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Abstract: Cunninghamia lanceolata (Chinese fir) is a fast-growing and commercially important conifer
of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively
poor genetic background information of the Chinese fir, it is necessary to identify and analyze the
expression levels of suitable housekeeping genes (HKGs) as internal reference for precise analysis.
Based on the results of database analysis and transcriptome sequencing, we have chosen five
candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ) with conservative sequences in the
Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in
roots and cotyledons under five different abiotic stresses in different time intervals were measured
by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder,
BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from
three programs and rank these according to consensus sequences. The expression levels of these
HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most
stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We
have also described an experimental procedure for selecting HKGs based on the de novo sequencing
database of other non-model plants.

Keywords: Chinese fir; housekeeping gene; NormFinder; BestKeeper; geNorm; RankAggreg

1. Introduction

The conifers of division Pinophyta are considered to be of great ecological importance in most areas
of the northern hemisphere. From the temperate zone to the northern tundra, conifers are predominant
plants of temperate coniferous and boreal forests [1–3]. The conifers do not only have indispensable
ecological roles in the Earth’s biosphere, but also have critical economic contribution to various
countries. The Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is one of the most extensively
cultured evergreen conifers in south China. It is native to China and also widely distributed in
temperate regions in the north of Vietnam. Chinese fir is a fast-growing conifer that belongs to family
Cupressaceae, and is a commercially important tree of the lumber, pulp, and paper industry. Biological
studies have recently revealed the molecular mechanism underlying the control of the developmental
processes and physiological responses of the Chinese fir [4,5].

As a perennial woody plant that differs from herbaceous plants, the Chinese fir can live for
hundreds of years. During this long life cycle, it is subjected to various changes in its natural
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environment, including temperature, water, and soil nutrients. Early studies investigated the effects
of growth conditions on its morphological characters and biochemical components [3,6]. Using
advanced genetic approaches, researchers have recently focused on elucidating the molecular
mechanisms underlying the regulation of physiological responses, including analyses of gene
function [7,8], transcriptome [4,9], or small non-coding RNA and miRNA identification [5,10].
Although next-generation sequencing (NGS) technologies allow ultrahigh-throughput and highly
accurate quantification of gene expression levels, the associated high cost of sequencing and
post-verification on extensive amounts of nucleic acids (DNA or RNA) limit its widespread use [11–13].
In this context, quantitative real-time polymerase chain reaction (qRT-PCR) analysis is a conventional
choice for post-verification of the transcriptome data and to facilitate in-depth expression studies of
smaller sets of genes, including studies of alternative splicing, verification of microarray expression
results, and molecular diagnostics [14–17].

qRT-PCR is a well-established technique for quantifying the expression levels of target genes [9,18].
Approaches for detection of the PCR products amount (amplicon) using qRT-PCR are classified
into two categories: relative quantification based on housekeeping genes (HKGs) and absolute
quantification achieved with DNA standards via calibration curve [19]. Relative quantification is
one of the most straightforward and robust methods for accurately quantifying subtle changes in gene
expression. To avoid biased results and erroneous interpretations, a critical component of relative
quantification analysis is to normalize data by measuring in parallel the expression of HKGs from the
same specimen [20–23]. HKGs that are constitutively expressed to maintain cellular function, often
referred to as reference genes or internal controls, are expressed at constant levels in different tissues
and organs of specimens under various biotic and abiotic circumstances. As a basic prerequisite for
relative quantification, HKGs have been extensively used to normalize transcript data generated by
qRT-PCR as well as microarrays [24,25]. NGS data mining and HKGs identification in model species
have shown that those of internal controls exhibited not only species-specific expression, but also
tissue-specific expression. Furthermore, their expression levels are also influenced by environmental
factors (water, light, and temperature), as well as specific experimental conditions [19,24,26–28].

In general, HKGs such as 18S ribosomal RNA (18SrRNA), beta-actin (β-actin), elongation factor-1
alpha (EF1a), ubiquitin (UBQ), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been
widely adopted for normalization [29,30]. However, it has been suggested that UBQ10 and G6PD
should be avoided for gene expression normalization in soybean [31]. Therefore, two or more HKGs
are used to normalize relative quantified data generated from qRT-PCR, which are expressed at
constant levels under various experimental conditions [25,28]. Furthermore, there is an increasing
number of attempts for HKG identification, including that of Carica papaya [32], Solanum tuberosum [33],
Linum usitatissimum [19], Kosteletzkya virginica [29], Oryza sativa [16], Lycopersicon esculentum [34],
Triticum aestivum [35], Eucalyptus robusta [36], Arabidopsis thaliana [37], Sesamum indicum [38], and
Populus euphratica [39].

