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Abstract: Epithelial ovarian cancer (EOC) is the leading cause of death for gynecological cancer.
The standard treatment for advanced stage is the combination of optimal debulking surgery
and platinum-based chemotherapy. Nevertheless, recurrence is frequent (around 70%) and
prognosis is globally poor. New therapeutic agents are needed to improve survival. Since EOC is
strongly immunogenic, immune checkpoint inhibitors are under evaluation for their capacity to
contrast the “turn off” signals expressed by the tumor to escape the immune system and usually
responsible for self-tolerance maintenance. This article reviews the literature on anti-cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), anti-PD-1, anti-PD-L1, and anti-PD-L2 antibodies in
EOC and highlights their possible lines of development. Further studies are needed to better define
the prognostic role of the immune checkpoint inhibitors, to identify predictors of response and the
optimal clinical setting in EOC.
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1. Introduction

Epithelial ovarian cancer (EOC) is the first cause of death among gynecological neoplasms and
the fifth cancer-related cause of death for women in advanced countries [1]. Cytoreductive surgery
integrated with platinum-based chemotherapy is the standard treatment for advanced EOC.
Despite this combined approach, most patients recur and eventually die, with prognosis significantly
depending onthe platinum-free interval. Usually, platinum-sensitive disease benefits from platinum-based
re-challenging, while platinum-resistant disease is usually treated with single-agent chemotherapy
(e.g., pegylated liposomal doxorubicin [2,3], paclitaxel [4], gemcitabine [2,3], etoposide [5], topotecan [6,7],
or docetaxel [8]).

Several drugs have been recently added to the already available armament, such as bevacizumab
and olaparib, for BRCA-mutated EOCs. Unfortunately, their contribution to survival improvement of
patients with relapsed EOC, is, at best, marginal and, overall, prognosis remains globally severe [9–11].

New effective therapeutic strategies are needed to overcome drug resistances, preventing spreading
and progression of the tumor.

In this review, we will focus on the current clinical evidence and future perspectives offered
by immune checkpoint inhibitors in EOC. To identify ongoing clinical trials with these molecules,
we operated a search on clinicaltrials.gov with the keywords “ovarian cancer” and the name of each
checkpoint inhibitor discussed in the article.
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2. Immune Checkpoint Inhibitors: Prognostic Value and Rationale for Clinical Use

In recent years there is an increasing interest related to the role played by adaptive and innate
immunity in cancer progression control. It has been demonstrated that immune cells, through the
recognition of tumor-associated antigens (TAAs) and tumor-specific antigens (TSA), are able to identify
and kill neoplastic cells [12]. Ovarian cancer is known to be an immunogenic tumor. In 2003 Zhang
and colleagues [13] observed that the presence of CD3+ tumor-infiltrating lymphocytes (TILs) is
correlated with improved survival in EOC patients. Two years later, Sato and colleagues [14] reported
an improved survival in patients with intraepithelial CD8+ tumor infiltrating lymphocytes and a high
CD8+/regulatory T cell ratio. While the presence of CD8+ infiltrating lymphocytes seems to be a good
predictor of prognosis, the presence of CD4+CD25+FoxP3+ T regulatory cells (Tregs) and the existence
of a natural killer (NK) and B cell infiltration seems to be correlated with a worse prognosis [15,16].

In the physiological immune response, after TAA recognition by CD4+ and CD8+ T cells,
processed into small peptide and presented by antigen-presenting cells (APCs) through major
histocompatibility complex (MHC) class II, two positive signals are required for activation. The first one is
the connection between the T cell receptor (TCR) and MHC molecules; the second necessary step is
the interaction between B7 on APCs and CD28 on T cells. The CD28 has a competitive receptor for B7
ligand, the cytotoxic T lymphocyte antigen-4 (CTLA-4), which delivers an inhibitory signal. While this
negative feedback is mainly used in secondary lymphoid organ, other inhibitory pathways are present
within the tumor microenvironment [17,18]. The most important peripheral regulatory pathway is
the interaction between the programmed cell death-1 (PD-1) receptor, expressed on T cells, and the
programmed cell death ligand-1 and 2 (PD-L1 and PD-L2) on the tumor cells surface.

