plasmids that encode Ub, TRIB2 wild type and mutants have been described [13,39]. CDC25A/B
inserts from pCMV6-CDC25A/B-MYC-FLAG (OriGene, Rockville, MD, USA: RC200496 and RC207409)
were sub-cloned into MluI/AsiSI digested pCMV6-AC-FLAG empty vector (OriGene). Human CDC25C
insert was PCR-amplified from pcDNA3-HisA-CDC25C [50] (Addgene plasmid #10964) and was ligated
into MluI/AsiSI digested pCMV6-AC-FLAG. Cells were transfected with plasmids indicated in the
related figures using X-tremeGENE™ HP DNA transfection reagent (Roche, Dorset, UK).

4.3. Antibodies and Western Blotting

The following antibodies were used for Western blotting: Anti-K48-Ub (Apu2 clone;
Millipore, Watford, UK), anti-phospho-Histone H3 (D2C8 clone; Cell Signaling Technology, Leiden,
The Netherlands and #06-570; Millipore), anti-Histone H3 (#9715; Cell Signaling Technology)
anti-α-tubulin (B-5-1-2 clone; Sigma Aldrich), anti-β-actin (AC-15 clone; Sigma Aldrich), anti-FLAG
(M2 clone; Sigma Aldrich), anti-HA (HA-7 clone; Sigma Aldrich), anti-CDC25C (C-20 clone; Santa Cruz
Biotechnology, Heidelberg, Germany), anti-HDAC1 (H-51 clone; Santa Cruz Biotechnology), anti-MYC
(9E10 clone; Santa Cruz Biotechnology) and anti-TRIB2 (B-06 clone; Santa Cruz Biotechnology).
Unless indicated otherwise, Western blotting was performed as described previously [19].
Densitometry analyses were performed using Image J (NIH, Bethesda, MD, USA) [51].

4.4. Co-Immunoprecipitation

Cells were lysed in protease inhibitors-supplemented Tris lysis buffer (50 mM Tris buffer (pH 7.4),
150 mM NaCl, 0.5% IGEPAL® CA-630, 5% glycerol and 1 mM EDTA) after 24 h of transfection.
Prior to immunoprecipitation, protein lysates were pre-cleared by incubation with Protein G Agarose
beads (Millipore, Cork, Ireland) at 4 ◦C for 30 min. For immunoprecipitation, pre-cleared lysates
were incubated with the indicated antibody and Protein G Agarose beads at 4 ◦C for overnight.
All incubations were done on a rotary tube mixer. Immunoprecipitated proteins were eluted from
washed beads by boiling at 95 ◦C for 5 min in Laemmli buffer and analyzed by Western blotting.

4.5. Subcellular Fractionation

Following transfection, cells were treated with DMSO (Sigma Aldrich) or 10 µM MG132
(Sigma Aldrich) for 4 h at 37 ◦C before subcellular fractionated by Active Motif Nuclear Extract
Kit (La Hulpe, Belgium). Nuclear and cytoplasmic lysates were analyzed by Western blotting.

4.6. Ubiquitination Assay

Following transfection, cells were treated with dimethylsulfoxide (DMSO) or 10 µM MG132 for
7 h at 37 ◦C followed by 10 mM N-ethylmaleimide (Sigma Aldrich) for 30 s at room temperature.
Cells were then lysed in 1% (wt/vol) sodium dodecyl sulphate (Sigma Aldrich) solution by boiling
at 95 ◦C for 5 min. The crude cell lysate was sonicated prior centrifugation to derive cleared protein
lysate. Protein lysate was diluted in protease inhibitors-supplemented Tris lysis buffer (50 mM Tris
buffer (pH 7.4), 150 mM NaCl, 0.5% IGEPAL® CA-630, 5% glycerol and 1 mM EDTA). Pre-clearing,
immunoprecipitation and elution of immunoprecipitated proteins were performed, as described in
Section 4.4. Protein ubiquitination was analyzed by Western blotting.

4.7. Cell Cycle Synchronization

SB1690CB cells were arrested in late G1 phase with 0.2 mM mimosine (Sigma Aldrich) for 24 h or
in G2/M phase with 200 ng/mL of nocodazole (Sigma Aldrich) for 18 h. G1 and G2/M phase-arrested
cells were released from block by replacing medium and culturing them further at 37 ◦C for 7 h.
Samples were collected at different points of the cell cycle for flow cytometry and Western blotting
analyses. For Western blotting, cells were lysed in protease inhibitors-supplemented CHAPS/Bicine
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buffer (20 mM bicine, 0.6% CHAPS, 2 mM MgCl2, 1 µM ZnCl2, 420 mM NaCl and 500 U/mL Pierce
Universal Nuclease).

RPMI-8402 cells were sub-cultured a day before they were treated with 0.75 mM thymidine
(Sigma Aldrich) and cultured further at 37 ◦C for 21 h. Synchronous cells (S0) were then released from
thymidine block by washing twice in phosphate buffered saline (PBS) before resuspended in fresh
complete medium for further culture. Samples were collected at different time points (S12, S15, S17, S20,
S22 and S24) for flow cytometry, Western blotting and quantitative reverse transcription-polymerase
chain reaction (RT-PCR) analyses. For Western blotting, cells were lysed directly in Laemmli buffer.

4.8. Cell Cycle Analysis

Cells were fixed in 70% ice-cold ethanol and stored at −20 ◦C. To analyze cell cycle, cells were
washed twice in PBS before they were resuspended in BD Pharmingen™ Propidium Iodide/RNase
Staining buffer (BD Biosciences, Oxford, UK). Flow cytometry was performed using BD FACSCanto
II system (BD Biosciences). Aggregates were excluded by gating of forward scatter height versus
area signals.

4.9. Quantitative RT-PCR

RNA was extracted from cells using RNeasy® Mini Kit (Qiagen, Manchester, UK) and converted
to cDNA using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Paisley, UK).
TRIB2 and β2M mRNA expressions were measured using Fast SYBR® Green Master Mix (Applied
Biosystems). Primer sequences have been described [19]. Each target was measured in triplicate
reactions. TRIB2 expression was normalized to β2M and was calculated using the 2−∆∆Ct method.
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CDC25 Cell division cycle 25
C/EBP CCAAT/enhancer binding protein
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ERK Extracellular signal-regulated kinase
JNK c-Jun N-terminal kinase
KD kinase-like domain
MAPK Mitogen-activated protein kinase
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Trbl Drosophila Tribbles
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