Conifers have the most complex and largest genomes, as well as diverse and highly diverged
repetitive sequences among all living organisms; and therefore, sequencing and assembly of their
complete genomes have been described as highly challenging [40–42]. Thus, it is essential to provide
reliable methods for determining the gene expression pattern of conifers. However, only one study
has screened HKGs in the Pinus pinaster [43]. Among 10 candidate endogenous references, adenosine
kinase and UBQ were determined to be acceptable options, based on the observed low level of variation
in Ct values and M values in the three developmental stages of Pinus pinaster. In contrast, several
genes showed variable levels of expression with various conditions. However, no validation of HKGs
upon abiotic stresses in conifers has been reported, and information on these particular genes in
stress-tolerant herbaceous plants is limited. Because abiotic stresses such as heat, cold, salinity, and
drought cause considerable losses in plant biomass and retard plant growth, it is important to breed
stress-resistant plants.
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Chinese fir is one of the most important conifers; however, its genomic information and systematic
studies on validating HKGs for qRT-PCR studies are largely unknown, thereby hindering in-depth
investigations on the functions of its gene. Herein, based on the transcriptomic data (GenBank
Accession Numbers SRR2087198 and SRR2087918) from our previous study, we selected five common
HKGs and used them to conduct BLAST analysis to identify highly conserved sequences. We then
evaluated the following genes, Actin, GAPDH, EF1a, 18S rRNA, and UBQ, in the roots and cotyledons
of Chinese fir seedlings under five different abiotic stresses, namely, cold, high temperature (HT),
abscisic acid (ABA), polyethylene glycol (PEG), and sodium chloride (NaCl). The data generated from
qRT-PCR were then further analyzed using comprehensive and accurate tools for statistical analysis,
such as NormFinder [28], geNorm [44], BestKeeper [45], and RankAggreg [46], to determine the most
appropriate one.

2. Results

2.1. Quality Control

We selected the cotyledon and root section of Chinese fir, which were marked in Figure 1A and
all data were analyzed according to the flow chart presented in Figure 1B.
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ratio was >1.7; (2) 25S ribosomal RNA bands in the electrophoresis gel were about two-fold sharper 
than the 18S ribosomal RNA bands (Figure S1); (3) Amplicons generated from RT-PCR showed the 
predicted monomer size and did not form any primer-dimers (Figure S2A). The PCR products of 
these candidate HKGs were then subcloned into a T-vector for sequencing. In addition, primer 
specificity was further validated using melting curve analysis (Figure S2B–F) and sequencing 
consequences. The PCR efficiencies of these five candidate HKGs varied from 1.92 to 2.08, of which 
EF1a had the lowest amplification efficiency and GAPDH showed the highest efficiency, followed by 
Actin, UBQ, and 18S. The transcriptome ID, Arabidopsis orthologous locus, primer sequences, 
amplicon length, and PCR efficiencies of the five candidate HKGs in Chinese fir are listed in  
Table S1. 

Figure 1. Sample sets and data analysis flow chart: (A) different section of Chinese fir used in
experiment; and (B) data analysis flow chart. Cycle threshold (Ct) values were calculated using different
algorithms. Each candidate HKG has one efficiency value. The Ct data were checked for distribution by
scatter plot and box whisker. The statistical results from three excel-based program were merged with
RankAggreg. Abbreviations: Stab.: NormFinder stability value; r2: determination coefficient-regression
from BestKeeper; CV: coefficient of variance from BestKeeper; M: classical stability value from geNorm;
PV: pairwise variation from geNorm.

RNA samples were evaluated by the following quality controls: (1) We used NanoDrop2000
spectrophotometer (Thermo, Waltham, MA, USA) to measure the OD260/OD280 and OD260/OD230

ratios. As measured, the OD260/OD280 ratio was between 1.8 and 2.0, and the OD260/OD230 ratio
was >1.7; (2) 25S ribosomal RNA bands in the electrophoresis gel were about two-fold sharper
than the 18S ribosomal RNA bands (Figure S1); (3) Amplicons generated from RT-PCR showed the
predicted monomer size and did not form any primer-dimers (Figure S2A). The PCR products of these
candidate HKGs were then subcloned into a T-vector for sequencing. In addition, primer specificity
was further validated using melting curve analysis (Figure S2B–F) and sequencing consequences. The
PCR efficiencies of these five candidate HKGs varied from 1.92 to 2.08, of which EF1a had the lowest
amplification efficiency and GAPDH showed the highest efficiency, followed by Actin, UBQ, and 18S.
The transcriptome ID, Arabidopsis orthologous locus, primer sequences, amplicon length, and PCR
efficiencies of the five candidate HKGs in Chinese fir are listed in Table S1.
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2.2. Transcriptional Patterns