The binding between PD-1 and PD-L1 causes the inhibition of T-cells proliferation, the cytokine’s
secretion, and the increase of Treg, ensuring the maintenance of self-tolerance [19,20]. A similar
immunosuppressive effect is determined by the binding between PD-1 and the second ligand
called PD-L2 (Figure 1) [21]. This control mechanism, usually used by epithelial cells and
leukocytes, and induced by interferon-γ (IFN-γ) secretion, is necessary to prevent the development of
autoimmune reactions.
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Tumor cells are able to evade immune surveillance through different mechanisms and one of
these is the exposure of PD-L1 [22,23]. A high expression of PD-L1 seems to be correlated
with a worse prognosis in several type of tumors, such as non-small cell lung cancer (NSCLC) [24,25],
kidney cancer [26–31], and bladder cancer [32], while in other neoplasms, like melanoma [33], seems to
be a good prognosis predictor.

In ovarian cancer, Hamanishi and colleagues [34] observed a significant inverse correlation
between the intraepithelial CD8+ T lymphocyte count and the expression of PD-L1 in tumor cells.
Moreover, they reported a significantly worse prognosis for patients with higher levels of PD-L1 in
tumor cells. More recently, other authors have investigated the role of PD-L1 expression as a prognostic
factor in EOC. In 2013 Maine and colleagues [35] observed a correlation of PD-1 expression with
malignant tumors versus benign/borderline, and they also found that PD-L1 expression on monocytes
in ascites and blood of malignant EOC patients is higher than those with benign/borderline disease.
Not all studies agree in attributing the role of negative prognostic factors to the expression of PD-1
and PD-L1. Darb-Esfahani and colleagues [36] reported a significantly increased progression free
survival (PFS) in patients with higher PD-1 and PD-L1 expression in cancer cells, CD3+, PD-1+,
and PD-L1+ TILs densities, as well as PD-1 and PD-L1 mRNA levels. PD-L1 expression has, also,
significant impact on overall survival (OS) (p = 0.045), while for PD-1 expression only a positive
trend was seen for OS (p = 0.059) [36]. These data has been confirmed in a recent article published by
Webb and colleagues [37]. Probably, discordant results may reflect different techniques for PD-L1 and
PD-1 assessment.

Independently from the prognostic significance of PD-L1 expression, PD-L1/PD-1 receptor
B7/CTLA-4 interactions are important immune escape mechanisms, allowing tumor progression.

In order to prevent the activation of the immune-inhibitory pathways, several monoclonal
antibodies are under development. Currently, various antibodies targeting PD1, PD-L1, PD-L2,
and CTLA-4 have shown activity in several cancer other than EOC, such as melanoma [38–41],
lung cancer [42–44], head cancer, and renal cell carcinoma [45]. In melanoma and non-small cell lung
cancer, immune checkpoint inhibitors have been approved.

3. CTLA-4 and PD-1/PD-L1 Blockade in Ovarian Cancer: Clinical Evidence

Ipilimumab is a fully human immunoglobulin class G1 (IgG1) antibody targeting CTLA-4 and
it is currently approved for the treatment of metastatic melanoma [46]. Between 2003 and 2008
Hodi et al. [46], in a two-steps study, administered ipilimumab to eleven stage IV ovarian cancer
patients, previously vaccinated with granulocyte-macrophage colony-stimulating factor (GM-CSF)
modified irradiated autologous tumor cells (e.g., GVAX). One out of nine patients of the second group
obtained a durable disease control (over 4 years), while three patients had a disease stabilization.
Tumor regression was correlated with CD8+/Treg ratio suggesting a potential synergistic role of the
association of anti-CTLA-4 with the Treg depleting therapies. The safety profile was favorable and
only two patients experienced grade 3 gastrointestinal toxicities [47,48].

