Supplementary Materials: Role of Aquaporins in a Composite Model of Water Transport in the Leaf

Adi Yaaran and Menachem Moshelion

Table S1. Possible water-related, post-translational regulation of AQPs.

	Trigger	Research Approach/Findings	Suggested Mechanism	Reference
Membrane	Changes in cell turgor	Hydraulic conductivity of Zea mays parenchyma cells increased as light intensity increased. Yet, when transportation reduce cells turgor (more than 0.2 MPa reduction) L_P was reduced despite light.	AQP-gating (light and turgor).	[59]
	Membrane tension/changes in cell turgor	Membrane trafficking inhibitors inhibited the rate at which the volume of intact <i>Vicia faba</i> guard cells decreased following 0–1.5 MPa osmotic treatments.	None.	[101]
	Membrane tension	Pulses of turgor pressure on individual young $\it Zea\ mays$ root cortex cells decreased the hydraulic conductivity ($\it L_P$) of those cells. Cells with high $\it L_P$ responded to HgCl ₂ .	Inhibition was in proportion with the absolute value of water flow within the channel, possibly due to a mechanical stimulus.	[102]
	Membrane surface tension/changes in cell turgor	Osmotic permeability (P_f) and activation energy for water transport (E_a) of TIP2;1 grapevine ($Vitis\ vinifera$) were dependent on internal turgor pressure.	TIP2;1 acts as a gate in an internal pressure-dependent manner.	[120]
Stresses	Drought stress/drop in cytoplasmic pH (anoxia due to flooding)	X-rays of spinach (<i>Spinacia oleracea</i>) SoPIP2;1 in its closed and open conformation; molecular dynamic simulations.	Dephosphorylation of two conserved serine residues; protonation of a conserved histidine residue.	[106]
	Long-term drought	Dephosphorylation of PIP2s in tobacco (<i>Nicotiana tabacum</i>) leaves exposed to long-term drought; HgCl ₂ decreased the water permeability of the leaf tissues of well-irrigated leaves.	AQP-gating (closed conformation) by dephosphorylation.	[109]
	ABA	Phosphoproteome analysis following ABA treatment revealed decreased phosphorylation of four members of the <i>Arabidopsis thaliana</i> PM AQP family.	AQP-gating (closed conformation) by ABA-dependent dephosphorylation.	[110]
	Apoplastic water potential/turgor	Osmotic stress changes AQP phosphorylation in spinach (<i>Spinacia oleracea</i>), in a manner dependent upon submicromolar concentrations of Ca ²⁺ . AQP transcript levels are high in vascular tissue.	Phosphorylation by PM-associated protein kinase is strictly dependent on submicromolar concentrations of Ca ²⁺ .	[107]
	Osmotic stress	Mannitol-induced water imbalance resulted in increased AQP in tonoplast fractions of ice plants (<i>Mesembryanthemum crystallinum</i>), as well as a shift in AQP distribution in other membrane fractions. Redistribution of McTIP1;2 was limited by trafficking inhibitors.	AQP re-localization suggests a role for glycosylation and the involvement of a cAMP-dependent signal in the redistribution of McTIP1;2.	[114]
	Osmotic gating	Inhibition of AQP activity in isolated <i>Chara coralline</i> internodes increased with as the concentration and molecular size of solutes increased (reflection coefficients).	Cohesion/tension model of AQP-gating.	[121,122]
	Salinity	Exposure of <i>Arabidopsis thaliana</i> roots to salt induces the redistribution of AQP to intracellular spherical structures tentatively identified as intravacuolar invaginations.	Subcellular re-localization of PIPs and TIPs.	[115]

Table S1. Cont.

	Trigger	Research Approach/Findings	Suggested Mechanism	Reference
Ion signals	Apoplast pH	HgCl ₂ prevented acidity induces swelling and floating of <i>Rhizopus delemars</i> spores.	pH-dependent AQP gating via histidine residues on the outer surface of the cel.l	[111]
	Ca ²⁺ and H ⁺	Adding Ca ²⁺ caused a 4-fold reduction in the hydraulic conductivity of <i>Arabidopsis thaliana</i> cells in suspension. The ability of purified plasma-membrane vesicles to transport water was reversibly blocked by Ca ²⁺ and H ⁺ .	Ca ²⁺ and H ⁺ are involved in AQP-gating.	[113]
	Divalent cations and protons	Cd ²⁺ and Mn ²⁺ were also identified as potent inhibitors of <i>Pichia pastoris</i> AtPIP2;1S, showing dose-dependent effects on proteoliposomes containing AtPIP2;1.	Specific residues are involved in binding divalent cations and/or stabilizing open- or closed-pore conformations.	[112]
Temperature	Temperature change (5 °C to 20 °C)	Incorporation of 32 P into AQP in microsomal membranes of tulip ($Tulipa\ gesnerina$) petals was temperature- and time-dependent.	Phosphorylation of AQP by PM associated protein kinase is dependent on the concentration of Ca ²⁺ .	[108]
Unknown	?	Co-expression and physical interaction of nonfunctional and functional ZmPIPs resulted in changes in the permeability of <i>Xenopus</i> oocytes to water, based on the amount of injected complementary RNA.	Formation of alternative heterotetramers alters AQP activity.	[116]
	?	Artificial heterotetramers with a defined proportion of NtAQP1 to tPIP2;1 tetramer affected the transport of water in yeast.	Formation of alternative heterotetramers alters AQP activity.	[119]
	?	MpPIP1;1 (which exhibits no water-channel activity) facilitated the activity of MpPIP2;1 in a phosphorylation-dependent manner.	Cooperative regulation of MpPIP2;1 was regulated by phosphorylation of MpPIP1;1.	[117]