The raw cycle threshold [47] values generated from qRT-PCR were analyzed and results showed
variation among candidate HKGs in all tested samples. In roots, the average Ct values of the five
HKGs that were subjected to different treatments ranged from 13.63 to 28.92 (Figure 2A). The gene
encoding GAPDH had the highest expression level, which reached its cycle threshold after only 13.63
amplification cycles, whereas the Ct value of Actin with 28.92 exhibited the lowest transcript abundance.
Unlike the root, the Ct values of these genes in cotyledon samples were between 21.78 (EF1a) and
28.45 (Actin) (Figure 2B). In all tested samples, Actin showed the highest Ct values in both roots and
cotyledons. Each HKG displayed different levels of expression in various tissues under the same
treatment. GAPDH and EF1a showed a higher expression level in root samples than in cotyledon
samples. Furthermore, except for the Ct values of GAPDH and EF1a in roots, the rest of the Ct values
of HKGs were within the range of 22–29. The data distribution is shown as a box-whisker in Figure 3;
in roots, the Actin (SD = ˘0.53) had the least variable transcript abundance, which is reflected by its
low SD values. On the contrary, GAPDH showed the most variable transcript abundance (SD = ˘1.47)
(Figure 3A). In cotyledons, the greatest expression variation was observed in EF1a (SD = ˘1.16),
whereas that of 18S (SD = ˘0.75) was the most stable (Figure 3B). These results indicated that no single
candidate HKG had a constant expression level in different Chinese fir samples under five abiotic
stresses, and thus it is of great importance to screen the best HKG(s) for gene expression normalization
under certain experimental conditions in Chinese fir.
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PEG: Polyethylene Glycol treatment.
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2.3. Statistical Analysis

2.3.1. NormFinder

NormFinder was used to evaluate the expression stability of the candidate HKGs on the
experimental samples. Raw Ct values were first log-transformed and used as input for the NormFinder.
This algorithm takes into account the intra- and inter-group variations for normalization factors (NFs),
which requires input data from a minimum of three candidate HKGs and a minimum of two tested
samples per group. The calculated results of this software were not influenced by random co-regulated
genes. The best candidate HKG displayed higher stability values that were close to zero. Tables 1 and 2
present the stability values of tissue-specific and condition-dependent HKGs. With cold treatment,
the best HKG in root was Actin (stability value: 0.009), whereas in the cotyledon it was UBQ (0.008).
With HT treatment, in root, the best HKGs were Actin and 18S (0.007), and these two genes were
also identified as the most stably expressed genes during NaCl treatment. In the cotyledon, EF1a
(0.006) was the optimal HKG during HT stress, and GAPDH and 18S (0.012) were the most stable
HKGs during NaCl stress. The GAPDH showed to be the optimal candidate in roots under the ABA
treatment, which was also evaluated as the best candidate in cotyledons under the PEG treatment.
UBQ (0.006) was the best HKG in the root during PEG stress, and EF1a (0.008) was the most stable gene
in the cotyledon during ABA stress. Among all treatments, Actin (0.017) was the most stable candidate
in root samples and GAPDH (0.095) was the least stable. Furthermore, GAPDH (0.021) showed the
least variation in cotyledon samples and Actin had the highest (0.043).
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Table 1. Expression stability values and ranking of HKGs in Chinese fir root as calculated by the NormFinder.

Rank
Position

Cold-Root HT-Root NaCl-Root ABA-Root PEG-Root Total-Root

Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab.