The other anti CTLA-4 antibody in an advanced stage of development is tremelimumab. For this
fully-human IgG2 antibody no clinical evidence is yet available for EOC, but several studies are
ongoing (see the next section). The first anti-PD-1 tested in EOC was nivolumab, a fully-humanized
IgG4, which prevents the binding between PD-1 and its ligands.

In a phase II trial published by Hamanishi and colleagues [49], nivolumab was administered
in two cohorts of patients at a dose of 1 or 3 mg/kg. All of the women included in the study had
platinum-resistant EOC and they had already received at least two chemotherapy lines. Two complete
responses (CRs) were observed in the 3 mg/kg arm and one partial response occurred in the
1 mg/kg arm. Considering both cohorts, overall response rate (ORR), was 15%, and the disease
control rate (DCR) was 45% [49]. One of the two CRs occurred in a patient with a clear cell carcinoma
(CCC), usually resistant to chemotherapy [50]. Most tumor specimens (80%) showed high expression of
PD-L1, but no significant correlated with response was observed. Eight out of 20 patients enrolled (40%)
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developed grade 3 or 4 treatment-related adverse events. The most common were hypothyroidism,
lymphocytopenia, fever, transaminitis, rash, fatigue, anemia, arthralgia, and arrhythmia [49].

Varga and colleagues [51] presented the interim first results of a phase Ib trial, evaluating safety
and antitumor activity of pembrolizumab (formerly known as lambrolizumab), another anti-PD-1
antibody, in patients with PD-L1-positive advanced solid tumors (PD-L1 expression ě1%). One out of
the 26 patients with advanced EOC obtained a complete response, while two patients experienced
a partial response. The best overall response rate was 11.5% and most common adverse events reported
were fatigue, anemia, and decreased appetite.

In 2012 Brahmer et al. [52] treated 207 patients with advanced solid tumors, including 17 women
with ovarian cancer, with BMS-936559, a fully-human IgG4 antibody targeting PD-L1. One patient
had a partial response and three had a stable disease. Most common toxicities were fatigue,
infusion reaction, diarrhea, arthralgia, rash, rash, pruritus, and headache.

In a phase Ib trial, Disis and colleagues treated 124 women affected by recurrent or refractory
EOC with avelumab, a fully-humanized anti-PD-L1 IgG1 antibody, at the dose of 10 mg/kg. ORR was
9.7% and 12 partial responses have been reported. Fifty five patients experienced a stable disease
(44.4%) and the disease control rate (DCR) was 54%. Immune-related adverse events have been
reported in 66.1%, with 6.5% grade ě3 (increased lipase and elevated creatine kinase and autoimmune
myositis that led to interruption of treatment). The most frequent adverse events were fatigue, nausea,
and diarrhea [53].

4. Ongoing Studies

In all published trials, immune checkpoint inhibitors were tested as single agents in relapsed
platinum resistant EOC with ORRs not exceeding 15% and only a few patients showing long-lasting
disease control. In order to improve these results, the combination with other agents, first of all
chemotherapy, is under investigation. Interestingly, Grabosch et al. [54], in a preclinical model, reported
that chemotherapy exposure with platinum and taxane upregulates PD-L1. Moreover, combination of
high-dose PD-L1 inhibitor and cisplatin in vivo is able to control and reduce tumor burden (p = 0.029),
even if optimal timing and dosage are not yet defined [54–56].

Following evidence derived from metastatic melanoma, several trials are also investigating
associations between different checkpoint inhibitors.