1 Actin 0.009 Actin 0.007 Actin 0.009 GAPDH 0.009 UBQ 0.006 Actin 0.017
2 18S 0.023 18S 0.007 18S 0.009 Actin 0.016 Actin 0.017 18S 0.020
3 UBQ 0.038 EF1a 0.026 UBQ 0.043 18S 0.027 18S 0.042 UBQ 0.047
4 GAPDH 0.097 UBQ 0.087 EF1a 0.056 EF1a 0.035 GAPDH 0.042 EF1a 0.074
5 EF1a 0.126 GAPDH 0.174 GAPDH 0.070 UBQ 0.036 EF1a 0.043 GAPDH 0.095

Best gene Actin Actin and 18S Actin and 18S GAPDH UBQ Actin
0.009 0.007 0.009 0.009 0.006 0.017

Abbreviation: HT: High Temperature treatment; Cold: Cold treatment; ABA: Abscisic Acid treatment; NaCl: Sodium Chloride treatment; PEG: Polyethylene Glycol treatment; Stab.:
NormFinder stability value.

Table 2. Expression stability values and ranking of HKGs in Chinese fir cotyledon as calculated by the NormFinder.

Rank
Position

Cold-Cotyledon HT-Cotyledon NaCl-Cotyledon ABA-Cotyledon PEG-Cotyledon Total-Cotyledon

Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab. Gene Stab.

1 UBQ 0.008 EF1a 0.006 GAPDH 0.012 EF1a 0.008 GAPDH 0.007 GAPDH 0.021
2 GAPDH 0.016 18S 0.010 18S 0.012 UBQ 0.012 18S 0.019 UBQ 0.024
3 Actin 0.030 UBQ 0.013 UBQ 0.044 Actin 0.016 EF1a 0.024 18S 0.029
4 18S 0.030 GAPDH 0.019 EF1a 0.078 18S 0.017 UBQ 0.031 EF1a 0.035
5 EF1a 0.031 Actin 0.023 Actin 0.092 GAPDH 0.026 Actin 0.040 Actin 0.043

Best
combination

UBQ EF1a GAPDH and 18S EF1a GAPDH GAPDH
0.008 0.006 0.012 0.008 0.007 0.021

Abbreviation: HT: High Temperature treatment; Cold: Cold treatment; ABA: Abscisic Acid treatment; NaCl: Sodium Chloride treatment; PEG: Polyethylene Glycol treatment; Stab.:
NormFinder stability value.
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2.3.2. BestKeeper

BestKeeper was applied to rank the stability values by calculating the coefficient of variance
(CV). The candidate HKGs are considered to be the most stably expressed genes when they present
the lowest CV. The BestKeeper index reflects another function of the BestKeeper program, which is
conducted using the coefficient of determination (r2). The r2 is calculated to identify a credible NF,
but not to estimate the goodness of each HKG independently. Therefore, the closer r2 is to 1, the
better. In the present study, we applied both CV and r2 to rank the stability values of five candidate
HKGs. According to CV values generated from BestKeeper, Actin was identified as the best HKG for
cold-, PEG-, and NaCl-treated root, and UBQ and GAPDH showed the greatest stability in HT- and
ABA-treated root, respectively (Table 3). As shown in Table 4, except for 18S in NaCl-treated cotyledon,
none of the candidate genes in all of the sample sets tested were ranked as the best one by both CV and
r2. For example, for the root under PEG stress, only considering the CV, Actin showed the most stable
expression pattern, but based on r2 ranking, EF1a was the best (Table 3). In the cotyledon, the best
HKG in PEG, ABA, and NaCl treatments was 18S, and GAPDH was the most stably expressed gene in
both HT and cold treatment (Table 4). Altogether, based on CV values, Actin was identified as the best
HKG in all tested root samples (Table 3), whereas 18S was the most stably expressed gene in all tested
cotyledon samples (Table 4). However, as ranked by r2, EF1a was the best HKG for cold-, PEG-, and
ABA-treated roots, and GAPDH and UBQ showed the greatest stability in HT- and NaCl-treated roots,
respectively (Table 3). In cold- and ABA-treated cotyledons, EF1a was the best HKG, whereas the
genes Actin, GAPDH, and 18S showed the greatest stability in HT-, PEG- and NaCl-treated cotyledons,
respectively (Table 4). In conclusion, according to r2, EF1a was the most stable HKG in all root samples,
and GAPDH exhibited the lowest variability in all cotyledon sample sets (See the specific data of CV
and r2 in Tables S2 and S3).

2.3.3. geNorm

geNorm (Version 3.5, Ghent, Flanders, Belgium) was used to identify the expression stability of
candidate HKGs based on the M value, which is defined as the average variation of a certain gene
with regard to all other candidate HKGs. The gene with the lowest M value is considered to have
the more stable expression, or conversely. According to this principle, the geNorm program will
stepwisely exclude the least stable gene and be repeated until only two genes remain. The M values of
the candidate HKGs are presented in Figure 4. In the ABA treatment, the Actin and GAPDH genes
were ranked lowest in root samples, with an M value of 0.0271 (Figure 4A), whereas the UBQ and
18S genes were most stably expressed in cotyledon samples, with an M value of 0.0063 (Figure 4B).
For cold/HT/NaCl-treated root samples, the most stable genes were Actin and 18S with M values of
0.0252, 0.02, and 0.0263, respectively (Figure 4A). The same most stably expressed HKGs were GAPDH
and 18S in HT/NaCl/PEG-treated cotyledon samples, with M values of 0.085, 0.0351, and 0.0207,
respectively (Figure 4B). The Actin and UBQ genes performed best in PEG-treated root samples, with
an M value of 0.0169 (Figure 4A), whereas the Actin and GAPDH genes were ranked lowest, with
an M value of 0.0199, in cold-treated cotyledon samples (Figure 4B). For all tested sample sets, the
genes encoding Actin and 18S, with an M value of 0.0494, showed the most stable expression HKGs in
roots (Figure 4A). Furthermore, GAPDH and UBQ were ranked lowest in cotyledon under different
abiotic stresses, with an M value of 0.0392 (Figure 4B). In most tested samples, the results of geNorm
were in high agreement with the results of NormFinder, although with slight variations in the ranking
sequence of genes. In addition, regardless of the variations in ranking, these programs identified the
same most stably expressed gene in all experimental samples.
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Table 3. Expression stability values and ranking of HKGs in Chinese fir root as calculated by BestKeeper.

Rank
Position

HT-Root Cold-Root PEG-Root ABA-Root NaCl-Root Total-Root

CV r2 CV r2 CV r2 CV r2 CV r2 CV r2

1 UBQ EF1a Actin GAPDH Actin UBQ GAPDH Actin Actin GAPDH Actin UBQ
2 18S Actin 18S 18S UBQ GAPDH Actin GAPDH 18S EF1a 18S 18S
3 Actin UBQ UBQ UBQ GAPDH 18S UBQ 18S EF1a Actin UBQ GAPDH
4 EF1a 18S GAPDH Actin 18S Actin 18S UBQ UBQ 18S EF1a Actin
5 GAPDH GAPDH EF1a EF1a EF1a EF1a EF1a EF1a GAPDH UBQ GAPDH EF1a

Abbreviation: HT: High Temperature treatment; Cold: Cold treatment; ABA: Abscisic Acid treatment; NaCl: Sodium Chloride treatment; PEG: Polyethylene Glycol treatment; CV:
Coefficient of Variance; r2: Coefficient of Determination.

Table 4. Expression stability values and ranking of HKGs in Chinese fir cotyledon as calculated by BestKeeper.

Rank
Position

HT-Cotyledon Cold-Cotyledon PEG-Cotyledon ABA-Cotyledon NaCl-Cotyledon Total-Cotyledon

CV r2 CV r2 CV r2 CV r2 CV r2 CV r2

1 GAPDH GAPDH GAPDH Actin 18S EF1a 18S 18S 18S EF1a 18S Actin
2 18S EF1a UBQ GAPDH EF1a 18S UBQ Actin GAPDH UBQ Actin 18S
3 EF1a UBQ Actin 18S GAPDH UBQ Actin UBQ UBQ Actin UBQ EF1a
4 UBQ 18S 18S UBQ UBQ Actin EF1a GAPDH Actin GAPDH GAPDH UBQ
5 Actin Actin EF1a EF1a Actin GAPDH GAPDH EF1a EF1a 18S EF1a GAPDH

Abbreviation: HT: High Temperature treatment; Cold: Cold treatment; ABA: Abscisic Acid treatment; NaCl: Sodium Chloride treatment; PEG: Polyethylene Glycol treatment; CV:
Coefficient of Variance; r2: Coefficient of Determination.
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To determine the optimal number of HKGs for accurate normalization in different sample sets,
we applied the geNorm program to further calculate the pairwise variation (PV) of two sequential
normalization factors (NFs) (Vn/Vn+1) as standard deviation (SD) of the log-transformed NFn/NFn+1

ratios [44]. The NF is calculated according to the geometric mean of the number of candidate HKGs
and the stepwise inclusion of other genes that were ranked based on its expression stability. Once the
PV value of a candidate HKG is higher than the default cutoff value of 0.15, the additional HKG is
considered to have a significant effect on normalization. Figure 5 shows the results of PV analysis,
suggesting that normalization requires the adoption of only two HKGs in all tested samples because
the V2/3 value of all tested samples was <0.15, the default cutoff value.
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2.3.4. RankAggreg