However, probably the most promising strategy, in the subgroup of BRCA-mutated/Homologous
recombination deficient (HRD) + EOC is the association of immune checkpoint inhibitors with poly
ADP-ribose polymerase (PARP)-inhibitors (see Table 1). Preclinical data indicate that BRCA-deficient
ovarian cancers express more frequently immune response genes than wild-type tumors [57]. On these
bases, in a murine ovarian cancer model Higuchi and colleagues [58] demonstrated that the CTLA-4
antibody, but not the inhibition of the PD-1/PD-L1 pathway, synergize with PARP-inhibitors increasing
long term survival in the majority of mice (p < 0.0001). Possibly, long-term results are due to a T-cell
mediated response and to the development of a protective immune memory.
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Table 1. Clinical trials with immune checkpoints inhibitors in ovarian cancer.

Type of Treatment ID Condition Phase Primary Outcome Secondary Outcome Status Sponsor

Neoadjuvant Pembrolizumab +
chemotherapy then Pembrolizumab

maintenance therapy
NCT02520154 Advanced EOC/primary

peritoneal/fallopian tube cancer 2 PFS Not yet
recruiting

M.D. Anderson
Cancer Center

Pembrolizumab with first line platinum
based chemotherapy followed by

pembrolizumab manteinance therapy
NCT02766582 Suboptimally cytoreduced EOC/primary

peritoneal/fallopian tube cancer 2 PFS OS, QoL Not yet
recruiting

Medical College
of Wisconsin

Niraparib + Pembrolizumab NCT02657889 Advanced or metastatic triple-negative
breast cancer or recurrent EOC 1–2 DLT, ORR Safety, tolerability, DR,

DCR, OS Recruiting Tesaro, Inc.

Chemotherapy + pembrolizumab and
pembrolizumab

as maintenance therapy
NCT02608684 Platinum-resistant recurrent EOC 2 ORR PFS, time to

progression, DR, OS Recruiting Cedars-Sinai Medical
Center

Pembrolizumab NCT02674061
(KEYNOTE-100) Advanced recurrent EOC 2 ORR DCR Recruiting Merck Sharp &

Dohme Corp.

Dose Dense Paclitaxel
with pembrolizumab NCT02440425 Platinum-resistant recurrent EOC 2 PFS, safety ORR, DCR, DR, OS Recruiting

H. Lee Moffit Cancer
Center and

Research Institute

ACP-196 ˘ Pembrolizumab NCT02537444
(KEYNOTE-191) Platinum-sensitive recurrent EOC 2 ORR Recruiting Acerta Pharma BV

WT1 Vaccine and Nivolumab NCT02737787 Recurrent EOCin CCR
after chemotherapy 1 DLT Recruiting

Memorial Sloan
Kettering Cancer

Center

Atezolizumab + Bevacizumab +
Acetylsalicylic Acid NCT02659384 Platinum-resistant recurrent

ovarian cancer 2 PFS Not yet
recruiting EORTC

Durvalumab + Paclitaxel
and Carboplatin NCT02726997 High-grade non-mucinousEOC, primary

peritoneal or fallopian tube cancer 1–2 Pharmacokinetics PFS, feasibility Not yet
recruiting

M.D. Anderson
Cancer Center

Toll-like Receptor Agonist 8
Motolimod (VTX-2337) + Durvalumab NCT02431559 Platinum-resistant recurrent EOC 1–2 MTD, PFS Recruiting Ludwig Institute for

Cancer Research

Durvalumab + Olaparib or Cediranib NCT02484404 Advanced solid tumors and
recurrent EOC 1–2 Recommended

dose, ORR Recruiting National Cancer
Institute (NCI)
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Table 1. Cont.