To determine the suitability of HKGs for normalization of target gene transcript abundance, the
ranking patterns of the three Excel-based programs were compared. To avoid discrepancies, ranking in
candidate HKGs due to the use of different algorithms (Tables S4 and S5), we applied the RankAggreg
approach to generate a consensus list. We combined the four outputs (M values from geNorm, stability
values from NormFinder, and CV and r2 values from BestKeeper) for comprehensive ranking analysis.
The merged data revealed that the best HKGs for normalization were: GAPDH for cold- (Figure 6A),
HT- (Figure 6B), and PEG-treated cotyledon (Figure 6E) and HT- (Figure 6H), and ABA-treated root
(Figure 6I); EF1a for ABA-treated cotyledon (Figure 6C) and PEG-treated root (Figure 6K); Actin for
cold- (Figure 6G) and NaCl-treated root (Figure 6J); and 18S for NaCl-treated cotyledon (Figure 6D).
Considering all of the treatments, GAPDH was the best HKG for the cotyledon (Figure 6F), and Actin
was the most stable HKG for the root (Figure 6L). On the basis of the HKGs number to use suggested
by geNorm and the ranking list indicated by RankAggreg, the best combination of candidate HKGs in
each treatment is presented in Table 5.
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rank aggregation using Monte Carlo algorithm with the Spearman foot rule distances: (A–F) different
treatments for cotyledon ((A) cold-treated; (B) HT-treated; (C) ABA-treated; (D) NaCl-treated; (E)
PEG-treated; and (F) total); and (G–L) different treatments for roots ((G) cold-treated; (H) HT-treated;
(I) ABA-treated; (J) NaCl-treated; (K) PEG-treated; and (L) total). Different lines in the plot represent the
following: gray lines, stability measurement; black lines, rank position; and red lines, model computed
by the Monte Carlo algorithm. Abbreviations: HT: High Temperature treatment; Cold: Cold treatment;
ABA: Abscisic Acid treatment; NaCl: Sodium Chloride treatment; PEG: Polyethylene Glycol treatment.

Table 5. Best combination of HKGs based on the geNorm and RankAggreg programs.

Different
Tissue

Treatment

Cold HT ABA NaCl PEG Total

Cotyledon GAPDH GAPDH EF1a 18S GAPDH GAPDH
UBQ UBQ UBQ GAPDH EF1a UBQ

Root
Actin GAPDH GAPDH Actin EF1a Actin
EF1a 18S UBQ 18S Actin EF1a

Abbreviations: HT: High Temperature treatment; Cold: Cold treatment; ABA: Abscisic Acid treatment; NaCl:
Sodium Chloride treatment; PEG: Polyethylene Glycol treatment.
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3. Discussion

Chinese fir is one of the most commercially important trees in China. Its lack of complete genome
information has hindered the in-depth functional analysis of its genes. To provide a powerful tool for
the quantitative analysis of this long-living tree, we evaluated five candidate HKGs in the cotyledon
and root of the Chinese fir under various abiotic stresses. Based on the transcriptomic data of our
previous study, we selected five candidate HKGs and BLASTed these with the genome sequences of
other coniferous trees, including Picea abies and Pinus taeda in NCBI. We then obtained highly conserved
sequences and used these in designing primers and cloning gene segments. This strategy not only
provided reliable gene segments for cloning HKGs in Chinese fir, but also served as a foundation for
cloning of these genes in other species.

As a sessile organism, the Chinese fir has to tolerate various abiotic and biotic changes in the
environment such as light intensity, temperature, water, and nutrients, which are the most crucial
signals that influence the metabolism, gene expression patterns, morphology, and development
of plants [48,49]. Previous reports have shown that plants are equipped with an induction system
for various stresses with miscellaneous sensors, including membrane proteins, second messengers,
and transcription factors [50,51]. Under the stress stimuli, these sensors translate the signals to a
downstream response to resist tolerance, which is then followed by unpredictable changes in transcript
abundance of essential genes. In the present study, Actin in the root showed minimal variation
under the five stresses, and GAPDH in the cotyledon was the most stably expressed gene in these
abiotic treatments.

Generally, housekeeping genes such as Actin, GAPDH, UBQ, 18S, and EF1a, which are used as
endogenous reference genes in Arabidopsis, are also found to shift in some experimental sets [52].
Therefore, the identification of the HKGs in specific experimental conditions is necessary. To avoid
erroneous expression estimates, we adopted three well-established statistical algorithms in our analysis,
which are Excel-extended macro programs, Normfinder, Bestkeeper, and geNorm. In these three
programs, NormFinder and BestKeeper test raw Ct values, whereas geNorm performs relative
quantification, and the results thus identify discrepancies in PCR efficiency that may influence
the validation of stability. We eliminated the influence of bias by using the two different statistical
indices (Ct-based CV and RQ-based r2) generated from BestKeeper, and combined the evaluation
statistics. As identified previously from Oryza sativa [53], Arabidopsis thaliana [37], one of the most
common HKGs, UBQ, was screened as the best HKG for PEG-treated root and cold-treated cotyledons.
Another common HKG, EF1a, was validated as one of the best choices for Brachiaria brizantha [54].
In previous studies, scientists have applied and identified HKGs as internal control genes in different
tissues of Chinese fir, including leaves, shoot apical meristems, stems, barks, xylems and vascular
cambiums [4,5,55,56]. However, identification of HKGs in Chinese fir seedlings upon different abiotic
stresses has not been reported. Our study showed that the EF1a was the best candidate as HKG for
ABA-treated cotyledons (Figure 6C) and PEG-treated roots (Figure 6K). We then may infer that the
HKGs identified in Chinese fir essentially correspond to the species mentioned above. Meanwhile,
some HKGs suitable for qRT-PCR normalization were also identified in Chinese fir such as Actin for
cold- (Figure 6G) and NaCl-treated roots (Figure 6J) and 18S for NaCl-treated cotyledon (Figure 6D).

To avoid the biased results of different excel-based programs, we further used RankAggreg to
merge the datasets. When considering all the treatments, the comprehensive results recommend that
GAPDH is the best HKG for the cotyledon (Figure 6F) and Actin is the most stable HKG for the root
(Figure 6L). According to the number of HKGs to use as calculated by geNorm and the consensus list
suggested by RankAggreg, the best combination of candidate HKGs varied with treatment and tissues.
For example, GAPDH and UBQ were the best HKGs for the cold-treated cotyledon, but Actin and EF1a
were the best choice for the cold-treated root (Table 5). Taken together, these results indicate that HKGs
show similar expression profiles in different tissues because these are involved in basic intracellular
functions. However, in different species, some HKGs exhibited distinct expression patterns because
each species has its own gene expression regulatory network. Therefore, it is necessary to systematically
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screen HKGs prior to its adoption in qRT-PCR normalization for specific organisms, even for different
tissues, and developmental stages of identical species in certain experimental conditions.

To ensure accurate normalization, several authors have recommended the adoption of multiple
HKGs in the analysis of gene expression [20,57–59]. For the Chinese fir abiotic stress study, we mainly
focused on the impact of five abiotic treatments on the transcript stability of these HKGs. As expected,
these candidate HKGs varied across different sample sets. Therefore, as PV values of V2/3 across all
tested samples were <0.15 (Figure 5), we advocated two HKGs to be used for accurate quantification.
Our findings, based on the RankAggreg data merged from three adequate estimated programs, reveal
that the GAPDH gene may be used for normalization in cotyledon samples, whereas the Actin gene is
the best internal control gene in roots. These results showed that gene expression stability is highly
tissue-specific and external condition-dependent.

4. Materials and Methods

4.1. Sampling

The seeds of Chinese fir were obtained from Fujian Province, China. After 7 days of germination
at 4 ˝C, the seeds were disinfected with 1% KMnO4 for 30 min and 0.2% HgCl2 for 10 min.
Then, the seedlings were planted in sterile glass bottles under controlled conditions (28 ˝C/26 ˝C,
16-h-day/8-h-night cycle). There were 6 to 8 individuals in each glass bottle. After growth for 30 days,
when the seedlings showed fully opened cotyledons and some true leaves, the plants were subjected to
five different stress treatments: high temperature (37 ˝C), low temperature (4 ˝C), 100 µM abscisic acid
(ABA), 250 mM sodium chloride (NaCl), and drought stress (20% polyethyleneglycol 4000, PEG4000).
The specimens were sampled at 4, 8, 12 h after treatment. Moreover, for each sampling, the seedlings
were separated to collect tissue samples of the roots and cotyledons. On the other hand, the seedlings,
which were not subjected to stress treatment, were collected and marked as controls. All specimens
were immediately frozen in liquid nitrogen and stored at ´80 ˝C until analysis.