Type of Treatment ID Condition Phase Primary Outcome Secondary Outcome Status Sponsor

Durvalumab NCT02764333 Platinum-resistant EOC 2 ORR Recruiting
Memorial Sloan
Kettering Cancer

Center

Avelumab ˘ PLD Versus PLD Alone NCT02580058 Platinum-resistant/refractory EOC 3 OS ORR, DC, PFS, DR Recruiting Pfizer

avelumab in combination with and/or
following platinum-based

chemotherapy
NCT02718417 Previously untreated EOC 3 PFS OS, maintenance PFS,

ORR, DR
Not yet

recruiting Pfizer

Olaparib + Tremelimumab NCT02571725 recurrent BRCA mutation-associated EOC 1–2 Recommended
dose, ORR PFS Recruiting New Mexico Cancer

Care Alliance

Tremelimumab ˘ Olaparib NCT02485990 recurrent or persistentEOC, fallopian tube
or primary peritoneal carcinoma 1–2 Safety Recruiting

Sidney Kimmel
Comprehensive
Cancer Center

Ipilimumab NCT01611558 Recurrent platinum sensitive EOC 2 Safety ORR Active but not
recruiting Bristol-Myers Squibb

Nivolumab ˘ Ipilimumab NCT02498600 Recurrent EOC/primary
peritoneal/fallopian tube cancer 2 Objective tumor

response OS, PFS, safety Suspended National Cancer
Institute (NCI)

EOC = epithelial ovarian cancer, OS = overall survival, PFS = progression free survival, DR = duration of response, DCR = disease control rate, QoL = quality of life, DLT = dose-limiting
toxicities, ORR = overall response rate, CCR = complete clinical remission, MTD = maximum tolerated dose, PLD = pegylated liposomal doxorubicin.
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5. Discussion and Future Perspectives

The treatment of advanced/relapsed EOC is clearly an unmet need. Immune checkpoint inhibitors
may improve clinical outcome, but before adding them to our therapeutic options several questions
need to be addressed:

(1) Do we have reliable predictors of response in EOC?
(2) Are there subgroups more likely to benefit from immune checkpoint inhibitors?
(3) Is there an optimal clinical setting?
(4) Is it better to use checkpoint inhibitors alone or in association with other agents?
(5) Is there a possible role for PD-L1/L2 in early detection of ovarian cancer?

(1) The most important point is the lack of validated predictive biomarkers of response.
Unfortunately, the expression of PD-L1 on tumor cells does not seem to be a reliable predictor of
benefit from immune checkpoint inhibitors since its role is not consistent across different studies in
different cancers probably due heterogeneous techniques in the measurement of PD-L1 and different
timing of assessments (e.g., before chemotherapy, after chemotherapy, or during chemotherapy) [59].
Moreover, it has to be taken into account that, other non-neoplastic cells in the tumor microenvironment
expressing PD-L1 may be relevant in response to checkpoint inhibitors. For example, Webb and
colleagues have shown, in ovarian cancer, that tumor-associated macrophages (TAMs) frequently
express PD-L1 [37].

Considering predictors less “PD-1/PD-L1 and PD-L2centric” and more easily applicable to clinical
practice, there are a few interesting reports on correlations between the anti CTLA-4 ipilimumab and
response in metastatic melanoma that may future relevance also in EOC The most interesting are
the increased number of peripheral blood absolute lymphocyte count [60] and the low ratio value of
absolute neutrophils and lymphocyte count (N/L) [61].

(2) A peculiar subset of EOC patients is represented by somatic and germline BRCA
mutation carriers. It is known that EOCs developed in BRCA carriers are characterized by
a higher mutational load and there is some evidence that this determines changes in the tumor
microenvironment due to the greater number of neoantigens that favor recruitment of an increased
number of TILs, as for other hypermutated tumors [62,63]. In fact, BRCA-mutated EOCs seem to be
associated with increased CD3+ and CD8+ TIL counts and high levels of PD-1 and PD-L1 [64,65].
These data suggest that BRCA-mutated patients may represent a particularly favorable subset
for immunotherapy in general and, in particular, for immune checkpoint inhibitors, alone or,
even more likely, in association with PARP inhibitors or platinum-based chemotherapy. Additionally,
rare histologies, which are known to be poorly sensitive to chemotherapy, may represent a favorable
subset for immune therapy [66].