4.2. Total RNAs Extraction

Total RNAs were extracted from Chinese fir using a plant RNA purification reagent (Invitrogen,
Carlsbad, CA, USA). First, frozen specimens were ground in liquid nitrogen to a fine powder with a
pestle and a mortar. Second, the powder was completely dissolved in the plant purification reagent,
and the mixture was centrifuged at 12,000ˆ g at 4 ˝C for 2 min. This was then followed by the addition
of chloroform to remove the DNA and isopropyl alcohol to recover the RNAs. Finally, the obtained
RNA samples were examined by 2.5% agarose gel electrophoresis for 10 min.

4.3. cDNA Synthesis

Complementary DNA (cDNA) was synthesized using the Fast Quant RT Kit (TIANGEN, Beijing,
China), following the manufacturer’s protocol. The reverse transcription system was based on 5 µg of
total RNA, which generated approximately 20 µL of cDNA by using random primers. The resulting
cDNAs were diluted to a ratio of 1:5 with nuclease-free water. Additionally, all of the cDNAs were
stored at ´20 ˝C until analysis.

4.4. Primer Design

As the complete genomes of Chinese fir were not published, we obtained the sequences of
five genes from NCBI Sequence Read Archive SRA (GenBank Accession Numbers SRR2087198 and
SRR2087918 for light- and dark-grown samples, respectively). The selected genes were used in BLAST
analysis to identify highly conserved sequences, which were then used in designing primers with the
Primer Premier 5. The length of the amplified fragments ranged from 150 to 200 bp. Finally, the control
cDNAs was used as template to test the five pairs of primers by PCR to make sure that the primers
were usable. The PCR products were extracted and cloned using a T vector and sequenced.
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4.5. Quantitative Real-Time PCR (qRT-PCR)

qRT-PCR was implemented using the Kit (SuperRealPreMix Plus with SYBR Green from
TIANGEN, Beijing, China) on a Real-Time PCR Detection System CFX96 (Bio-Rad, Hercules, CA
USA). In addition, all cDNA templates used in the experiment were of the same concentration. Twenty
microliters reaction systems were preparing using with following: 1 µL of the cDNA template, 7.4 µL of
water, 10 µL of 2ˆ SuperRealPreMix Plus, 0.4 µL of 50ˆ ROX Reference Dye, and 0.6 µL of the forward
and reverse primers. The PCR program involved a two-step process that was run for 40 cycles: 95 ˝C
for 10 min, then denaturation at 95 ˝C for 10 s, annealing at 60 ˝C for 32 s, and extension at 72 ˝C for
10 s. Each reaction had four replicates. Melting curve data were gathered from 65 ˝C to 95 ˝C in 0.5 ˝C
increments. The standard curve of each primer pair was established with serial dilutions of cDNA
((1/5)0, (1/5)1, (1/5)2, (1/5)3, (1/5)4 and (1/5)5). The amplification efficiency (E) of qRT-PCR was
determined according to the equation: E = 10´1/K, where K represents the slope of the standard curve.

4.6. Bioinformatics and Statistical Analysis of Data

Excel-based programs were used in the present study, including geNorm, NormFinder and
Best-Keeper. The RankAggreg package of the R program was applied to combine the four outputs,
“Stab”, “CV”, “r2”, and “M”, which were generated from three Excel-based programs as earlier
described. Based on the order of ranking, we employed a Monte Carlo algorithm to calculate and
rank using a line chart. Because geNorm generated the same M value in the chart for the two least
variable genes, we identified these two genes’ ranking with the initial M value that was calculated as
the normalization factor (NF) value.

5. Conclusions

In summary, this work is the first in-depth study that has attempted to identify the optimal HKGs
for the relative quantification of transcript abundance in Chinese fir using various abiotic stresses by
means of qRT-PCR technology. We have validated the expression stabilities of five candidate HKGs
in root and cotyledon sample sets from Chinese fir under five abiotic treatments in different time
intervals. As a consequence, we recommend Actin and GAPDH for all tested root and cotyledon
samples respectively as superior internal controls for normalization of qRT-PCR. In addition, our
results indicated that different appropriate HKGs or a combination of HKGs for normalization should
be screened based on different external conditions. We have also provided reliable HKG sequences and
a solid foundation for the screening of HKGs in quantitative RT-PCR studies of transcript abundance
in Chinese fir.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/8/
1198/s1.
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