In particular, clear cell ovarian cancer (CCC) is characterized by an intrinsic chemoresistance.
At American Society of Clinical Oncology (ASCO) 2016 it was shown that CCCs are frequently
associated with microsatellite instability (MSI) leading to a higher number of CD3+TILs and PD-1+TILs
in comparison with high-grade serous ovarian cancer (HGSOC) [67]. Moreover, CCCs have a gene
expression profile similar to renal cancer and it is known that a high rate of alterations in the
PI3K/Akt/mTOR pathway characterizes this histological type [68]. Interestingly, preclinical data from
NSCLC suggest that the activation of this pathway correlates with an increased expression of PD-L1 in
tumor cells [69].

These considerations support the clinical observation of a complete response (CR) obtained with
nivolumab, reported in a CCC by Hamanishi and colleagues [49,70].

(3) Another important point that needs that to be discussed is the optimal clinical setting for the
use of immune checkpoint inhibitors: from the few clinical trials available, platinum-resistant EOCs,
which are characterized by unfavorable prognosis and general chemoresistance, seem a reasonable target.
However, lower tumor burden, which usually identifies platinum-sensitive disease, may be more
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favorable in terms of arming immune system against cancer, as observed in a recently published
multi-cohort trial in patients with melanoma [71].

(4) As reflected by ongoing studies and summarized in Table 1, one of the strategies to increase
clinical benefit is to combine checkpoint inhibitors with other systemic therapy. If it is already
known that platinum-derived compounds are able to increase the release of TAAs and stimulate the
immune response, this does not improve survival, probably due to a cytokine release syndrome.
In order to overcome these mechanism of resistance, the addition of celecoxib to cisplatin and
PD-L1 blockade has been proposed [54]. More recent studies demonstrated a potential role
for the combination of immune checkpoint inhibitors and the DNA methyltransferase inhibitors,
now commonly used in treatment of hematologic neoplasm [72]. In fact 5-azacytidine, in preclinical
melanoma and NSCLC models, sensitizes cells to the check point inhibitors through an upregulation
of immunoregulatory pathways [73,74]. In ovarian cancer, preclinical studies have shown that
immune gene demethylation and expression after 5-azacytidine exposure is higher than other cell
lines, such as breast and colorectal cancers [74]. Ovarian cancer is known to have an angiogenic
phenotype [13]. From the preclinical evidence currently available, and currently under clinical
evaluation, the association between checkpoint inhibitors and antiangiogenic drugs (Table 1) also
appears reasonable. Indeed, it has been established that vascular endothelial growth factor (VEGF) has
an immune suppressive effect on T cells activation and inversely correlates with TILs infiltration [13,15],
Moreover, VEGR receptor 2 (VEGFR2) is selectively expressed in Treg CD4+FoxP3+ cells and in
response to VEGF, immature dendritic cells acquire a pro-angiogenic phenotype and contribute to
ovarian cancer progression [75–78].

(5) Interestingly, Chen and colleagues have shown that a soluble isoform of PD-L1 (sPD-L1) is
detectable in sera from healthy humans with an enzyme-linked immunosorbent assay (ELISA) test.
It is, therefore, likely that, in the presence of PD-L1 expressing cancer cells an increase of sPD-L1 may
be possible. Considering that delayed diagnosis influence prognosis of ovarian cancer, it could be
useful to assess a possible correlation between sPD-L1 levels and early detection of ovarian cancer [79].

In conclusion, ovarian cancer is an immunogenic disease and currently available data suggest
a potential activity of immune checkpoint inhibitors. There are still some points to be addressed,
such as the identification of reliable predictors of response, optimal clinical setting and finally,
we need to understand whether these drugs give their best alone or in combination with other agents.
To significantly move forward with immune therapy in EOC, it be will crucial to design smart clinical
trials with appropriate endpoint selection and biomarker assessment.
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